Skip to main content
Log in

Animal Models of Inflammatory Myopathy

  • INFLAMMATORY MUSCLE DISEASE (I LUNDBERG, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The idiopathic inflammatory myopathies (IIMs) represent a heterogeneous group of disorders characterized by mononuclear cell infiltration of muscle and varying degrees of muscle dysfunction. To better understand the pathogenesis of these diseases, investigators have devised a number of infectious, genetic, and antigen-induced animal models that replicate different aspects of muscle involvement. Although the underlying heterogeneity of disorders encompassed by IIM precludes development of a single unifying model, several recently developed experimental systems have provided tremendous insight regarding the contributions of both immune- and non–immune-mediated disease pathways in various subsets of IIM. In turn, by elucidating the pathogenic roles of such disparate factors as endoplasmic reticulum stress and innate immune signaling, these models have established the foundation for more novel, targeted therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Crum-Cianflone NF. Bacterial, fungal, parasitic, and viral myositis. Clin Microbiol Rev. 2008;21:473–94.

    Article  PubMed  Google Scholar 

  2. Morrison TE, Fraser RJ, Smith PN, Mahalingam S, Heise MT. Complement contributes to inflammatory tissue destruction in a mouse model of Ross River virus-induced disease. J Virol. 2007;81:5132–43.

    Article  PubMed  CAS  Google Scholar 

  3. Sandager MM, Nugent JL, Schulz WL, Messner RP, Tam PE. Interactions between multiple genetic determinants in the 5′ UTR and VP1 capsid control pathogenesis of chronic post-viral myopathy caused by coxsackievirus B1. Virology. 2008;372:35–47.

    Article  PubMed  CAS  Google Scholar 

  4. Andersson J, Englund P, Sunnemark D, Dahlstedt A, Westerblad H, Nennesmo I, Orn A, Lundberg IE. CBA/J mice infected with Trypanosoma cruzi: an experimental model for inflammatory myopathies. Muscle Nerve. 2003;27:442–8.

    Article  PubMed  Google Scholar 

  5. Paciello O, Wojcik S, Gradoni L, Oliva G, Trapani F, Iovane V, Politano L, Papparella S. Syrian hamster infected with Leishmania infantum: a new experimental model for inflammatory myopathies. Muscle Nerve. 2010;41:355–61.

    Article  PubMed  Google Scholar 

  6. • Ohyanagi N, Ishido M, Suzuki F, Kaneko K, Kubota T, Miyasaka N, Nanki T. Retinoid ameliorates experimental autoimmune myositis, with modulation of Th cell differentiation and antibody production in vivo. Arthritis Rheum. 2009;60:3118–27. Although it was performed in a mixed model of dysferlinopathy and antigen-induced myositis, this study demonstrates the therapeutic potential of immune deviation mediated by retinoids.

    Article  PubMed  CAS  Google Scholar 

  7. Leite PE, Lagrota-Candido J, Moraes L, D’Elia L, Pinheiro DF, da Silva RF, Yamasaki EN, Quirico-Santos T. Nicotinic acetylcholine receptor activation reduces skeletal muscle inflammation of mdx mice. J Neuroimmunol. 2010;227:44–51.

    Article  PubMed  CAS  Google Scholar 

  8. Huizing M, Krasnewich DM. Hereditary inclusion body myopathy: a decade of progress. Biochim Biophys Acta. 2009;1792:881–7.

    PubMed  CAS  Google Scholar 

  9. Rebolledo DL, Minniti AN, Grez PM, Fadic R, Kohn R, Inestrosa NC. Inclusion body myositis: a view from the Caenorhabditis elegans muscle. Mol Neurobiol. 2008;38:178–98.

    Article  PubMed  CAS  Google Scholar 

  10. Rebolledo DL, Aldunate R, Kohn R, Neira I, Minniti AN, Inestrosa NC. Copper reduces Abeta oligomeric species and ameliorates neuromuscular synaptic defects in a C. elegans model of inclusion body myositis. J Neurosci. 2011;31:10149–58.

    Article  PubMed  CAS  Google Scholar 

  11. Sugarman MC, Yamasaki TR, Oddo S, Echegoyen JC, Murphy MP, Golde TE, Jannatipour M, Leissring MA, LaFerla FM. Inclusion body myositis-like phenotype induced by transgenic overexpression of beta APP in skeletal muscle. Proc Natl Acad Sci U S A. 2002;99:6334–9.

    Article  PubMed  CAS  Google Scholar 

  12. • Kitazawa M, Vasilevko V, Cribbs DH, LaFerla FM. Immunization with amyloid-beta attenuates inclusion body myositis-like myopathology and motor impairment in a transgenic mouse model. J Neurosci. 2009;29:6132–41. Employing a strategy based on immunization with β-amyloid, these authors provide a more direct link between abnormal β-amyloid accumulation/deposition and the non–immune-mediated disruption of muscle function in IBM.

    Article  PubMed  CAS  Google Scholar 

  13. Malicdan MC, Noguchi S, Hayashi YK, Nishino I. Muscle weakness correlates with muscle atrophy and precedes the development of inclusion body or rimmed vacuoles in the mouse model of DMRV/hIBM. Physiol Genomics. 2008;35:106–15.

    Article  PubMed  CAS  Google Scholar 

  14. Malicdan MC, Noguchi S, Nishino I. Autophagy in a mouse model of distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Autophagy. 2007;3:396–8.

    PubMed  CAS  Google Scholar 

  15. Custer SK, Neumann M, Lu H, Wright AC, Taylor JP. Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Hum Mol Genet. 2010;19:1741–55.

    Article  PubMed  CAS  Google Scholar 

  16. Nagaraju K, Raben N, Loeffler L, Parker T, Rochon PJ, Lee E, Danning C, Wada R, Thompson C, Bahtiyar G, Craft J, Hooft Van Huijsduijnen R, Plotz P. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci U S A. 2000;97:9209–14.

    Article  PubMed  CAS  Google Scholar 

  17. Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R, Chang J, Dwivedi S, Mitsak M, Chen YW, Plotz P, Rosen A, Hoffman E, Raben N. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum. 2005;52:1824–35.

    Article  PubMed  CAS  Google Scholar 

  18. • Li CK, Knopp P, Moncrieffe H, Sing B, Shaw S, Nagaraju K, Varsani H, Gao B, Wedderburn LR. Overexpression of MHC class I heavy chain protein in young skeletal muscle leads to severe myositis: implications for juvenile myositis. Am J Pathol. 2009;175:1030–40. This work extends the model of inducible MHC I upregulation originally published by Nagaraju et al. [17], underscoring the temporal discordance between muscle weakness and muscle inflammation that reflects a primary role for “nonimmune” pathways in the pathogenesis of IIM.

    Article  PubMed  CAS  Google Scholar 

  19. • Okiyama N, Sugihara T, Iwakura Y, Yokozeki H, Miyasaka N, Kohsaka H. Therapeutic effects of interleukin-6 blockade in a murine model of polymyositis that does not require interleukin-17A. Arthritis Rheum. 2009;60:2505–12. This study highlights the proinflammatory effects of IL-6 in a model of CIM and suggests that IL-6–mediated pathways represent potential therapeutic targets.

    Article  PubMed  CAS  Google Scholar 

  20. Scuderi F, Mannella F, Marino M, Provenzano C, Bartoccioni E. IL-6-deficient mice show impaired inflammatory response in a model of myosin-induced experimental myositis. J Neuroimmunol. 2006;176:9–15.

    Article  PubMed  CAS  Google Scholar 

  21. •• Allenbach Y, Solly S, Gregoire S, Dubourg O, Salomon B, Butler-Browne G, Musset L, Herson S, Klatzmann D, Benveniste O. Role of regulatory T cells in a new mouse model of experimental autoimmune myositis. Am J Pathol. 2009;174:989–98. Using a number of approaches, including antibody-mediated blockade/removal of Tregs, these authors demonstrate a clear role for this T-cell subset in counterbalancing pathogenic effector cells in a model of CIM. Equally important, this work supports the therapeutic potential of polyclonal Treg administration.

    Article  PubMed  CAS  Google Scholar 

  22. Sugihara T, Sekine C, Nakae T, Kohyama K, Harigai M, Iwakura Y, Matsumoto Y, Miyasaka N, Kohsaka H. A new murine model to define the critical pathologic and therapeutic mediators of polymyositis. Arthritis Rheum. 2007;56:1304–14.

    Article  PubMed  CAS  Google Scholar 

  23. Sugihara T, Okiyama N, Suzuki M, Kohyama K, Matsumoto Y, Miyasaka N, Kohsaka H. Definitive engagement of cytotoxic CD8 T cells in C protein-induced myositis, a murine model of polymyositis. Arthritis Rheum. 2010;62:3088–92.

    Article  PubMed  Google Scholar 

  24. Katsumata Y, Harigai M, Sugiura T, Kawamoto M, Kawaguchi Y, Matsumoto Y, Kohyama K, Soejima M, Kamatani N, Hara M. Attenuation of experimental autoimmune myositis by blocking ICOS-ICOS ligand interaction. J Immunol. 2007;179:3772–9.

    PubMed  CAS  Google Scholar 

  25. Matsumoto Y, Kohyama K, Park IK, Nakajima M, Hiraki K. Characterization of pathogenic T cells and autoantibodies in C-protein-induced autoimmune polymyositis. J Neuroimmunol. 2007;190:90–100.

    Article  PubMed  CAS  Google Scholar 

  26. Katsumata Y, Ridgway WM, Oriss T, Gu X, Chin D, Wu Y, Fertig N, Oury T, Vandersteen D, Clemens P, Camacho CJ, Weinberg A, Ascherman DP. Species-specific immune responses generated by histidyl-tRNA synthetase immunization are associated with muscle and lung inflammation. J Autoimmun. 2007;29:174–86.

    Article  PubMed  CAS  Google Scholar 

  27. Howard OM, Dong HF, Yang D, Raben N, Nagaraju K, Rosen A, Casciola-Rosen L, Hartlein M, Kron M, Yiadom K, Dwivedi S, Plotz PH, Oppenheim JJ. Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med. 2002;196:781–91.

    Article  PubMed  CAS  Google Scholar 

  28. • Soejima M, Kang EH, Gu X, Katsumata Y, Clemens PR, Ascherman DP. Role of innate immunity in a murine model of histidyl-transfer RNA synthetase (Jo-1)-mediated myositis. Arthritis Rheum. 2011;63:479–87. This work demonstrates the capacity of a known autoantigen, HRS, to directly promote muscle inflammation through activation of innate immune responses that bypass the requirement for TCR signaling.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Ascherman’s research has been supported in part by grants from the National Institutes of Health and American College of Rheumatology.

Disclosure

Dr. Ascherman has served as a consultant for Biogen Idec and has received honoraria from and had travel expenses reimbursed by the University of Cincinnati, University of Miami, Georgetown University, and the DC National Children’s Medical Center (for academic grand rounds presentations).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana P. Ascherman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ascherman, D.P. Animal Models of Inflammatory Myopathy. Curr Rheumatol Rep 14, 257–263 (2012). https://doi.org/10.1007/s11926-012-0245-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-012-0245-7

Keywords

Navigation