Skip to main content

Advertisement

Log in

Current Options and Emerging Biomaterials for Periprosthetic Joint Infection

  • Surgery and Perioperative Care (S Goodman, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Infection in the setting of total joint arthroplasty, referred to as periprosthetic joint infection (PJI), is a devastating complication requiring prolonged and costly treatment. The unique environment around an artificial joint and ability of surrounding tissues to sequester bacteria collectively make prevention, diagnosis, and treatment of this condition challenging. In light of the unique pathogenesis of PJI, this review explores the limitations of contemporary treatments and discusses novel treatment options.

Recent Findings

Recent advancements in local antibiotic delivery platforms for preventing and treating PJI include titanium nanotube arrays, synthetic polymers, resorbable hydrogels, and cyclodextrin-based drug delivery options. In particular, cyclodextrins have facilitated great advancements in other clinical disorders and have demonstrated early promise as a future option in the arena of PJI.

Summary

Novel treatment modalities for PJI optimize the implant surfaces to prevent bacterial biofilm formation or provide prolonged intra-articular antibiotic dosing to eradicate bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kapadia BH, Berg RA, Daley JA, Fritz J, Bhave A, Mont MA. Periprosthetic joint infection. Lancet. 2016;387:386–94.

    Article  PubMed  Google Scholar 

  2. Berend KR, Lombardi AV, Morris MJ, et al. Two-stage treatment of hip periprosthetic joint infection is associated with a high rate of infection control but high mortality. Clin Orthop Relat Res. 2012;471:510–8.

    Article  PubMed Central  Google Scholar 

  3. Springer BD, Cahue S, Etkin CD, Lewallen DG, BJ MG. Infection burden in total hip and knee arthroplasties: an international registry-based perspective. Arthroplast Today. 2017;3:137–40.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res. 2008;466:1710–5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Badarudeen S, Shu AC, Ong KL, Baykal D, Lau E, Malkani AL. Complications after revision total hip arthroplasty in the Medicare population. J Arthroplast. 2017;32:1954–8.

    Article  Google Scholar 

  6. Springer BD, Fehring TK, Griffin WL, Odum SM, Masonis JL. Why revision total hip arthroplasty fails. Clin Orthop Relat Res. 2009;467:166–73.

    Article  PubMed  Google Scholar 

  7. Mortazavi SM, Schwartzenberger J, Austin MS, et al. Revision total knee arthroplasty infection: incidence and predictors. Clin Orthop Relat Res. 2010;468:2052–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. • Boddapati V, Fu MC, Mayman DJ, et al. Revision total knee arthroplasty for periprosthetic joint infection is associated with increased postoperative morbidity and mortality relative to noninfectious revisions. J Arthroplasty. 2018;33:521-526. This article highlights the increased morbidity and mortality faced by patients with periprosthetic joint infection.

  9. Jamsen E, Huhtala H, Puolakka T, et al. Risk factors for infection after knee arthroplasty. A register-based analysis of 43,149 cases. J Bone Joint Surg Am. 2009;91:38–47.

    Article  PubMed  Google Scholar 

  10. Bozic KJ, Kamath AF, Ong K, Lau E, Kurtz S, Chan V, et al. Comparative epidemiology of revision arthroplasty: failed THA poses greater clinical and economic burdens than failed TKA. Clin Orthop Relat Res. 2015;473:2131–8.

  11. Koh CK, Zeng I, Ravi S, Zhu M, Vince KG, Young SW. Periprosthetic joint infection is the main cause of failure for modern knee arthroplasty: an analysis of 11,134 knees. Clin Orthop Relat Res. 2017;475:2194–201.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zmistowski B, Karam JA, Durinka JB, Casper DS, Parvizi J. Periprosthetic joint infection increases the risk of one-year mortality. J Bone Joint Surg Am. 2013;95:2177–84.

    Article  PubMed  Google Scholar 

  13. Gundtoft PH, Pedersen AB, Varnum C, Overgaard S. Increased mortality after prosthetic joint infection in primary THA. Clin Orthop Relat Res. 2017(475):2623–31.

  14. Kurtz SM, Lau E, Watson H, et al. Economic burden of periprosthetic joint infection in the United States. J Arthroplasty. 2012;27:61–5.e1.

    Article  PubMed  Google Scholar 

  15. Alp E, Cevahir F, Ersoy S, Guney A. Incidence and economic burden of prosthetic joint infections in a university hospital: a report from a middle-income country. J Infect Public Health. 2016;9:494–8.

    Article  PubMed  Google Scholar 

  16. Parvizi J, Della Valle CJ. AAOS clinical practice guideline: diagnosis and treatment of periprosthetic joint infections of the hip and knee. Am Acad Orthop Surg. 2010;18:771–2.

    Article  Google Scholar 

  17. Parvizi J, Zmistowski B, Berbari EF, et al. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res. 2011;469:2992–4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Diaz-Ledezma C, Higuera CA, Parvizi J. Success after treatment of periprosthetic joint infection: a Delphi-based International Multidisciplinary Consensus. Clin Orthop Relat Res. 2013;471:2374–82.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Carli AV, Ross FP, Bhimani SJ, Nodzo SR, MPG B. Developing a clinically representative model of periprosthetic joint infection. J Bone Joint Surg. 2016;98:1666–76.

    Article  PubMed  Google Scholar 

  20. Trampuz A, Zimmerli W. New strategies for the treatment of infections associated with prosthetic joints. Curr Opin Investig Drugs. 2005;6:185–90.

    PubMed  CAS  Google Scholar 

  21. Parvizi J, Erkocak OF, Della Valle CJ. Culture-negative periprosthetic joint infection. J Bone Joint Surg-Am Vol. 2014;96:430–6.

    Article  Google Scholar 

  22. Gristina A. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588–95.

    Article  PubMed  CAS  Google Scholar 

  23. Koseki H, Yonekura A, Shida T, Yoda I, Horiuchi H, Morinaga Y, et al. Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study. PLoS One. 2014;9:e107588.

  24. van de Belt H, Neut D, Schenk W, et al. Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop Scand. 2001;72:557–71.

    Article  PubMed  Google Scholar 

  25. Braem A, Van Mellaert L, Mattheys T, et al. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J Biomed Mater Res A. 2013;102:215–24.

    Article  PubMed  CAS  Google Scholar 

  26. Molina-Manso D, del Prado G, Ortiz-Pérez A, et al. In vitro susceptibility to antibiotics of staphylococci in biofilms isolated from orthopaedic infections. Int J Antimicrob Agents. 2013;41:521–3.

    Article  PubMed  CAS  Google Scholar 

  27. Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol. 2008;322:207–28.

  28. Anguita-Alonso P, Hanssen AD, Osmon DR, Trampuz A, Steckelberg JM, Patel R. High rate of aminoglycoside resistance among staphylococci causing prosthetic joint infection. Clin Orthop. 2005;439:43–7.

    Article  PubMed  Google Scholar 

  29. Kheir MM, Tan TL, Azboy I, et al. Vancomycin prophylaxis for total joint arthroplasty: incorrectly dosed and has a higher rate of periprosthetic infection than cefazolin. Clin Orthop Relat Res. 2017;475:1767–74.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Warth LC, Pugely AJ, Martin CT, Gao Y, Callaghan JJ. Total joint arthroplasty in patients with chronic renal disease: is it worth the risk? J Arthroplast. 2015;30:51–4.

    Article  Google Scholar 

  31. de Mesy Bentley KL, Trombetta R, Nishitani K, Bello-Irizarry SN, Ninomiya M, Zhang L, et al. Evidence of Staphylococcus aureus deformation, proliferation, and migration in canaliculi of live cortical bone in murine models of osteomyelitis. J Bone Miner Res. 2017;32:985–90.

  32. Buchholz HW, Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins. Chirurg. 1970;41:511–5.

    PubMed  CAS  Google Scholar 

  33. Lichstein P, Su S, Hedlund H, Suh G, Maloney WJ, Goodman SB, et al. Treatment of periprosthetic knee infection with a two-stage protocol using static spacers. Clin Orthop Relat Res. 2016;474:120–5.

  34. Moore AJ, Blom AW, Whitehouse MR, Gooberman-Hill R. Deep prosthetic joint infection: a qualitative study of the impact on patients and their experiences of revision surgery. BMJ Open. 2015;5:e009495.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cui Q, Mihalko WM, Shields JS, Ries M, Saleh KJ. Antibiotic-impregnated cement spacers for the treatment of infection associated with total hip or knee arthroplasty. J Bone Joint Surg Am. 2007;89:871–82.

    PubMed  Google Scholar 

  36. Tan TL, Gomez MM, Manrique J, Parvizi J, Chen AF. Positive culture during reimplantation increases the risk of subsequent failure in two-stage exchange arthroplasty. J Bone Joint Surg Am. 2016;98:1313–9.

    Article  PubMed  Google Scholar 

  37. Engesaeter LB, Dale H, Schrama JC, et al. Surgical procedures in the treatment of 784 infected THAs reported to the Norwegian Arthroplasty Register. Acta Orthop. 2011;82:530–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zahar A, Kendoff DO, Klatte TO, et al. Can good infection control be obtained in one-stage exchange of the infected TKA to a rotating hinge design? 10-year results. Clin Orthop Relat Res. 2015;474:81–7.

    Article  PubMed Central  Google Scholar 

  39. Segreti J, Nelson JA, Trenholme GM. Prolonged suppressive antibiotic therapy for infected orthopedic prostheses. Clin Infect Dis. 1998;27:711–3.

    Article  PubMed  CAS  Google Scholar 

  40. Kurtz SM, Ong KL, Schmier J, et al. Future clinical and economic impact of revision total hip and knee arthroplasty. J Bone Joint Surg Am. 2007;89(Suppl 3):144–51.

    PubMed  Google Scholar 

  41. Wang J, Zhu C, Cheng T, Peng X, Zhang W, Qin H, et al. A systematic review and meta-analysis of antibiotic-impregnated bone cement use in primary total hip or knee arthroplasty. PLoS One. 2013;8:e82745.

  42. Penner MJ, Masri BA, Duncan CP. Elution characteristics of vancomycin and tobramycin combined in acrylic bone-cement. J Arthroplast. 1996;11:939–44.

    Article  CAS  Google Scholar 

  43. Carli AV, Bhimani S, Yang X, Shirley MB, de Mesy Bentley KL, Ross FP, et al. Quantification of peri-implant bacterial load and in vivo biofilm formation in an innovative, clinically representative mouse model of periprosthetic joint infection. J Bone Joint Surg. 2017;99:e25.

  44. Gasparini G, De Gori M, Calonego G, et al. Drug elution from high-dose antibiotic-loaded acrylic cement: a comparative, in vitro study. Orthopedics. 2014;37:e999–1005.

    Article  PubMed  Google Scholar 

  45. Wang Z, Carli A, Bhimani S, et al. The elution characteristics of vancomycin from simplex cement ORS 2017 Annual Meeting Abstract #2168.

  46. Shiramizu K, Lovric V, Leung A, Walsh WR. How do porosity-inducing techniques affect antibiotic elution from bone cement? An in vitro comparison between hydrogen peroxide and a mechanical mixer. J Orthop Traumatol. 2008;9:17–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hsu Y, Hu C, Hsieh P, et al. Vancomycin and ceftazidime in bone cement as a potentially effective treatment for knee periprosthetic joint infection. J Bone Joint Surg. 2017;99:223–31.

    Article  PubMed  Google Scholar 

  48. Whiteside LA, Roy ME, Nayfeh TA. Intra-articular infusion: a direct approach to treatment of infected total knee arthroplasty. Bone Joint J. 2016;98-B:31–6.

    Article  PubMed  CAS  Google Scholar 

  49. Strange S, Whitehouse MR, Beswick AD, Board T, Burston A, Burston B, et al. One-stage or two-stage revision surgery for prosthetic hip joint infection—the INFORM trial: a study protocol for a randomised controlled trial. Trials. 2016;17:90.

  50. Armstrong MD, Carli AV, Abdelbary H, Poitras S, Lapner P, Beaulé PE. Tertiary care centre adherence to unified guidelines for management of periprosthetic joint infections: a gap analysis. Can J Surg. 2018;61:34–41.

    Article  PubMed  Google Scholar 

  51. McConoughey SJ, Howlin RP, Wiseman J, et al. Comparing PMMA and calcium sulfate as carriers for the local delivery of antibiotics to infected surgical sites. J Biomed Mater Res B Appl Biomater. 2015;103:870–7.

    Article  PubMed  CAS  Google Scholar 

  52. Aiken SS, Cooper JJ, Florance H, Robinson MT, Michell S. Local release of antibiotics for surgical site infection management using high-purity calcium sulfate: an in vitro elution study. Surg Infect. 2015;16:54–61.

    Article  Google Scholar 

  53. Howlin RP, Brayford MJ, Webb JS, Cooper JJ, Aiken SS, Stoodley P. Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob Agents Chemother. 2015;59:111–20.

    Article  PubMed  CAS  Google Scholar 

  54. •• Inzana JA, Schwarz EM, Kates SL, et al. Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials. 2016;81:58–71. This comprehensive systematic review details the various biomaterials currently used to treat bony infection.

    Article  PubMed  CAS  Google Scholar 

  55. McPherson EJ, Dipane MV, Sherif SM. Dissolvable antibiotic beads in treatment of periprosthetic joint infection and revision arthroplasty: the use of synthetic pure calcium sulfate (Stimulan®) impregnated with vancomycin & tobramycin. Reonstruct Rev. 2013;3:32-43.

  56. Ferguson JY, Dudareva M, Riley ND, Stubbs D, Atkins BL, MA MN. The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: a series of 195 cases. Bone Joint J. 2014;96-B:829–36.

    Article  PubMed  CAS  Google Scholar 

  57. McKee MD, Li-Bland EA, Wild LM, et al. A prospective, randomized clinical trial comparing an antibiotic-impregnated bioabsorbable bone substitute with standard antibiotic-impregnated cement beads in the treatment of chronic osteomyelitis and infected nonunion. J Orthop Trauma. 2010;24:483–90.

    Article  PubMed  Google Scholar 

  58. • Flierl MA, Culp BM, Okroj KT, et al. Poor outcomes of irrigation and debridement in acute periprosthetic joint infection with antibiotic-impregnated calcium sulfate beads. J Arthroplasty. 2017;32:2505–7. This study evaluates the clinical efficacy of utilizing resorbable calcium sulfate cement beads for treatment of orthopedic infections. The key finding of the study was that the calcium sulfate beads did not mitigate the need for or enhance the outcomes of surgical debridement following periprosthetic joint infections.

    Article  PubMed  Google Scholar 

  59. Kallala R, Haddad FS. Hypercalcaemia following the use of antibiotic-eluting absorbable calcium sulphate beads in revision arthroplasty for infection. Bone Joint J. 2015;97-B:1237–41.

    Article  PubMed  CAS  Google Scholar 

  60. McLaren AC. Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections. Clin Orthop Relat Res. 2004;(427):101–6.

  61. Veiranto M, Suokas E, Ashammakhi N, et al. Novel bioabsorbable antibiotic releasing bone fracture fixation implants. Adv Exp Med Biol. 2004;553:197–208.

  62. Tian Y, Li L, Gao X, Deng J, Stephens D, Robinson D, et al. The effect of storage temperatures on the in vitro properties of a polyanhydride implant containing gentamicin. Drug Dev Ind Pharm. 2002;28:897–903.

  63. Gulati K, Aw MS, Losic D. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection. Nanoscale Res Lett. 2011;6:571-276X-6-571.

    Article  Google Scholar 

  64. Jia Z, Xiu P, Li M, Xu X, Shi Y, Cheng Y, et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO 2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials. 2016;75:203–22.

  65. Cochis A, Azzimonti B, Della Valle C, et al. Biofilm formation on titanium implants counteracted by grafting gallium and silver ions. J Biomed Mater Res A. 2014;103:1176–87.

    Article  PubMed  CAS  Google Scholar 

  66. Sussman EM, Casey BJ, Dutta D, Dair BJ. Different cytotoxicity responses to antimicrobial nanosilver coatings when comparing extract-based and direct-contact assays. J Appl Toxicol. 2015;35:631–9.

    Article  PubMed  CAS  Google Scholar 

  67. Song C, Chang Y, Cheng L, Xu Y, Chen X, Zhang L, et al. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites. Mater Sci Eng C. 2014;36:146–51.

  68. Wang Y, Guo X, Pan R, Han D, Chen T, Geng Z, et al. Mater Sci Eng C. 2015;53:222–8.

  69. Jaiswal S, Bhattacharya K, McHale P, Duffy B. Dual effects of Î2-cyclodextrin-stabilised silver nanoparticles: enhanced biofilm inhibition and reduced cytotoxicity. J Mater Sci Mater Med. 2015;26:52.

  70. Liu X, Xu Y, Wang X, Shao M, Xu J, Wang J, et al. Stable and efficient loading of silver nanoparticles in spherical polyelectrolyte brushes and the antibacterial effects. Colloids Surf B: Biointerfaces. 2015;127:148–54.

  71. Yanovska AA, Stanislavov AS, Sukhodub LB, Kuznetsov VN, Illiashenko VY, Danilchenko SN, et al. Silver-doped hydroxyapatite coatings formed on Ti–6Al–4V substrates and their characterization. Mater Sci Eng C. 2014;36:215–20.

  72. Ciobanu G, Ilisei S, Luca C. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold. Mater Sci Eng C. 2014;35:36–42.

    Article  CAS  Google Scholar 

  73. Pishbin F, Mouriño V, Gilchrist JB, et al. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater. 2013;9:7469–79.

    Article  PubMed  CAS  Google Scholar 

  74. Yin B, Liu T, Yin Y. Prolonging the duration of preventing bacterial adhesion of nanosilver-containing polymer films through hydrophobicity. Langmuir. 2012;28:17019–25.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang X, Wu H, Geng Z, Huang X, Hang R, Ma Y, et al. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO2 coatings. Mater Sci Eng C. 2014;45:402–10.

  76. Massa MA, Covarrubias C, Bittner M, Fuentevilla IA, Capetillo P, von Marttens A, et al. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Mater Sci Eng C. 2014;45:146–53.

  77. Sullivan MP, McHale KJ, Parvizi J, et al. Nanotechnology: current concepts in orthopaedic surgery and future directions. Bone Joint J. 2014;96-B:569–73.

    Article  PubMed  CAS  Google Scholar 

  78. Leng M, Hu S, Lu A, Cai M, Luo X. The anti-bacterial poly(caprolactone)-poly(quaternary ammonium salt) as drug delivery carriers. Appl Microbiol Biotechnol. 2016;100:3049–59.

    Article  PubMed  CAS  Google Scholar 

  79. Watson D, Smith T, LaPorte R, et al. Device and method for treating conditions of a joint. Patent 6936270B2, filed May 2, 2002, and issued Aug 30, 2005.

  80. Bucay-Couto W, Li J. Long-term indwelling medical devices containing slow-releasing antimicrobial agents and having a surfactant surface. US Patent 7749203B2, filed Jul 25, 2005, and issued Jul 6, 2010.

  81. Getzlaf MA, Lewallen EA, Kremers HM, et al. Multi-disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee. J Orthop Res. 2015;34:177–86.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sangeetha K, Girija EK. Tailor made alginate hydrogel for local infection prophylaxis in orthopedic applications. Mater Sci Eng C Mater Biol Appl. 2017;78:1046–53.

    Article  PubMed  CAS  Google Scholar 

  83. Cibor U, Krok-Borkowicz M, Brzychczy-Wloch M, et al. Gentamicin-loaded polysaccharide membranes for prevention and treatment of post-operative wound infections in the skeletal system. Pharm Res. 34:2017, 2075–83.

  84. Wang NX, von Recum HA. Affinity-based drug delivery. Macromol Biosci. 2011;11:321–32.

    Article  PubMed  CAS  Google Scholar 

  85. Bibby DC, Davies NM, Tucker IG. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int J Pharm. 2000;197:1–11.

    Article  PubMed  CAS  Google Scholar 

  86. Thatiparti TR, von Recum HA. Cyclodextrin complexation for affinity-based antibiotic delivery. Macromol Biosci. 2010;10:82–90.

    Article  PubMed  CAS  Google Scholar 

  87. Cyphert EL, Wallat JD, Pokorski JK, von Recum H. Erythromycin modification that improves its acidic stability while optimizing it for local drug delivery. Antibiotics (Basel). 2017;6. https://doi.org/10.3390/antibiotics6020011.

  88. Harth KC, Rosen MJ, Thatiparti TR, Jacobs MR, Halaweish I, Bajaksouzian S, et al. Antibiotic-releasing mesh coating to reduce prosthetic sepsis: an in vivo study. J Surg Res. 2010;163:337–43.

  89. Blanchemain N, Haulon S, Martel B, Traisnel M, Morcellet M, Hildebrand HF. Vascular PET prostheses surface modification with cyclodextrin coating: development of a new drug delivery system. Eur J Vasc Endovasc Surg. 2005;29:628–32.

    Article  PubMed  CAS  Google Scholar 

  90. Sobocinski J, Laure W, Taha M, Courcot E, Chai F, Simon N, et al. Mussel inspired coating of a biocompatible cyclodextrin based polymer onto CoCr vascular stents. ACS Appl Mater Interfaces. 2014;6:3575–86.

  91. Mattioli-Belmonte M, Cometa S, Ferretti C, Iatta R, Trapani A, Ceci E, et al. Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants. Carbohydr Polym. 2014;110:173–82.

  92. Thatiparti TR, Shoffstall AJ, von Recum HA. Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials. 2010;31:2335–47.

    Article  PubMed  CAS  Google Scholar 

  93. Leprêtre S, Chai F, Hornez J, et al. Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers. Biomaterials. 2009;30:6086–93.

    Article  PubMed  CAS  Google Scholar 

  94. Taha M, Chai F, Blanchemain N, Goube M, Martel B, Hildebrand HF. Validating the poly-cyclodextrins based local drug delivery system on plasma-sprayed hydroxyapatite coated orthopedic implant with toluidine blue O. Mater Sci Eng C. 2013;33:2639–47.

    Article  CAS  Google Scholar 

  95. Hoang Thi TH, Chai F, Leprêtre S, et al. Bone implants modified with cyclodextrin: study of drug release in bulk fluid and into agarose gel. Int J Pharm. 2010;400:74–85.

    Article  PubMed  CAS  Google Scholar 

  96. Temtem M, Pompeu D, Jaraquemada G, Cabrita EJ, Casimiro T, Aguiar-Ricardo A. Development of PMMA membranes functionalized with hydroxypropyl-Î2-cyclodextrins for controlled drug delivery using a supercritical CO2-assisted technology. Int J Pharm. 2009;376:110–5.

    Article  PubMed  CAS  Google Scholar 

  97. Jacobsen PAL, Rafaelsen J, Nielsen JL, Juhl MV, Theilgaard N, Larsen KL. Distribution of grafted Î2-cyclodextrin in porous particles for bone tissue engineering. Microporous Mesoporous Mater. 2013;168:132–41.

    Article  CAS  Google Scholar 

  98. Taha M, Chai F, Blanchemain N, Neut C, Goube M, Maton M, et al. Evaluation of sorption capacity of antibiotics and antibacterial properties of a cyclodextrin-polymer functionalized hydroxyapatite-coated titanium hip prosthesis. Int J Pharm. 2014;477:380–9.

  99. •• Cyphert EL, Zuckerman ST, Korley JN, et al. Affinity interactions drive post-implantation drug filling, even in the presence of bacterial biofilm. Acta Biomater. 2017;57:95–102. This study evaluates the ability of cyclodextrin polymers to be refilled with antibiotics after they are implanted and their ability to retain this refilling property once they are coated with a mature biofilm.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Funding

This publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (NIH) under award number T32 AR007281. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

AC, CJH, MPB, and HAV consulted with the conceptual development of the narrative and critically revised the manuscript. All listed authors approved this manuscript and provided intellectual input.

Corresponding author

Correspondence to Horst A. von Recum.

Ethics declarations

Conflict of Interest

Dr. Bostrom reports a grant from the National Institutes of Health, during the conduct of the study. Dr. Bostrom reports other (Consultant for Smith & Newphew) for relevant financial activities outside the submitted work.

Dr. von Recum reports co-ownership Affinity Therapeutics LLC., outside the submitted work.

Dr. Levack, Dr. Carli, Dr. Hernandez, and Erika Cyphert declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Surgery and Perioperative Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levack, A.E., Cyphert, E.L., Bostrom, M.P. et al. Current Options and Emerging Biomaterials for Periprosthetic Joint Infection. Curr Rheumatol Rep 20, 33 (2018). https://doi.org/10.1007/s11926-018-0742-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-018-0742-4

Keywords

Navigation