Skip to main content
Log in

Heading Toward a Modern Imaging Approach in Juvenile Idiopathic Arthritis

  • IMAGING (P CONAGHAN, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

MR imaging and musculoskeletal ultrasound are expanding their utility in the assessment of patients with chronic inflammatory arthritis. These imaging techniques, by providing additional and more sensitive information over clinical examination and conventional radiographs, are promising tools for the diagnosis, prognosis and assessment of treatment efficacy in patients with juvenile idiopathic arthritis (JIA). Owing to the peculiarities of the growing skeleton, knowledge of imaging in healthy children is of high priority. A sound understanding of growth-related changes is of foremost value in establishing whether the apparent changes on joint surface reflect real damage or are actually part of normal development. This review explores current evidence and suggests a new workflow for imaging in JIA, in which conventional and modern imaging modalities can be integrated for optimal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance ••Of major importance

  1. Ravelli A, Martini A. Juvenile idiopathic arthritis. Lancet. 2007;369:767–78.

    Article  PubMed  CAS  Google Scholar 

  2. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31:390–2.

    PubMed  Google Scholar 

  3. Martini A. It is time to rethink juvenile idiopathic arthritis classification and nomenclature. Ann Rheum Dis. 2012;71:1437–9.

    Article  PubMed  Google Scholar 

  4. Oen K, Reed M, Malleson PN, Cabral DA, Petty RE, Rosenberg AM, et al. Radiologic outcome and its relationship to functional disability in juvenile rheumatoid arthritis. J Rheumatol. 2003;30:832–40.

    PubMed  Google Scholar 

  5. Benjamin CM. Review of UK data on the rheumatic diseases–1. Juvenile chronic arthritis. Br J Rheumatol. 1990;29:231–3.

    Article  PubMed  CAS  Google Scholar 

  6. Lovell DJ, Giannini EH, Reiff A, Cawkwell GD, Silverman ED, Nocton JJ, et al. Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group. N Engl J Med. 2000;342:763–9.

    Article  PubMed  CAS  Google Scholar 

  7. Lovell DJ, Ruperto N, Goodman S, Reiff A, Jung L, Jarosova K, et al. Adalimumab with or without methotrexate in juvenile rheumatoid arthritis. N Engl J Med. 2008;359:810–20.

    Article  PubMed  CAS  Google Scholar 

  8. Ruperto N, Lovell DJ, Quartier P, Paz E, Rubio-Pérez N, Silva CA, et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet. 2008;372:383–91.

    Article  PubMed  CAS  Google Scholar 

  9. De Benedetti F, Brunner HI, Ruperto N, Kenwright A, Wright S, Calvo I, et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367:2385–95.

    Article  PubMed  CAS  Google Scholar 

  10. Ruperto N, Brunner HI, Quartier P, Constantin T, Wulffraat N, Horneff G, et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367:2396–406.

    Article  PubMed  CAS  Google Scholar 

  11. Ravelli A, Martini A. Early predictors of outcome in juvenile idiopathic arthritis. Clin Exp Rheumatol. 2003;21:S89–93.

    PubMed  CAS  Google Scholar 

  12. Oen K. Long-term outcomes and predictors of outcomes for patients with juvenile idiopathic arthritis. Best Pract Res Clin Rheumatol. 2002;16:347–60.

    Article  PubMed  Google Scholar 

  13. Ravelli A. Toward an understanding of the long-term outcome of juvenile idiopathic arthritis. Clin Exp Rheumatol. 2004;22:271–5.

    PubMed  CAS  Google Scholar 

  14. Suter LG, Fraenkel L, Braithwaite RS. Role of magnetic resonance imaging in the diagnosis and prognosis of rheumatoid arthritis. Arthritis Care Res. 2011;63:675–88.

    Article  Google Scholar 

  15. McQueen FM, Ostergaard M. Imaging in rheumatology: new tools for use in clinical practice in 2012. Preface. Best Pract Res Clin Rheumatol. 2012;26:743–9.

    Article  PubMed  Google Scholar 

  16. Haavardsholm EA, Østergaard M, Hammer HB, Bøyesen P, Boonen A, van der Heijde D, et al. Monitoring anti-TNFalpha treatment in rheumatoid arthritis: responsiveness of magnetic resonance imaging and ultrasonography of the dominant wrist joint compared with conventional measures of disease activity and structural damage. Ann Rheum Dis. 2009;68:1572–9.

    Article  PubMed  CAS  Google Scholar 

  17. Colebatch AN, Edwards CJ, Østergaard M, van der Heijde D, Balint PV, D'Agostino MA, et al. EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis. 2013;72:804–14.

    Article  PubMed  Google Scholar 

  18. American College of Rheumatology Rheumatoid Arthritis Clinical Trials Task Force Imaging Group and Outcome Measures in Rheumatology Magnetic Resonance Imaging Inflammatory Arthritis Working Group. Review: the utility of magnetic resonance imaging for assessing structural damage in randomized controlled trials in rheumatoid arthritis. Arthritis Rheum. 2013;65:2513–23.

    Google Scholar 

  19. Naredo E, Möller I, Cruz A, Carmona L, Garrido J. Power Doppler ultrasonographic monitoring of response to anti-tumor necrosis factor therapy in patients with rheumatoid arthritis. Arthritis Rheum. 2008;58:2248–56.

    Article  PubMed  Google Scholar 

  20. Conaghan PG, Emery P, Østergaard M, Keystone EC, Genovese MC, Hsia EC, et al. Assessment by MRI of inflammation and damage in rheumatoid arthritis patients with methotrexate inadequate response receiving golimumab: results of the GO-FORWARD trial. Ann Rheum Dis. 2011;70:1968–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Babyn P, Doria AS. Radiologic investigation of rheumatic diseases. Rheum Dis Clin North Am. 2007;33:403–40.

    Article  PubMed  Google Scholar 

  22. Johnson K. Imaging of juvenile idiopathic arthritis. Pediatr Radiol. 2006;36:743–58.

    Article  PubMed  Google Scholar 

  23. Lamer S, Sebag GH. MRI and ultrasound in children with juvenile chronic arthritis. Eur J Radiol. 2000;33:85–93.

    Article  PubMed  CAS  Google Scholar 

  24. Jelinek JS, Kransdorf MJ, Utz JA, Berrey Jr BH, Thomson JD, Heekin RD, et al. Imaging of pigmented villonodular synovitis with emphasis on MR imaging. AJR Am J Roentgenol. 1989;152:337–42.

    Article  PubMed  CAS  Google Scholar 

  25. Kim HK, Zbojniewicz AM, Merrow AC, Cheon JE, Kim IO, Emery KH. MR findings of synovial disease in children and young adults: Part 1. Pediatr Radiol. 2011;41:495–511.

    Article  PubMed  Google Scholar 

  26. Buchmann RF, Jaramillo D. Imaging of articular disorders in children. Radiol Clin North Am. 2004;42:151–68.

    Article  PubMed  Google Scholar 

  27. Weiss PF, Arabshahi B, Johnson A, Bilaniuk LT, Zarnow D, Cahill AM, et al. High prevalence of temporomandibular joint arthritis at disease onset in children with juvenile idiopathic arthritis, as detected by magnetic resonance imaging but not by ultrasound. Arthritis Rheum. 2008;58:1189–96.

    Article  PubMed  Google Scholar 

  28. Müller L, Kellenberger CJ, Cannizzaro E, Ettlin D, Schraner T, Bolt IB, et al. Early diagnosis of temporomandibular joint involvement in juvenile idiopathic arthritis: a pilot study comparing clinical examination and ultrasound to magnetic resonance imaging. Rheumatology. 2009;48:680–5.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Meyers AB, Laor T. Magnetic resonance imaging of the temporomandibular joint in children with juvenile idiopathic arthritis. Pediatr Radiol. 2013;43:1632–41.

    Article  PubMed  Google Scholar 

  30. Cannizzaro E, Schroeder S, Müller LM, Kellenberger CJ, Saurenmann RK. Temporomandibular joint involvement in children with juvenile idiopathic arthritis. J Rheumatol. 2011;38:510–5.

    Article  PubMed  Google Scholar 

  31. Pedersen TK, Küseler A, Gelineck J, Herlin T. A prospective study of magnetic resonance and radiographic imaging in relation to symptoms and clinical findings of the temporomandibular joint in children with juvenile idiopathic arthritis. J Rheumatol. 2008;35:1668–75.

    PubMed  Google Scholar 

  32. Argyropoulou MI, Fanis SL, Xenakis T, Efremidis SC, Siamopoulou A. The role of MRI in the evaluation of hip joint disease in clinical subtypes of juvenile idiopathic arthritis. Br J Radiol. 2002;75:229–33.

    PubMed  CAS  Google Scholar 

  33. Nistala K, Babar J, Johnson K, Campbell-Stokes P, Foster K, Ryder C, et al. Clinical assessment and core outcome variables are poor predictors of hip arthritis diagnosed by MRI in juvenile idiopathic arthritis. Rheumatology. 2007;46:699–702.

    Article  PubMed  CAS  Google Scholar 

  34. Oren B, Oren H, Osma E, Cevik N. Juvenile rheumatoid arthritis: cervical spine involvement and MRI in early diagnosis. Turk J Pediatr. 1996;38:189–94.

    PubMed  CAS  Google Scholar 

  35. Malattia C, Damasio MB, Pistorio A, Ioseliani M, Vilca I, Valle M, et al. Development and preliminary validation of a paediatric-targeted MRI scoring system for the assessment of disease activity and damage in juvenile idiopathic arthritis. Ann Rheum Dis. 2011;70:440–6.

    Article  PubMed  Google Scholar 

  36. Damasio MB, Malattia C. Tanturri de Horatio L, Mattiuz C, Pistorio A, Bracaglia C, et al. MRI of the wrist in juvenile idiopathic arthritis: proposal of a paediatric synovitis score by a consensus of an international working group. Results of a multicentre reliability study. Pediatr Radiol. 2012;42:1047–55.

    Article  PubMed  Google Scholar 

  37. Tanturri de Horatio L, Damasio MB, Barbuti D, Bracaglia C, Lambot-Juhan K, Boavida P, et al. MRI assessment of bone marrow in children with juvenile idiopathic arthritis: intra- and inter-observer variability. Pediatr Radiol. 2012;42:714–20.

    Article  PubMed  Google Scholar 

  38. Hemke R, van Rossum MA, van Veenendaal M, Terra MP, Deurloo EE, de Jonge MC, et al. Reliability and responsiveness of the Juvenile Arthritis MRI Scoring (JAMRIS) system for the knee. Eur Radiol. 2013;23:1075–83.

    Article  PubMed  Google Scholar 

  39. Malattia C, Consolaro A, Pederzoli S, Madeo A, Pistorio A, Mazzoni M, et al. MRI versus conventional measures of disease activity and structural damage in evaluating treatment efficacy in juvenile idiopathic arthritis. Ann Rheum Dis. 2013;72:363–8. This study is the first to show that MRI represents a promising imaging biomarker for measuring therapeutic response in JIA.

  40. Malattia C, Damasio MB, Basso C, Verri A, Magnaguagno F, Viola S, et al. Dynamic contrast-enhanced magnetic resonance imaging in the assessment of disease activity in patients with juvenile idiopathic arthritis. Rheumatology. 2010;49:178–85.

    Article  PubMed  Google Scholar 

  41. Workie DW, Dardzinski BJ, Graham TB, Laor T, Bommer WA, O'Brien KJ. Quantification of dynamic contrast-enhanced MR imaging of the knee in children with juvenile rheumatoid arthritis based on pharmacokinetic modeling. Magn Reson Imaging. 2004;22:1201–10.

    Article  PubMed  Google Scholar 

  42. Workie DW, Graham TB, Laor T, Rajagopal A, O'Brien KJ, Bommer WA, et al. Quantitative MR characterization of disease activity in the knee in children with juvenile idiopathic arthritis: a longitudinal pilot study. Pediatr Radiol. 2007;37:535–43.

    Article  PubMed  Google Scholar 

  43. Malattia C, Damasio MB, Basso C, Santoro M, Verri A, Pederzoli S, et al. Novel automated system for magnetic resonance imaging quantification of the inflamed synovial membrane volume in patients with juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2012;64:1657–64.

    Article  CAS  Google Scholar 

  44. Wallace CA, Ruperto N, Giannini E. Childhood Arthritis and Rheumatology Research Alliance; Pediatric Rheumatology International Trials Organization; Pediatric Rheumatology Collaborative Study Group. Preliminary criteria for clinical remission for select categories of juvenile idiopathic arthritis. J Rheumatol. 2004;31:2290–4.

    PubMed  Google Scholar 

  45. Ruperto N, Giannini EH, Pistorio A, Brunner HI, Martini A, Lovell DJ. Is it time to move to active comparator trials in juvenile idiopathic arthritis?: a review of current study designs. Arthritis Rheum. 2010;62:3131–9.

    Article  PubMed  Google Scholar 

  46. Brown A, Hirsch R, Laor T, Hannon MJ, Levesque MC, Starz T, et al. Do patients with juvenile idiopathic arthritis in clinical remission have evidence of persistent inflammation on 3T magnetic resonance imaging? Arthritis Care Res (Hoboken). 2012;64:1846–54.

    Article  Google Scholar 

  47. Brown AK, Quinn MA, Karim Z, Conaghan PG, Peterfy CG, Hensor E, et al. Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying antirheumatic drug-induced clinical remission: evidence from an imaging study may explain structural progression. Arthritis Rheum. 2006;54:3761–73.

    Article  PubMed  CAS  Google Scholar 

  48. McQueen FM, Benton N, Perry D, Crabbe J, Robinson E, Yeoman S, et al. Bone edema scored on magnetic resonance imaging scans of the dominant carpus at presentation predicts radiographic joint damage of the hands and feet six years later in patients with rheumatoid arthritis. Arthritis Rheum. 2003;48:1814–27.

    Article  PubMed  Google Scholar 

  49. Benton N, Stewart N, Crabbe J, Robinson E, Yeoman S, McQueen FM. MRI of the wrist in early rheumatoid arthritis can be used to predict functional outcome at 6 years. Ann Rheum Dis. 2004;63:555–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Hetland ML, Ejbjerg B, Hørslev-Petersen K, Jacobsen S, Vestergaard A, Jurik AG, et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann Rheum Dis. 2009;68:384–90.

    Article  PubMed  CAS  Google Scholar 

  51. Dalbeth N, Smith T, Gray S, Doyle A, Antill P, Lobo M, et al. Cellular characterisation of magnetic resonance imaging bone oedema in rheumatoid arthritis; implications for pathogenesis of erosive disease. Ann Rheum Dis. 2009;68:279–82.

    Article  PubMed  CAS  Google Scholar 

  52. Müller LS, Avenarius D, Damasio B, Eldevik OP, Malattia C, Lambot-Juhan K, et al. The paediatric wrist revisited: redefining MR findings in healthy children. Ann Rheum Dis. 2011;70:605–10. The authors highlight the peculiarities of the growing skeleton and the need to include age-matched healthy subjects in imaging studies on JIA.

    Article  PubMed  Google Scholar 

  53. Shabshin N, Schweitzer ME. Age dependent T2 changes of bone marrow in pediatric wrist MRI. Skeletal Radiol. 2009;38:1163–8.

    Article  PubMed  Google Scholar 

  54. Ejbjerg B, Narvestad E, Rostrup E, Szkudlarek M, Jacobsen S, Thomsen HS, et al. Magnetic resonance imaging of wrist and finger joints in healthy subjects occasionally shows changes resembling erosions and synovitis as seen in rheumatoid arthritis. Arthritis Rheum. 2004;50:1097–106.

    Article  PubMed  Google Scholar 

  55. Olech E, Crues 3rd JV, Yocum DE, Merrill JT. Bone marrow edema is the most specific finding for rheumatoid arthritis (RA) on noncontrast magnetic resonance imaging of the hands and wrists: a comparison of patients with RA and healthy controls. J Rheumatol. 2010;3:265–74.

    Article  Google Scholar 

  56. Hoving JL, Buchbinder R, Hall S, et al. A comparison of magnetic resonance imaging, sonography, and radiography of the hand in patients with early rheumatoid arthritis. J Rheumatol. 2004;31:663–75.

    Google Scholar 

  57. Østergaard M, Hansen M, Stoltenberg M, et al. New radiographic bone erosions in the wrists of patients with rheumatoid arthritis are detectable with magnetic resonance imaging a median of 2 years earlier. Arthritis Rheum. 2003;48:2128–31.

    Google Scholar 

  58. Malattia C, Damasio MB, Magnaguagno F, Pistorio A, Valle M, Martinoli C, et al. Magnetic resonance imaging, ultrasonography, and conventional radiography in the assessment of bone erosions in juvenile idiopathic arthritis. Arthritis Rheum. 2008;59:1764–72.

    Article  PubMed  Google Scholar 

  59. Ording Muller LS, Boavida P, Avenarius D, Damasio B, Eldevik OP, Malattia C, et al. MRI of the wrist in juvenile idiopathic arthritis: erosions or normal variants? A prospective case-control study. Pediatr Radiol. 2013;43:785–95.

    Article  PubMed  Google Scholar 

  60. Rossi F, Di Dia F, Galipo O, Pistorio A, Valle M, Magni-Manzoni S, et al. Use of the Sharp and Larsen scoring methods in the assessment of radiographic progression in juvenile idiopathic arthritis. Arthritis Rheum. 2006;55:717–23.

    Article  PubMed  Google Scholar 

  61. Reed MH, Wilmot DM. The radiology of juvenile rheumatoid arthritis: a review of the English language literature [review]. J Rheumatol Suppl. 1991;31:2–22.

    Google Scholar 

  62. Cohen PA, Job-Deslandre CH, Lalande G, Adamsbaum C. Overview of the radiology of juvenile idiopathic arthritis (JIA) [review]. Eur J Radiol. 2000;33:94–101.

    Article  PubMed  CAS  Google Scholar 

  63. Ho-Fung VM, Jaramillo D. Cartilage imaging in children: current indications, magnetic resonance imaging techniques, and imaging findings. Radiol Clin North Am. 2013;51:689–702.

    Article  PubMed  Google Scholar 

  64. Kight AC, Dardzinski BJ, Laor T, Graham TB. Magnetic resonance imaging evaluation of the effects of juvenile rheumatoid arthritis on distal femoral weight-bearing cartilage. Arthritis Rheum. 2004;50:901–5.

    Article  PubMed  Google Scholar 

  65. Daher RJ, Chahine NO, Greenberg AS, Sgaglione NA, Grande DA. New methods to diagnose and treat cartilage degeneration. Nat Rev Rheumatol. 2009;5:599–607.

    Article  PubMed  Google Scholar 

  66. Miese F, Buchbender C, Scherer A, Wittsack HJ, Specker C, Schneider M, et al. Molecular imaging of cartilage damage of finger joints in early rheumatoid arthritis with delayed gadolinium-enhanced magnetic resonance imaging. Arthritis Rheum. 2012;64:394–9.

    Article  PubMed  Google Scholar 

  67. Buchbender C, Scherer A, Kröpil P, Körbl B, Quentin M, Reichelt DC, et al. Cartilage quality in rheumatoid arthritis: comparison of T2* mapping, native T1 mapping, dGEMRIC, ΔR1 and value of pre-contrast imaging. Skeletal Radiol. 2012;41:685–92.

    Article  PubMed  Google Scholar 

  68. Magni-Manzoni S, Malattia C, Lanni S, Ravelli A. Advances and challenges in imaging in juvenile idiopathic arthritis. Nat Rev Rheumatol. 2012;8:329–36. This review provides a summary of the current information on conventional radiography, ultrasonography and MRI in JIA and highlights the advantages and limitations of each imaging modality.

    Google Scholar 

  69. Lanni S, Wood M, Ravelli A, Magni Manzoni S, Emery P, Wakefield RJ. Towards a role of ultrasound in children with juvenile idiopathic arthritis. Rheumatology (Oxford). 2013;52:413–20. This review considers the most important studies regarding the use of MSUS in JIA and points out the current major aspects to be developed in further studies.

    Article  Google Scholar 

  70. Collado P, Jousse-Joulin S, Alcalde M, Naredo E, D'Agostino MA. Is ultrasound a validated imaging tool for the diagnosis and management of synovitis in juvenile idiopathic arthritis? A systematic literature review. Arthritis Care Res (Hoboken). 2012;64:1011–9. This systematic literature review shows the utility of MSUS for detecting synovitis in JIA and its superiority to clinical examination. However, the authors also highlight the need for further studies in order to demonstrate MSUS reliability and responsiveness in JIA and to validate the technique as an outcome tool in JIA.

    Google Scholar 

  71. Spannow AH, Pfeiffer-Jensen M, Andersen NT, Stenbøg E, Herlin T. Inter -and intraobserver variation of ultrasonographic cartilage thickness assessments in small and large joints in healthy children. Pediatr Rheumatol Online J. 2009;4:7–12.

    Google Scholar 

  72. Spannow AH, Stenboeg E, Pfeiffer-Jensen M, Fiirgaard B, Haislund M, Ostergaard M, et al. Ultrasound and MRI measurements of joint cartilage in healthy children: a validation study. Ultraschall Med. 2011;32 Suppl 1:S110–6.

    Article  PubMed  Google Scholar 

  73. Spannow AH, Pfeiffer-Jensen M, Andersen NT, Herlin T, Stenbøg E. Ultrasonographic measurements of joint cartilage thickness in healthy children: age- and sex-related standard reference values. J Rheumatol. 2010;37:2595–601.

    Article  PubMed  Google Scholar 

  74. Pradsgaard DØ, Spannow AH, Heuck C, Herlin T. Decreased cartilage thickness in juvenile idiopathic arthritis assessed by ultrasonography. J Rheumatol. 2013;40:1596–603.

    Article  PubMed  Google Scholar 

  75. Magni-Manzoni S, Epis O, Ravelli A, Klersy C, Veisconti C, Lanni S, et al. Comparison of clinical versus ultrasound-determined synovitis in juvenile idiopathic arthritis. Arthritis Rheum. 2009;61:1497–504.

    Article  PubMed  Google Scholar 

  76. Haslam KE, McCann LJ, Wyatt S, Wakefield RJ. The detection of subclinical synovitis by ultrasound in oligoarticular juvenile idiopathic arthritis: a pilot study. Rheumatology (Oxford). 2010;49:123–7.

    Article  Google Scholar 

  77. Breton S, Jousse-Joulin S, Cangemi C, de Parscau L, Colin D, Bressolette L, et al. Comparison of clinical and ultrasonographic evaluations for peripheral synovitis in juvenile idiopathic arthritis. Semin Arthritis Rheum. 2011;41:272–8.

    Article  PubMed  Google Scholar 

  78. Scirè CA, Montecucco C, Codullo V, Epis O, Todoerti M, Caporali R. Ultrasonographic evaluation of joint involvement in early rheumatoid arthritis in clinical remission: power Doppler signal predicts short-term relapse. Rheumatology (Oxford). 2009;48:1092–7.

    Article  CAS  Google Scholar 

  79. Magni-Manzoni S, Scirè CA, Ravelli A, Klersy C, Rossi S, Muratore V, et al. Ultrasound-detected synovial abnormalities are frequent in clinically inactive juvenile idiopathic arthritis, but do not predict a flare of synovitis. Ann Rheum Dis. 2013;72:223–8. This study shows that the presence of ultrasound pathology does not predict an early flare of synovitis in the affected joints of children with JIA, which is of interest as it contrasts with the observation in adults with RA.

    Article  PubMed  Google Scholar 

  80. Pascoli L, Wright S, McAllister C, Rooney M. Prospective evaluation of clinical and ultrasound findings in ankle disease in juvenile idiopathic arthritis: importance of ankle ultrasound. J Rheumatol. 2010;37:2409–14.

    Article  PubMed  Google Scholar 

  81. Laurell L, Court-Payen M, Nielsen S, Zak M, Boesen M, Fasth A. Ultrasonography and color Doppler in juvenile idiopathic arthritis: diagnosis and follow-up of ultrasound-guided steroid injection in the ankle region. A descriptive interventional study. Pediatr Rheumatol Online J. 2011;9:4.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Jousse-Joulin S, Breton S, Cangemi C, Fenoll B, Bressolette L, de Parscau L, et al. Ultrasonography for detecting enthesitis in juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2011;63:849–55.

    Article  Google Scholar 

  83. Weiss PF, Chauvin NA, Klink AJ, Localio R, Feudtner C, Jaramillo D, et al. Detection of enthesitis in children with Enthesitis-related arthritis: Dolorimeter examination compared to ultrasonography. Arthritis Rheum. 2014;66:218–27.

    Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

The GASLINI Hospital (the public hospital at which Alberto Martini works as a full-time employee) has received contributions to support the research activities of the network of PRINTO (www.printo.it) from Bristol-Myers Squibb, Centocor Research & Development, GlaxoSmithKline, Novartis, Pfizer, Roche, Sanofi Aventis, and Schwarz Biosciences GmbH.

Alberto Martini has served as a consultant for Abbott Laboratories, Boehringer, Italfarmaco, Bristol-Myers Squibb, MedImmune, Novartis, NovoNordisk, Sanofi Aventis, Roche, Servier, and Pfizer; has received grant support from Bristol-Myers Squibb, Centocor Research & Development, GlaxoSmithKline, Novartis, Pfizer, Roche, Sanofi Aventis, and Schwarz Biosciences GmbH; and has served on speakers bureaus and had travel/accommodations expenses covered/reimbursed by Abbott Laboratories, Bristol-Myers Squibb, Astellas, Boehringer, Italfarmaco, MedImmune, Novartis, NovoNordisk, Pfizer, Sanofi Aventis, Roche, and Servier.

Stefano Lanni and Clara Malattia declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Malattia.

Additional information

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanni, S., Martini, A. & Malattia, C. Heading Toward a Modern Imaging Approach in Juvenile Idiopathic Arthritis. Curr Rheumatol Rep 16, 416 (2014). https://doi.org/10.1007/s11926-014-0416-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-014-0416-9

Keywords

Navigation