Skip to main content

Advertisement

Log in

Regulatory T Cells in SLE: Biology and Use in Treatment

  • Systemic Lupus Erythematosus (G Tsokos, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

T regulatory cells (Tregs) represent a phenotypically and functionally heterogeneous group of lymphocytes that exert immunosuppressive activities on effector immune responses. Tregs play a key role in maintaining immune tolerance and homeostasis through diverse mechanisms which involve interactions with components of both the innate and adaptive immune systems. As in many autoimmune diseases, Tregs have been proposed to play a relevant role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease characterized by a progressive breakdown of tolerance to self-antigens and the presence of concomitant hyperactive immune responses. Here, we review how Tregs dysfunction in SLE has been manipulated experimentally and preclinically in the attempt to restore, at last in part, the immune disturbances in the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. La Cava A. T-regulatory cells in systemic lupus erythematosus. Lupus. 2008;17:421–5. doi:10.1177/0961203308090028.

    Article  PubMed  Google Scholar 

  2. Shevach EM. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30:636–45. doi:10.1016/j.immuni.2009.04.010.

    Article  CAS  PubMed  Google Scholar 

  3. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61. doi:10.1126/science.1079490.

    Article  CAS  PubMed  Google Scholar 

  4. Shevach EM, Thornton AM. tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev. 2014;259:88–102. doi:10.1111/imr.12160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lourenço EV, La Cava A. Natural regulatory T cells in autoimmunity. Autoimmunity. 2011;44:33–42. doi:10.3109/08916931003782155.

    Article  CAS  PubMed  Google Scholar 

  6. Roncarolo MG, Gregori S, Bacchetta R, Battaglia M. Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr Top Microbiol Immunol. 2014;380:39–68. doi:10.1007/978-3-662-43492-5_3.

    CAS  PubMed  Google Scholar 

  7. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64. doi:10.1146/annurev.immunol.25.022106.141623.

    Article  CAS  PubMed  Google Scholar 

  8. McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002;16:311–23. doi:10.1016/S1074-7613(02)00280-7.

    Article  CAS  PubMed  Google Scholar 

  9. Schreiber L, Pietzsch B, Floess S, Farah C, Jänsch L, Schmitz I, et al. The Treg-specific demethylated region stabilizes Foxp3 expression independently of NF-kB signaling. PLoS One. 2014;9:e88318. doi:10.1371/journal.pone.0088318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, et al. DNA methylation controls Foxp3 gene expression. Eur J Immunol. 2008;38:1654–63. doi:10.1002/eji.200838105.

    Article  CAS  PubMed  Google Scholar 

  11. Miyara M, Amoura Z, Parizot C, Badoual C, Dorgham K, Trad S, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol. 2005;175:8392–400. doi:10.4049/jimmunol.175.12.8392.

    Article  CAS  PubMed  Google Scholar 

  12. Crispin JC, Martinez A, Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun. 2003;21:273–6. doi:10.1016/S0896-8411(03)00121-5.

    Article  PubMed  Google Scholar 

  13. Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol. 2007;178:2579–88. doi:10.4049/jimmunol.178.4.2579.

    Article  CAS  PubMed  Google Scholar 

  14. Suarez A, Lopez P, Gomez J, Gutierrez C. Enrichment of CD4+CD25high T cell population in patients with systemic lupus erythematosus treated with glucocorticoids. Ann Rheum Dis. 2006;65:1512–7. doi:10.1136/ard.2005.049924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bonelli M, Savitskaya A, von Dalwigk K, Steiner CW, Aletaha D, Smolen JS, et al. Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int Immunol. 2008;20:861–8. doi:10.1093/intimm/dxn044.

    Article  CAS  PubMed  Google Scholar 

  16. Yu Y, Liu Y, Shi FD, Zou H, Hahn BH, La Cava A. Tolerance induced by anti-DNA Ig peptide in (NZB × NZW)F1 lupus mice impinges on the resistance of effector T cells to suppression by regulatory T cells. Clin Immunol. 2012;142:291–5. doi:10.1016/j.clim.2011.11.004.

    Article  CAS  PubMed  Google Scholar 

  17. Hadaschik EN, Wei X, Leiss H, Heckmann B, Niederreiter B, Steiner G, et al. Regulatory T cell-deficient scurfy mice develop systemic autoimmune features resembling lupus-like disease. Arthritis Res Ther. 2015;17:35. doi:10.1186/s13075-015-0538-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iikuni N, Lourenço EV, Hahn BH, La Cava A. Cutting edge: regulatory T cells directly suppress B cells in systemic lupus erythematosus. J Immunol. 2009;183:1518–22. doi:10.4049/jimmunol.0901163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Banchereau J, Pascual V, O’Garra A. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nat Immunol. 2012;13:925–31. doi:10.1038/ni.2406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. La Cava A, Ebling FM, Hahn BH. Ig-reactive CD4+CD25+ T cells from tolerized (New Zealand Black x New Zealand White)F1 mice suppress in vitro production of antibodies to DNA. J Immunol. 2004;173:3542–8. doi:10.4049/jimmunol.173.5.3542.

    Article  PubMed  Google Scholar 

  21. Singh RP, La Cava A, Hahn BH. pConsensus peptide induces tolerogenic CD8+ T cells in lupus-prone (NZB x NZW)F1 mice by differentially regulating Foxp3 and PD1 molecules. J Immunol. 2008;180:2069–80. doi:10.4049/jimmunol.180.4.2069.

    Article  CAS  PubMed  Google Scholar 

  22. Sharabi A, Mozes E. The suppression of murine lupus by a tolerogenic peptide involves Foxp3-expressing CD8 cells that are required for the optimal induction and function of foxp3-expressing CD4 cells. J Immunol. 2008;181:3243–51.

    Article  CAS  PubMed  Google Scholar 

  23. Tsai YG, Lee CY, Lin TY, Lin CY. CD8+ Treg cells associated with decreasing disease activity after intravenous methylprednisolone pulse therapy in lupus nephritis with heavy proteinuria. PLoS One. 2014;9:e81344. doi:10.1371/journal.pone.0081344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang L, Bertucci AM, Ramsey-Goldman R, Burt RK, Datta SK. Regulatory T cell (Treg) subsets return in patients with refractory lupus following stem cell transplantation, and TGF-β-producing CD8+ Treg cells are associated with immunological remission of lupus. J Immunol. 2009;183:6346–58. doi:10.4049/jimmunol.0901773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A. 2008;105:10113–8. doi:10.1073/pnas.0711106105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–5. doi:10.1126/science.1160062.

    Article  CAS  PubMed  Google Scholar 

  27. La Cava A. Tregs are regulated by cytokines: implications for autoimmunity. Autoimmun Rev. 2008;8:83–7. doi:10.1016/j.autrev.2008.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Linker-Israeli M, Deans RJ, Wallace DJ, Prehn J, Ozeri-Chen T, Klinenberg JR. Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol. 1991;147:117–23.

    CAS  PubMed  Google Scholar 

  29. Zheng SG, Wang J, Horwitz DA. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-β are resistant to Th17 conversion by IL-6. J Immunol. 2008;180:7112–6. doi:10.4049/jimmunol.180.11.7112.

    Article  CAS  PubMed  Google Scholar 

  30. Wong CK, Lit LC, Tam LS, Li EK, Wong PT, Lam CW. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in autoimmunity. Clin Immunol. 2008;127:385–93. doi:10.1016/j.clim.2008.01.019.

    Article  CAS  PubMed  Google Scholar 

  31. Mao C, Wang S, Xiao Y, Xu J, Jiang Q, Jin M, et al. Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves’ disease. J Immunol. 2011;186:4734–43. doi:10.4049/jimmunol.0904135.

    Article  CAS  PubMed  Google Scholar 

  32. Bjarnadottir U, Lemarquis AL, Halldorsdottir S, Freysdottir J, Ludviksson BR. The suppressive function of human CD8+ iTregs is inhibited by IL-1β and TNFα. Scand J Immunol. 2014;80:313–22. doi:10.1111/sji.12212.

    Article  CAS  PubMed  Google Scholar 

  33. Gómez J, Prado C, López P, Suárez A, Gutiérrez C. Conserved anti-proliferative effect and poor inhibition of TNFα secretion by regulatoryCD4+CD25+ T cells in patients with systemic lupus erythematosus. Clin Immunol. 2009;132:385–92. doi:10.1016/j.clim.2009.05.012.

    Article  CAS  PubMed  Google Scholar 

  34. Yamaguchi T, Wing JB, Sakaguchi S. Two modes of immune suppression by Foxp3+ regulatory T cells under inflammatory or non-inflammatory conditions. Semin Immunol. 2011;23:424–30. doi:10.1016/j.smim.2011.10.002.

    Article  CAS  PubMed  Google Scholar 

  35. Smigiel KS, Richards E, Srivastava S, Thomas KR, Dudda JC, Klonowski KD, et al. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J Exp Med. 2014;211:121–36. doi:10.1084/jem.20131142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chandrasekaran U, Yi W, Gupta S, Weng CH, Giannopoulou E, Chinenov Y, et al. Regulation of effector Treg cells in murine lupus. Arthritis Rheum. 2016;68:1454–66. doi:10.1002/art.39599. Unveiled new modalities by which Teffs can survive in hostile SLE inflammatory settings.

    Article  CAS  Google Scholar 

  37. La Cava A. Survive to fight: effector Treg cells in systemic lupus erythematosus. Arthritis Rheum. 2016;68:1327–9. doi:10.1002/art.39616.

    Article  Google Scholar 

  38. Horwitz DA, Zheng SG, Gray JD. Natural and TGF-β-induced Foxp3+CD4+CD25+ regulatory T cells are not mirror images of each other. Trends Immunol. 2008;29:429–35. doi:10.1016/j.it.2008.06.005.

    Article  CAS  PubMed  Google Scholar 

  39. Martinez RJ, Zhang N, Thomas SR, Nandiwada SL, Jenkins MK, Binstadt BA, et al. Arthritogenic self-reactive CD4+ T cells acquire a FR4hi CD73hi anergic state in the presence of Foxp3+ T regulatory cells. J Immunol. 2012;188:170–81. doi:10.4049/jimmunol.1101311.

    Article  CAS  PubMed  Google Scholar 

  40. Kalekar LA, Schmiel SE, Nandiwada SL, Lam WY, Barsness LO, Zhang N, et al. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat Immunol. 2016;17:304–14. doi:10.1038/ni.3331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity. 2012;37:785–99. doi:10.1016/j.immuni.2012.09.010.

    Article  CAS  PubMed  Google Scholar 

  42. Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity. 2013;38:414–23. doi:10.1016/j.immuni.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

  43. Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M, et al. The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity. 2016;44:406–21. doi:10.1016/j.immuni.2016.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Procaccini C, De Rosa V, Galgani M, Abanni L, Cali G, Porcellini A, et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity. 2010;33:929–41. doi:10.1016/j.immuni.2010.11.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature. 2013;499:485–90. doi:10.1038/nature12297. Link of mTOR to metabolism-driven regulation of Treg-suppressive activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maloy KJ, Powrie F. Fueling regulation: IL-2 keeps CD4+ Treg cells fit. Nat Immunol. 2005;6:1071–2. doi:10.1038/ni1105-1071.

    Article  CAS  PubMed  Google Scholar 

  47. Cao T, Wenzel SE, Faubion WA, Harriman G, Li L. Enhanced suppressive function of regulatory T cells from patients with immune-mediated diseases following successful ex vivo expansion. Clin Immunol. 2010;136:329–37. doi:10.1016/j.clim.2010.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hahn BH, Anderson M, Le E, La Cava A. Anti-DNA Ig peptides promote Treg cell activity in systemic lupus erythematosus patients. Arthritis Rheum. 2008;58:2488–97. doi:10.1002/art.23609.

    Article  CAS  PubMed  Google Scholar 

  49. Scalapino KJ, Tang Q, Bluestone JA, Bonyhadi ML, Daikh DI. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J Immunol. 2006;177:1451–9.

    Article  CAS  PubMed  Google Scholar 

  50. Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7:315ra189. doi:10.1126/scitranslmed.aad4134. Feasibility of preparing purified Tregs for immunotherapy in autoimmune disease (lifespan of transferred Tregs was >1 year).

    Article  CAS  PubMed  Google Scholar 

  51. Marek-Trzonkowska N, Myśliwiec M, Dobyszuk A, Grabowska M, Derkowska I, Juścińska J, et al. Therapy of type 1 diabetes with CD4+CD25highCD127-regulatory T cells prolongs survival of pancreatic islets—results of one year follow-up. Clin Immunol. 2014;153:23–30. doi:10.1016/j.clim.2014.03.016.

    Article  CAS  PubMed  Google Scholar 

  52. Theil A, Tuve S, Oelschlagel U, Maiwald A, Dohler D, Ossmann D, et al. Adoptive transfer of allogeneic regulatory T cells into patients with chronic graft-versus-host disease. Cytotherapy. 2015;17:473–86. doi:10.1016/j.jcyt.2014.11.005.

    Article  CAS  PubMed  Google Scholar 

  53. Brunstein CG, Miller JS, McKenna DH, Hippen KL, DeFor TE, Sumstad D, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood. 2016;127:1044–51. doi:10.1182/blood-2015-06-653667. Successful large-scale expansion of Tregs and efficacy in GVHD.

    Article  CAS  PubMed  Google Scholar 

  54. Hügle T, Daikeler T. Stem cell transplantation for autoimmune diseases. Haematologica. 2010;95:185–8. doi:10.3324/haematol.2009.017038.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Figueroa FE, Cuenca Moreno J, La Cava A. Novel approaches to lupus drug discovery using stem cell therapy. Role of mesenchymal-stem-cell-secreted factors. Expert Opin Drug Discovery. 2014;9:555–66. doi:10.1517/17460441.2014.89769.

    Article  CAS  Google Scholar 

  56. Burt RK, Traynor A, Statkute L, Barr WG, Rosa R, Schroeder J, et al. Nonmyeloablative hematopoietic stem cell transplantation for systemic lupus erythematosus. JAMA. 2006;295:527–35. doi:10.1001/jama.295.5.527.

    Article  CAS  PubMed  Google Scholar 

  57. Szodoray P, Varoczy L, Papp G, Barath S, Nakken B, Szegedi G, et al. Immunological reconstitution after autologous stem cell transplantation in patients with refractory systemic autoimmune diseases. Scand J Rheumatol. 2012;41:110–5. doi:10.3109/03009742.2011.606788.

    Article  CAS  PubMed  Google Scholar 

  58. Wang D, Zhang H, Liang J, Li X, Feng X, Wang H, et al. Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years of experience. Cell Transplant. 2013;22:2267–77. doi:10.3727/096368911x582769.

    Article  PubMed  Google Scholar 

  59. Wang Q, Qian S, Li J, Che N, Gu L, Wang Q, et al. Combined transplantation of autologous hematopoietic stem cells and allogenic mesenchymal stem cells increases T regulatory cells in systemic lupus erythematosus with refractory lupus nephritis and leukopenia. Lupus. 2015;24:1221–6. doi:10.1177/0961203315583541.1.

    Article  CAS  PubMed  Google Scholar 

  60. Goudy K, Aydin D, Barzaghi F, Gambineri E, Vignoli M, Ciullini Mannurita S, et al. Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clin Immunol. 2013;146:248–61. doi:10.1016/j.clim.2013.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He J, Zhang X, Wei Y, Sun X, Chen Y, Deng J, et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat Med. 2016. doi:10.1038/nm.4148.

    Google Scholar 

  62. von Spee-Mayer C, Siegert E, Abdirama D, Rose A, Klaus A, Alexander T, et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis. 2016;75:1407–15. doi:10.1136/annrheumdis-2015-207776.

    Article  Google Scholar 

  63. Saadoun D, Rosenzwajg M, Joly F, Six A, Carrat F, Thibault V, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med. 2011;365:2067–77. doi:10.1056/NEJMoa1105143.

    Article  CAS  PubMed  Google Scholar 

  64. Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B, Alyea 3rd EP, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365:2055–66. doi:10.1056/NEJMoa1108188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nozaki Y, Yamagata T, Yoo BS, Sugiyama M, Ikoma S, Kinoshita K, et al. The beneficial effects of treatment with all-trans-retinoic acid plus corticosteroid on autoimmune nephritis in NZB/W mice. Clin Exp Immunol. 2005;139:74–83. doi:10.1111/j.1365-2249.2005.02654.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miyabe Y, Miyabe C, Nanki T. Could retinoids be a potential treatment for rheumatic diseases? Rheumatol Int. 2015;35:35–41. doi:10.1007/s00296-014-3067-2.

    Article  CAS  PubMed  Google Scholar 

  67. Kinoshita K, Kishimoto K, Shimazu H, Nozaki Y, Sugiyama M, Ikoma S, et al. Successful treatment with retinoids in patients with lupus nephritis. Am J Kidney Dis. 2010;55:344–7. doi:10.1053/j.ajkd.2009.06.012.

    Article  CAS  PubMed  Google Scholar 

  68. Kang HK, Michaels MA, Berner BR, Datta SK. Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J Immunol. 2005;174:3247–55. doi:10.4049/jimmunol.174.6.3247.

    Article  CAS  PubMed  Google Scholar 

  69. Eilat E, Dayan M, Zinger H, Mozes E. The mechanism by which a peptide based on complementarity-determining region-1 of a pathogenic anti-DNA auto-Ab ameliorates experimental systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2001;98:1148–53. doi:10.1073/pnas.98.3.1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zimmer R, Scherbarth HR, Rillo OL, Gomez-Reino JJ, Muller S. Lupuzor/P140 peptide in patients with systemic lupus erythematosus: a randomised, double-blind, placebo-controlled phase IIb clinical trial. Ann Rheum Dis. 2013;72:1830–5. doi:10.1136/annrheumdis-2012-202460. Evidence of efficacy and safety of a peptide-based therapy in SLE.

    Article  CAS  PubMed  Google Scholar 

  71. Ulivieri C, Baldari CT. Statins: from cholesterol-lowering drugs to novel immunomodulators for the treatment of Th17-mediated autoimmune diseases. Pharmacol Res. 2014;88:41–52. doi:10.1016/j.phrs.2014.03.001.

    Article  CAS  PubMed  Google Scholar 

  72. Abud-Mendoza C, de la Fuente H, Cuevas-Orta E, Baranda L, Cruz-Rizo J, González-Amaro R. Therapy with statins in patients with refractory rheumatic diseases: a preliminary study. Lupus. 2003;12:607–11.

    Article  CAS  PubMed  Google Scholar 

  73. Mathian A, Jouenne R, Chader D, Cohen-Aubart F, Haroche J, Fadlallah J, et al. Regulatory T cell responses to high-dose methylprednisolone in active systemic lupus erythematosus. PLoS One. 2015;10:e0143689. doi:10.1371/journal.pone.0143689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tselios K, Sarantopoulos A, Gkougkourelas I, Papagianni A, Boura P. Increase of peripheral T regulatory cells during remission induction with cyclophosphamide in active systemic lupus erythematosus. Int J Rheum Dis. 2014;17:790–5. doi:10.1111/1756-185x.12500.

    Article  CAS  PubMed  Google Scholar 

  75. Liossis SN, Sfikakis PP. Rituximab-induced B cell depletion in autoimmune diseases: potential effects on T cells. Clin Immunol. 2008;127:280–5. doi:10.1016/j.clim.2008.01.011.

    Article  CAS  PubMed  Google Scholar 

  76. Vallerskog T, Gunnarsson I, Widhe M, Risselada A, Klareskog L, van Vollenhoven R, et al. Treatment with rituximab affects both the cellular and the humoral arm of the immune system in patients with SLE. Clin Immunol. 2007;122:62–74.

    Article  CAS  PubMed  Google Scholar 

  77. Sfikakis PP, Souliotis VL, Fragiadaki KG, Moutsopoulos HM, Boletis JN, Theofilopoulos AN. Increased expression of the FoxP3 functional marker of regulatory T cells following B cell depletion with rituximab in patients with lupus nephritis. Clin Immunol. 2007;123:66–73.

    Article  CAS  PubMed  Google Scholar 

  78. Jonuleit H, Schmitt E. The regulatory T cell family: distinct subsets and their interrelations. J Immunol. 2003;171:6323–7. doi:10.4049/jimmunol.171.12.6323.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio La Cava.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of Topical Collection on Systemic Lupus Erythematosus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giang, S., La Cava, A. Regulatory T Cells in SLE: Biology and Use in Treatment. Curr Rheumatol Rep 18, 67 (2016). https://doi.org/10.1007/s11926-016-0616-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-016-0616-6

Keywords

Navigation