Skip to main content

Periprosthetic Joint Infection

  • Chapter
  • First Online:
Racing for the Surface

Abstract

Total joint arthroplasty (TJA), the implantation of an artificial joint replacement, has become a relatively commonly practiced operation in many parts of the world. The most common reasons for performing a TJA are to restore mobility and alleviate symptoms of osteoarthritis, and reconstruction after fracture. The procedure is generally well tolerated and successful; however, periprosthetic joint infection (PJI) is the most dreaded complication. In this chapter, we will provide an overview of PJI from the perspective of an orthopedic surgeon, with the aim of providing an insight into the challenges and unresolved issues that may in the future be addressed by basic science and innovations in biomedical engineering. We describe the pathophysiology of acute and chronic PJI, the difficulties in diagnosing PJI, and the current treatment concepts, including both surgery and antibiotic therapy. Finally, we will provide an overview of the innovations in the field that may soon be translated to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Joint Replacement Registry (2018) Fifth AJRR annual report on hip and knee arthroplasty data 2018. Am Joint Replace Regist:319

    Google Scholar 

  2. SIRIS (2012) Swiss National Joint Registry. Siris:63. http://www.swissorthopaedics.ch/images/content/SIRIS/170516_SIRISAnnualReport2015_Finalcopie.pdf

  3. Wengler A, Nimptsch U, Mansky T (2014) Hüft- und Kniegelenkersatz in Deutschland und den USA. Dtsch Arztebl. https://doi.org/10.3238/arztebl.2014.0407

  4. Chitre AR, Sadiq S (2007) The incidence of deep prosthetic infections in a specialist orthopaedic hospital: a 15-year prospective study. J Bone Joint Surg Br 89-B(2):281–281. https://doi.org/10.1302/0301-620x.89b2.19159

    Article  Google Scholar 

  5. Gundtoft PH, Overgaard S, Schonheyder HC, Moller JK, Kjærsgaard-Andersen P, Pedersen AB (2015) The “true” incidence of surgically treated deep prosthetic joint infection after 32,896 primary total hip arthroplasties. Acta Orthop 86(3):326–334. https://doi.org/10.3109/17453674.2015.1011983

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tande AJ, Patel R (2014) Prosthetic joint infection. Clin Microbiol Rev 27(2):302 LP–302345. https://doi.org/10.1128/CMR.00111-13

    Article  CAS  Google Scholar 

  7. Gallo J, Kolár M, Novotný R, Riháková P, Tichá V (2003) Pathogenesis of prosthesis-related infection. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 147(1):27–35. https://doi.org/10.5507/bp.2003.004

    Article  PubMed  Google Scholar 

  8. Sendi P, Banderet F, Graber P, Zimmerli W (2011) Periprosthetic joint infection following Staphylococcus aureus bacteremia. J Infect 63(1):17–22. https://doi.org/10.1016/j.jinf.2011.05.005

    Article  PubMed  Google Scholar 

  9. Sorrentino R, Cochis A, Azzimonti B et al (2017) Reduced bacterial adhesion on ceramics used for arthroplasty applications. J Eur Ceram Soc 38:963–970. https://doi.org/10.1016/j.jeurceramsoc.2017.10.008

    Article  CAS  Google Scholar 

  10. Gómez-Barrena E, Esteban J, Medel F et al (2012) Bacterial adherence to separated modular components in joint prosthesis: a clinical study. J Orthop Res 30(10):1634–1639. https://doi.org/10.1002/jor.22114

    Article  CAS  PubMed  Google Scholar 

  11. Karbysheva S, Grigoricheva L, Golnik V, Popov S, Renz N, Trampuz A (2019) Influence of retrieved hip- and knee-prosthesis biomaterials on microbial detection by sonication. Eur Cell Mater 37:16–22. https://doi.org/10.22203/eCM.v037a02

    Article  CAS  PubMed  Google Scholar 

  12. Gbejuade HO, Lovering AM, Webb JC (2015) The role of microbial biofilms in prosthetic joint infections. Acta Orthop 86(2):147–158. https://doi.org/10.3109/17453674.2014.966290

    Article  PubMed  Google Scholar 

  13. Mozina SS, Klancknik A, Raspor P (2013) Mechanisms of microbial resistance in biofilms. Biofilms Bioeng (January):311–332

    Google Scholar 

  14. McConoughey SJ, Stoodley P, Kathju S et al (2014) Biofilms in periprosthetic orthopedic infections. Future Microbiol 9(8):987–1007. https://doi.org/10.2217/fmb.14.64

    Article  CAS  PubMed  Google Scholar 

  15. Fillingham Y, Parsa A, Oshkukov S, Greenward AS (2018) International consensus meeting on musculoskeletal infection. Part II. Hip Knee 4:303–304. https://icmphilly.com/wp-content/uploads/2018/11/Hip-and-Knee.pdf

    Google Scholar 

  16. Aggarwal VK, Rasouli MR, Parvizi J (2013) Periprosthetic joint infection: current concept. Indian J Orthop 47(1):10–17. https://doi.org/10.4103/0019-5413.106884

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fitzgerald RH, Peterson LFA, Washington JA, Van Scoy RE, Coventry MB (1973) Bacterial colonization of wounds and sepsis in total hip arthroplasty. J Bone Joint Surg A 55(6):1242–1250. https://doi.org/10.2106/00004623-197355060-00011

    Article  Google Scholar 

  18. Related H, Factors L, Related H, et al (2018) Part I: General assembly. International Consensus meeting on Prosthetic Joint Infection. Hip and Knee. https://doi.org/10.1016/j.diagmi

  19. Toms AD, Davidson D, Masri BA, Duncan CP (2006) The management of peri-prosthetic infection in total joint arthroplasty. J Bone Joint Surg Br 88(2):149–155. https://doi.org/10.1302/0301-620x.88b2.17058

    Article  CAS  PubMed  Google Scholar 

  20. Huotari K, Peltola M, Jämsen E (2015) The incidence of late prosthetic joint infections. Acta Orthop 86:321–325. https://doi.org/10.3109/17453674.2015.1035173

    Article  PubMed  PubMed Central  Google Scholar 

  21. Saper D, Capiro N, Ma R, Li X (2015) Management of Propionibacterium acnes infection after shoulder surgery. Curr Rev Musculoskelet Med 8(1):67–74. https://doi.org/10.1007/s12178-014-9256-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kadler BK, Mehta SS, Funk L (2015) Propionibacterium acnes infection after shoulder surgery. Int J Shoulder Surg 9(4):139–144. https://doi.org/10.4103/0973-6042.167957

    Article  PubMed  PubMed Central  Google Scholar 

  23. Both A, Klatte TO, Lübke A et al (2018) Growth of Cutibacterium acnes is common on osteosynthesis material of the shoulder in patients without signs of infection. Acta Orthop 89(5):580–584. https://doi.org/10.1080/17453674.2018.1489095

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li B, Webster TJ (2018) Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 36:22–32. https://doi.org/10.1002/jor.23656

    Article  PubMed  Google Scholar 

  25. Ryu DJ, Kang JS, Moon KH, Kim MK, Kwon DG (2014) Clinical characteristics of methicillin-resistant Staphylococcus aureus infection for chronic periprosthetic hip and knee infection. Hip Pelvis 26(4):235–242. https://doi.org/10.5371/hp.2014.26.4.235

    Article  PubMed  PubMed Central  Google Scholar 

  26. Salgado CD, Dash S, Cantey JR, Marculescu CE (2007) Higher risk of failure of methicillin-resistant Staphylococcus aureus prosthetic joint infections. Clin Orthop Relat Res 461:48–53. https://doi.org/10.1097/BLO.0b013e3181123d4e

    Article  PubMed  Google Scholar 

  27. Lora-Tamayo J, Murillo O, Iribarren JA et al (2013) A large multicenter study of methicillin-susceptible and methicillin-resistant staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis 56:182–194. https://doi.org/10.1093/cid/cis746

    Article  PubMed  Google Scholar 

  28. Sousa R, Abreu MA (2018) Treatment of prosthetic joint infection with debridement, antibiotics and irrigation with implant retention—a narrative review. J Bone Joint Infect 3(3):108–117. https://doi.org/10.7150/jbji.24285

    Article  Google Scholar 

  29. Zimmerli W, Trampuz A, Ochsner P (2004) Prosthetic-joint infections. N Engl J Med 351(16):1645–1654. https://doi.org/10.1056/NEJMra040181

    Article  CAS  PubMed  Google Scholar 

  30. Zimmerli W, Sendi P (2019) Role of rifampin against staphylococcal biofilm infections in vitro, in animal models, and in orthopedic-device-related infections. Antimicrob Agents Chemother 63(2):e01746–e01718. https://doi.org/10.1128/AAC.01746-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Achermann Y, Eigenmann K, Ledergerber B et al (2013) Factors associated with rifampin resistance in staphylococcal periprosthetic joint infections (PJI): A matched case-control study. Infection 41(2):431–437. https://doi.org/10.1007/s15010-012-0325-7

    Article  CAS  PubMed  Google Scholar 

  32. Love C, Palestro CJ (2016) Nuclear medicine imaging of bone infections. Clin Radiol 71(7):632–646. https://doi.org/10.1016/j.crad.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  33. Trampuz A, Hanssen AD, Osmon DR, Mandrekar J, Steckelberg JM, Patel R (2004) Synovial fluid leukocyte count and differential for the diagnosis of prosthetic knee infection. Am J Med 117(8):556–562. https://doi.org/10.1016/j.amjmed.2004.06.022

    Article  PubMed  Google Scholar 

  34. Osmon DR, Berbari EF, Berendt AR et al (2013) Executive summary: diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56(1):1–10. https://doi.org/10.1093/cid/cis966

    Article  PubMed  Google Scholar 

  35. Qu X, Zhai Z, Li H et al (2013) PCR-based diagnosis of prosthetic joint infection. J Clin Microbiol 51(8):2742–2746. https://doi.org/10.1128/JCM.00657-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lippmann T, Braubach P, Ettinger M, Kuehnel M, Laenger F, Jonigk D (2019) Fluorescence in situ hybridization (FISH) for the Diagnosis of periprosthetic joint infection in formalin-fixed paraffin-embedded surgical tissues. J Bone Joint Surg Am 101(2):e5. https://doi.org/10.2106/JBJS.18.00243

    Article  PubMed  Google Scholar 

  37. Evangelopoulos DS, Stathopoulos IP, Morassi GP et al (2013) Sonication: a valuable technique for diagnosis and treatment of periprosthetic joint infections. Sci World J 2013:375140. https://doi.org/10.1155/2013/375140

    Article  CAS  Google Scholar 

  38. Trampuz A, Piper KE, Jacobson MJ et al (2007) Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357(7):654–663. https://doi.org/10.1056/nejmoa061588

    Article  CAS  PubMed  Google Scholar 

  39. Zhai Z, Li H, Qin A et al (2014) Meta-analysis of sonication fluid samples from prosthetic components for diagnosis of infection after total joint arthroplasty. J Clin Microbiol 52(5):1730–1736. https://doi.org/10.1128/JCM.03138-13

    Article  PubMed  PubMed Central  Google Scholar 

  40. Parvizi J, Tan TL, Goswami K et al (2018) The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty 33(5):1309–1314.e2

    Article  Google Scholar 

  41. Yates AJ Jr, Committee AA of H and KSE-BM (2018) Postoperative prophylactic antibiotics in total joint arthroplasty. Arthroplast Today 4(1):130–131. https://doi.org/10.1016/j.artd.2018.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tan T, Shohat N, Rondon A et al (2019) Perioperative antibiotic prophylaxis in total joint arthroplasty: a single dose is as effective as multiple doses. J Bone Joint Surg Am 101:429–437. https://doi.org/10.2106/JBJS.18.00336

    Article  PubMed  Google Scholar 

  43. Parvizi J, Shohat N, Gehrke T (2017) Prevention of periprosthetic joint infection. Bone Joint J 99-B(4 Supple B):3–10. https://doi.org/10.1302/0301-620X.99B4.BJJ-2016-1212.R1

    Article  CAS  PubMed  Google Scholar 

  44. De Jonge SW, Gans SL, Atema JJ, Solomkin JS, Dellinger PE, Boermeester MA (2017) Timing of preoperative antibiotic prophylaxis in 54,552 patients and the risk of surgical site infection. Medicine 96(29):e6903. https://doi.org/10.1097/MD.0000000000006903

    Article  PubMed  PubMed Central  Google Scholar 

  45. Inabathula A, Dilley JE, Ziemba-Davis M et al (2018) Extended oral antibiotic prophylaxis in high-risk patients substantially reduces primary total hip and knee arthroplasty 90-day infection rate. J Bone Joint Surg Am 100(24):2103–2109. https://doi.org/10.2106/JBJS.17.01485

    Article  PubMed  Google Scholar 

  46. Wagenaar FCBM, Löwik CAM, Zahar A, Jutte PC, Gehrke T, Parvizi J (2019) Persistent wound drainage after total joint arthroplasty: a narrative review. J Arthroplasty 34(1):175–182. https://doi.org/10.1016/j.arth.2018.08.034

    Article  PubMed  Google Scholar 

  47. Jämsen E, Huhtala H, Puolakka T, Moilanen T (2009) Risk factors for infection after knee arthroplasty a register-based analysis of 43,149 cases. J Bone Joint Surg Am 91(1):38–47. https://doi.org/10.2106/JBJS.G.01686

    Article  PubMed  Google Scholar 

  48. Grammatopoulos G, Kendrick B, McNally M et al (2017) Outcome following debridement, antibiotics, and implant retention in hip periprosthetic joint infection—an 18-year experience. J Arthroplasty 32(7):2248–2255. https://doi.org/10.1016/j.arth.2017.02.066

    Article  PubMed  Google Scholar 

  49. Kuiper JW, Willink RT, Moojen DJF, van den Bekerom MP, Colen S (2014) Treatment of acute periprosthetic infections with prosthesis retention: review of current concepts. World J Orthop 5(5):667–676. https://doi.org/10.5312/wjo.v5.i5.667

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hirsiger S, Betz M, Stafylakis D, Götschi T, Lew D, Uçkay I (2019) The benefice of mobile parts’ exchange in the management of infected total joint arthroplasties with prosthesis retention (DAIR procedure). J Clin Med 8(2):226. https://doi.org/10.3390/jcm8020226

    Article  Google Scholar 

  51. Wongworawat MD (2013) Clinical faceoff: one-versus two-stage exchange arthroplasty for prosthetic joint. Clin Orthop Relat Res 471(6):1750–1753. https://doi.org/10.1007/s11999-013-2882-1

    Article  PubMed  Google Scholar 

  52. Klouche S, Leonard P, Zeller V et al (2012) Infected total hip arthroplasty revision: one- or two-stage procedure? Orthop Traumatol Surg Res 98(2):144–150. https://doi.org/10.1016/j.otsr.2011.08.018

    Article  CAS  PubMed  Google Scholar 

  53. Jackson WO, Schmalzried TP (2000) Limited role of direct exchange arthroplasty in the treatment of infected total hip replacements. Clin Orthop Relat Res:101–105

    Google Scholar 

  54. Charette RS, Melnic CM (2018) Two-stage revision arthroplasty for the treatment of prosthetic joint infection. Curr Rev Musculoskelet Med 11(3):332–340. https://doi.org/10.1007/s12178-018-9495-y

    Article  PubMed  Google Scholar 

  55. Kuiper JWP, Vos SJ, Saouti R et al (2013) Prosthetic joint-associated infections treated with DAIR (debridement, antibiotics, irrigation, and retention). Acta Orthop 84(4):380–386. https://doi.org/10.3109/17453674.2013.823589

    Article  PubMed  Google Scholar 

  56. Hsieh PH, Shih CH, Chang YH, Lee MS, Shih HN, Yang WE (2004) Two-stage revision hip arthroplasty for infection: comparison between the interim use of antibiotic-loaded cement beads and a spacer prosthesis. J Bone Joint Surg Am 86(9):1989–1997. https://doi.org/10.2106/00004623-200409000-00018

    Article  PubMed  Google Scholar 

  57. Staats K, Sevelda F, Kaider A et al (2017) The influence of antibiotic-loaded cement spacers on the risk of reinfection after septic two-stage hip revision surgery. Infection 45(6):885–891. https://doi.org/10.1007/s15010-017-1081-5

    Article  PubMed  Google Scholar 

  58. Soares D, Leite P, Barreira P, Aido R, Sousa R (2015) Antibiotic-loaded bone cement in total joint arthroplasty. Acta Orthop Belg 81(2):184–190

    PubMed  Google Scholar 

  59. Joseph TN, Chen AL, Di Cesare PE (2003) Use of antibiotic-impregnated cement in total joint arthroplasty. J Am Acad Orthop Surg 11(1):38–47. https://doi.org/10.5435/00124635-200301000-00006

    Article  PubMed  Google Scholar 

  60. Mortazavi SMJ, Vegari D, Ho A, Zmistowski B, Parvizi J (2011) Two-stage exchange arthroplasty for infected total knee arthroplasty: predictors of failure. Clin Orthop Relat Res 469(11):3049–3054. https://doi.org/10.1007/s11999-011-2030-8

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rodriguez-Merchan EC (2015) Knee fusion or above-the-knee amputation after failed two-stage reimplantation total knee arthroplasty. Arch Bone Joint Surg 3(4):241–243. https://www.ncbi.nlm.nih.gov/pubmed/26550586

    PubMed  Google Scholar 

  62. Hungerer S, Kiechle M, von Rüden C, Militz M, Beitzel K, Morgenstern M (2017) Knee arthrodesis versus above-the-knee amputation after septic failure of revision total knee arthroplasty: comparison of functional outcome and complication rates. BMC Musculoskelet Disord 18(1):443. https://doi.org/10.1186/s12891-017-1806-8

    Article  PubMed  PubMed Central  Google Scholar 

  63. Romanò CL, Malizos K, Capuano N et al (2016) Does an antibiotic-loaded hydrogel coating reduce early post-surgical infection after joint arthroplasty? J Bone Joint Infect 1:34–41. https://doi.org/10.7150/jbji.15986

    Article  Google Scholar 

  64. Boot W, Gawlitta D, Nikkels PGJ et al (2017) Hyaluronic acid-based hydrogel coating does not affect bone apposition at the implant surface in a rabbit model. Clin Orthop Relat Res 475(7):1911–1919. https://doi.org/10.1007/s11999-017-5310-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Capuano N, Logoluso N, Gallazzi E, Drago L, Romanò CL (2018) One-stage exchange with antibacterial hydrogel coated implants provides similar results to two-stage revision, without the coating, for the treatment of peri-prosthetic infection. Knee Surg Sport Traumatol Arthrosc 26(11):3362–3367. https://doi.org/10.1007/s00167-018-4896-4

    Article  Google Scholar 

  66. Gallo J, Panacek A, Prucek R et al (2016) Silver nanocoating technology in the prevention of prosthetic joint infection. Materials (Basel) 9(5):E337. https://doi.org/10.3390/ma9050337

    Article  CAS  Google Scholar 

  67. Wafa H, Grimer RJ, Reddy K et al (2015) Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case-control study. Bone Joint J 97-B(2):252–257. https://doi.org/10.1302/0301-620X.97B2.34554

    Article  CAS  PubMed  Google Scholar 

  68. Tailaiti A, Shang J, Shan S, Muheremu A (2018) Effect of intrawound vancomycin application in spinal surgery on the incidence of surgical site infection: a meta-analysis. Ther Clin Risk Manag 14:2149–2159. https://doi.org/10.2147/TCRM.S185296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hanada M, Nishikino S, Hotta K, Furuhashi H, Hoshino H, Matsuyama Y (2019) Intrawound vancomycin powder increases post-operative wound complications and does not decrease periprosthetic joint infection in primary total and unicompartmental knee arthroplasties. Knee Surg Sports Traumatol Arthrosc 27(7):2322–2327. https://doi.org/10.1007/s00167-019-05498-z

    Article  PubMed  Google Scholar 

  70. Taha M, Abdelbary H, Ross FP, Carli AV (2018) New innovations in the treatment of PJI and biofilms—clinical and preclinical topics. Curr Rev Musculoskelet Med 11(3):380–388. https://doi.org/10.1007/s12178-018-9500-5

    Article  PubMed  PubMed Central  Google Scholar 

  71. Proctor RA (2015) Recent developments for Staphylococcus aureus vaccines: clinical and basic science challenges. Eur Cell Mater 30(734):315–326. https://doi.org/10.22203/eCM.v030a22

    Article  CAS  PubMed  Google Scholar 

  72. Kaur S, Harjai K, Chhibber S (2016) In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS One 11(6):e0157626. https://doi.org/10.1371/journal.pone.0157626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M (2013) Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am 95(2):117–125. https://doi.org/10.2106/JBJS.K.01135

    Article  PubMed  Google Scholar 

  74. Wright A, Hawkins CH, Änggård EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34(4):349–357. https://doi.org/10.1111/j.1749-4486.2009.01973.x

    Article  CAS  PubMed  Google Scholar 

  75. Rose T, Verbeken G, De Vos D (2014) Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 4(2):66–73

    PubMed  PubMed Central  Google Scholar 

  76. Akanda ZZ, Taha M, Abdelbary H (2018) Current review—the rise of bacteriophage as a unique therapeutic platform in treating peri-prosthetic joint infections. J Orthop Res 36(4):1051–1060. https://doi.org/10.1002/jor.23755

    Article  PubMed  Google Scholar 

  77. Fischetti VA (2018) Development of phage lysins as novel therapeutics: a historical perspective. Viruses 10(6):E310. https://doi.org/10.3390/v10060310

    Article  CAS  PubMed  Google Scholar 

  78. Thompson K, Petkov S, Zeiter S et al (2019) Intraoperative loading of calcium phosphate-coated implants with gentamicin prevents experimental Staphylococcus aureus infection in vivo. PLoS One 14(2):e0210402. https://doi.org/10.1371/journal.pone.0210402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk Eijer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keshishian, A., Foster, A., Matziolis, G., Moriarty, T.F., Eijer, H. (2020). Periprosthetic Joint Infection. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34475-7_3

Download citation

Publish with us

Policies and ethics