Skip to main content

Role of CCs and Their Lipoprotein Precursors in NLRP3 and IL-1β Activation

  • Chapter
  • First Online:
Cholesterol Crystals in Atherosclerosis and Other Related Diseases

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 134 Accesses

Abstract

Inflammation is recognized as a major driving force in atherogenesis, yet the mechanisms eliciting arterial wall inflammation remain incompletely understood. Cholesterol crystals (CCs) have been acknowledged as a hallmark of advanced atherosclerotic lesions since the very earliest studies on atherosclerosis in the mid-nineteenth century (Virchow, Cellular pathology as based upon physiological and pathological histology, J. B. Lippincott, Philadelphia, 1863). For over a century, they were largely ignored in studies of disease pathology as an inert material passively accumulating in the lesions. From the 2000s, CCs started to regain attention in the context of atherosclerotic plaque rupture (Abela and Aziz, Scanning 28:1–10, 2006, Abela et al., Am J Cardiol 103:959–968, 2009) and as triggers of inflammation in the plaques (Duewell et al., Nature 464:1357–1361, 2010, Rajamäki et al., PloS One 5:e11765, 2010). These studies also sparked further interest into the detailed mechanisms of cholesterol crystallization and in novel imaging methods to visualize CCs ex vivo and in vivo. Here, we focus on the pro-inflammatory effects of CCs in atherosclerotic lesions, triggered via a pathway called the NLRP3 inflammasome, as well as on the upstream pathways mediating extracellular and intracellular cholesterol crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Apo:

Apolipoprotein

CCs:

Cholesterol crystals

DAMPs:

Danger-associated molecular patterns

HDL:

High density lipoprotein

HFD:

High-fat diet

IL:

Interleukin

LDL:

Low density lipoprotein

LDLR/Ldlr:

Low density lipoprotein receptor

NLRP3/Nlrp3:

NLR family pyrin domain containing 3

oxLDL:

Oxidized low density lipoprotein

PAMPs:

Pathogen-associated molecular patterns

TLR:

Toll-like receptor

References

  1. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26.

    Article  CAS  PubMed  Google Scholar 

  2. Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50:1352–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shi J, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.

    Article  CAS  PubMed  Google Scholar 

  4. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20:95–112.

    Article  CAS  PubMed  Google Scholar 

  5. McDonald B, et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science. 2010;330:362–6.

    Article  CAS  PubMed  Google Scholar 

  6. Babelova A, et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem. 2009;284:24035–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamasaki K, et al. NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem. 2009;284:12762–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Halle A, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008;9:857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Masters SL, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol. 2010;11:897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wen H, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12:408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vandanmagsar B, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41.

    Article  CAS  PubMed  Google Scholar 

  13. Duewell P, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rajamäki K, et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PloS One. 2010;5:e11765.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Usui F, et al. Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem Biophys Res Commun. 2012;425:162–8.

    Article  CAS  PubMed  Google Scholar 

  16. Gage J, Hasu M, Thabet M, Whitman SC. Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. Can J Cardiol. 2012;28:222–9.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng F, Xing S, Gong Z, Mu W, Xing Q. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators Inflamm. 2014;2014:1–8.

    Google Scholar 

  18. Hendrikx T, et al. Bone marrow-specific caspase-1/11 deficiency inhibits atherosclerosis development in Ldlr(−/−) mice. FEBS J. 2015;282:2327–38.

    Article  CAS  PubMed  Google Scholar 

  19. Menu P, et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2011;2:e137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishibashi S, et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest. 1993;92:883–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992;258:468–71.

    Article  CAS  PubMed  Google Scholar 

  22. Kirii H, et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23:656–60.

    Article  CAS  PubMed  Google Scholar 

  23. Bhaskar V, et al. Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in apolipoprotein E-deficient mice. Atherosclerosis. 2011;216:313–20.

    Article  CAS  PubMed  Google Scholar 

  24. Nicklin MJH, Hughes DE, Barton JL, Ure JM, Duff GW. Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene. J Exp Med. 2000;191:303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elhage R, et al. Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation. 1998;97:242–4.

    Article  CAS  PubMed  Google Scholar 

  26. Devlin CM, Kuriakose G, Hirsch E, Tabas I. Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Proc Natl Acad Sci U S A. 2002;99:6280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mallat Z, et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res. 2001;89:E41–5.

    Article  CAS  PubMed  Google Scholar 

  28. Elhage R, et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res. 2003;59:234–40.

    Article  CAS  PubMed  Google Scholar 

  29. Whitman SC, Ravisankar P, Daugherty A. Interleukin-18 enhances atherosclerosis in apolipoprotein E(−/−) mice through release of interferon-gamma. Circ Res. 2002;90:E34–8.

    Article  CAS  PubMed  Google Scholar 

  30. Opoku E, et al. Gasdermin D mediates inflammation-induced defects in reverse cholesterol transport and promotes atherosclerosis. Front Cell Dev Biol. 2021;9:715211.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Christ A, et al. Western Diet Triggers NLRP3-Dependent innate immune reprogramming. Cell. 2018;172:162–175.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stienstra R, et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci U S A. 2011;108:15324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Galea J, et al. Interleukin-1 beta in coronary arteries of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 1996;16:1000–6.

    Article  CAS  PubMed  Google Scholar 

  34. Gerdes N, et al. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages. J Exp Med. 2002;195:245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol. 1995;147:251–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Folco EJ, Sukhova GK, Quillard T, Libby P. Moderate hypoxia potentiates interleukin-1β production in activated human macrophages. Circ Res. 2014;115:875–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng F, Xing S, Gong Z, Xing Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ. 2013;22:746–50.

    Article  PubMed  Google Scholar 

  38. Shi X, Xie W-L, Kong W-W, Chen D, Qu P. Expression of the NLRP3 Inflammasome in carotid atherosclerosis. J Stroke Cerebrovasc Dis. 2015;24:2455–66.

    Article  PubMed  Google Scholar 

  39. Paramel Varghese G, et al. NLRP3 Inflammasome expression and activation in human atherosclerosis. J Am Heart Assoc. 2016;5:e003031.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rajamäki K, et al. p38δ MAPK: a novel regulator of NLRP3 Inflammasome activation with increased expression in coronary atherogenesis. Arterioscler Thromb Vasc Biol. 2016;36:1937–46.

    Article  PubMed  Google Scholar 

  41. Afrasyab A, et al. Correlation of NLRP3 with severity and prognosis of coronary atherosclerosis in acute coronary syndrome patients. Heart Vessels. 2016;31:1218–29.

    Article  PubMed  Google Scholar 

  42. Puren AJ, Fantuzzi G, Dinarello CA. Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1 are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci. 1999;96:2256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bauernfeind FG, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183:787–91.

    Article  CAS  PubMed  Google Scholar 

  44. Zimmer S, Grebe A, Latz E. Danger signaling in atherosclerosis. Circ Res. 2015;116:323–40.

    Article  CAS  PubMed  Google Scholar 

  45. Lima H Jr, et al. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle. 2013;12:1868–78.

    Article  CAS  PubMed  Google Scholar 

  46. Orlowski GM, et al. Frontline science: multiple cathepsins promote inflammasome-independent, particle-induced cell death during NLRP3-dependent IL-1β activation. J Leukoc Biol. 2017;102:7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muñoz-Planillo R, et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38:1142–53.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu Z, et al. Distinct molecular mechanisms underlying potassium efflux for NLRP3 Inflammasome activation. Front Immunol. 2020;11:609441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sheedy FJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013;14:812–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heilig R, et al. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur J Immunol. 2018;48:584–92.

    Article  CAS  PubMed  Google Scholar 

  51. Rajamäki K, et al. Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J Biol Chem. 2013;288:13410–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mariathasan S, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440:228–32.

    Article  CAS  PubMed  Google Scholar 

  53. Niemi K, et al. Serum amyloid a activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol. 2011;186:6119–28.

    Article  CAS  PubMed  Google Scholar 

  54. Laudisi F, et al. Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1β release. J Immunol. 2013;191:1006–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Coeshott C, et al. Converting enzyme-independent release of tumor necrosis factor alpha and IL-1beta from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc Natl Acad Sci U S A. 1999;96:6261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Samstad EO, et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J Immunol. 2014;192:2837–45.

    Article  CAS  PubMed  Google Scholar 

  57. Mizutani H, Schechter N, Lazarus G, Black RA, Kupper TS. Rapid and specific conversion of precursor interleukin 1 beta (IL-1 beta) to an active IL-1 species by human mast cell chymase. J Exp Med. 1991;174:821–5.

    Article  CAS  PubMed  Google Scholar 

  58. Öörni K, Kovanen PT. Aggregation susceptibility of low-density lipoproteins—a novel modifiable biomarker of cardiovascular risk. J Clin Med Res. 2021;10:1769.

    Google Scholar 

  59. Borén J, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European atherosclerosis society consensus panel. Eur Heart J. 2020;41:2313–30.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Virmani R, Burke AP, Kolodgie FD, Farb A. Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol. 2003;16:267–72.

    Article  PubMed  Google Scholar 

  61. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.

    Article  CAS  PubMed  Google Scholar 

  62. Ho-Tin-Noé B, et al. Cholesterol crystallization in human atherosclerosis is triggered in smooth muscle cells during the transition from fatty streak to fibroatheroma. J Pathol. 2017;241:671–82.

    Article  PubMed  Google Scholar 

  63. Baumer Y, et al. Hyperlipidemia-induced cholesterol crystal production by endothelial cells promotes atherogenesis. Nat Commun. 2017;8:1129.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lehti S, et al. Extracellular lipids accumulate in human carotid arteries as distinct three-dimensional structures and have proinflammatory properties. Am J Pathol. 2018;188:525–38.

    Article  CAS  PubMed  Google Scholar 

  65. Baumer Y, Mehta NN, Dey AK, Powell-Wiley TM, Boisvert WA. Cholesterol crystals and atherosclerosis. Eur Heart J. 2020;41:2236–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stary HC, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol. 1995;15:1512–31.

    Article  CAS  PubMed  Google Scholar 

  67. Lehti S, et al. Spatial distributions of lipids in atherosclerosis of human coronary arteries studied by time-of-flight secondary ion mass spectrometry. Am J Pathol. 2015;185:1216–33.

    Article  CAS  PubMed  Google Scholar 

  68. Bogren H, Larsson K. An x-ray-diffraction study of crystalline cholesterol in some pathological deposits in man. Biochim Biophys Acta. 1963;75:65–9.

    Article  CAS  PubMed  Google Scholar 

  69. Suhalim JL, et al. Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy. Biophys J. 2012;102:1988–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fujiyoshi K, et al. Incidence, factors, and clinical significance of cholesterol crystals in coronary plaque: an optical coherence tomography study. Atherosclerosis. 2019;283:79–84.

    Article  CAS  PubMed  Google Scholar 

  71. Shi X, et al. Cholesterol crystals are associated with carotid plaque vulnerability: an optical coherence tomography study. J Stroke Cerebrovasc Dis. 2020;29:104579.

    Article  PubMed  Google Scholar 

  72. Hevonoja T, Pentikäinen MO, Hyvönen MT, Kovanen PT, Ala-Korpela M. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta. 2000;1488:189–210.

    Article  CAS  PubMed  Google Scholar 

  73. Hakala JK, et al. Lysosomal enzymes are released from cultured human macrophages, hydrolyze LDL in vitro, and are present extracellularly in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2003;23:1430–6.

    Article  CAS  PubMed  Google Scholar 

  74. Guarino AJ, Tulenko TN, Wrenn SP. Cholesterol crystal nucleation from enzymatically modified low-density lipoproteins: combined effect of sphingomyelinase and cholesterol esterase. Biochemistry. 2004;43:1685–93.

    Article  CAS  PubMed  Google Scholar 

  75. Torzewski M, et al. Enzymatic modification of low-density lipoprotein in the arterial wall: a new role for plasmin and matrix metalloproteinases in atherogenesis. Arterioscler Thromb Vasc Biol. 2004;24:2130–6.

    Article  CAS  PubMed  Google Scholar 

  76. Witztum JL. You are right too! J Clin Invest. 2005;115:2072–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kruth HS. Sequestration of aggregated low-density lipoproteins by macrophages. Curr Opin Lipidol. 2002;13:483–8.

    Article  CAS  PubMed  Google Scholar 

  78. Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res. 2020;116:1254–74.

    Article  CAS  PubMed  Google Scholar 

  79. Grosheva I, Haka AS, Qin C, Pierini LM, Maxfield FR. Aggregated LDL in contact with macrophages induces local increases in free cholesterol levels that regulate local actin polymerization. Arterioscler Thromb Vasc Biol. 2009;29:1615–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haka AS, et al. Monocyte-derived dendritic cells upregulate extracellular catabolism of aggregated low-density lipoprotein on maturation, leading to foam cell formation. Arterioscler Thromb Vasc Biol. 2015;35:2092–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Singh RK, et al. Degradation of aggregated LDL occurs in complex extracellular sub-compartments of the lysosomal synapse. J Cell Sci. 2016;129:1072–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Singh RK, et al. TLR4 (toll-like receptor 4)-dependent signaling drives extracellular catabolism of LDL (low-density lipoprotein) aggregates. Arterioscler Thromb Vasc Biol. 2020;40:86–102.

    Article  CAS  PubMed  Google Scholar 

  83. Rajamäki K, et al. Cholesterol crystals activate the NLRP3 inflammasome in human monocytes and macrophages. Chem Phys Lipids. 2010;163:S27–8.

    Article  Google Scholar 

  84. Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–61.

    Article  CAS  PubMed  Google Scholar 

  85. Ory DS. The niemann-pick disease genes; regulators of cellular cholesterol homeostasis. Trends Cardiovasc Med. 2004;14:66–72.

    Article  CAS  PubMed  Google Scholar 

  86. Kruth HS. Lipoprotein cholesterol and atherosclerosis. Curr Mol Med. 2001;1:633–53.

    Article  CAS  PubMed  Google Scholar 

  87. Amengual J, et al. Short-term Acyl-CoA:Cholesterol Acyltransferase inhibition, combined with apoprotein A1 overexpression, promotes atherosclerosis inflammation resolution in mice. Mol Pharmacol. 2021;99:175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nissen SE, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med. 2006;354:1253–63.

    Article  CAS  PubMed  Google Scholar 

  89. Baumer Y, et al. Ultramorphological analysis of plaque advancement and cholesterol crystal formation in Ldlr knockout mouse atherosclerosis. Atherosclerosis. 2019;287:100–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tall AR, Westerterp M. Inflammasomes, neutrophil extracellular traps, and cholesterol. J Lipid Res. 2019;60:721–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jin X, et al. Macrophages shed excess cholesterol in unique extracellular structures containing cholesterol microdomains. Arterioscler Thromb Vasc Biol. 2018;38:1504–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chung B-H, et al. Phosphatidylcholine-rich acceptors, but not native HDL or its apolipoproteins, mobilize cholesterol from cholesterol-rich insoluble components of human atherosclerotic plaques. Biochim Biophys Acta. 2005;1733:76–89.

    Article  CAS  PubMed  Google Scholar 

  93. Luo Y, et al. Phospholipid nanoparticles: therapeutic potentials against atherosclerosis via reducing cholesterol crystals and inhibiting inflammation. EBioMedicine. 2021;74:103725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zimmer S, et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci Transl Med. 2016;8:333ra50.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Youm Y-H, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat Med. 2015;21:263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yan Y, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity. 2013;38:1154–63.

    Article  CAS  PubMed  Google Scholar 

  97. Krishnan M, et al. β-Hydroxybutyrate impedes the progression of Alzheimer’s disease and atherosclerosis in ApoE-deficient mice. Nutrients. 2020;12:471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang S-J, et al. Ketone body 3-hydroxybutyrate ameliorates atherosclerosis via receptor Gpr109a-mediated calcium influx. Adv Sci. 2021;8:2003410.

    Article  CAS  Google Scholar 

  99. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61:404–10.

    Article  CAS  PubMed  Google Scholar 

  100. Tardif J-C, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381:2497–505.

    Article  CAS  PubMed  Google Scholar 

  101. Coll RC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21:248–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiang H, et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 2017;214:3219–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Coll RC, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 2019;15:556–9.

    Article  CAS  PubMed  Google Scholar 

  104. Tapia-Abellán A, et al. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat Chem Biol. 2019;15:560–4.

    Article  PubMed  PubMed Central  Google Scholar 

  105. van der Heijden T, et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arterioscler Thromb Vasc Biol. 2017;37:1457–61.

    Article  PubMed  Google Scholar 

  106. Zeng W, et al. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci Rep. 2021;11:19305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sebastian-Valverde M, et al. Discovery and characterization of small-molecule inhibitors of NLRP3 and NLRC4 inflammasomes. J Biol Chem. 2021;296:100597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Silvis MJM, et al. Immunomodulation of the NLRP3 inflammasome in atherosclerosis, coronary artery disease, and acute myocardial infarction. J Cardiovasc Transl Res. 2021;14:23–34.

    Article  PubMed  Google Scholar 

  109. Ridker PM, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristiina Rajamäki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajamäki, K., Öörni, K. (2023). Role of CCs and Their Lipoprotein Precursors in NLRP3 and IL-1β Activation. In: Abela, G.S., Nidorf, S.M. (eds) Cholesterol Crystals in Atherosclerosis and Other Related Diseases. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-41192-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41192-2_15

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-41191-5

  • Online ISBN: 978-3-031-41192-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics