Skip to main content

Advertisement

Log in

Recent advances in the genetics of rheumatoid arthritis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Recent progress in defining the role of genetic factors in rheumatoid arthritis (RA) has been remarkable. Anticyclic citrullinated peptide (anti-CCP) antibody-positive disease appears to be immunogenetically distinct from anti-CCP-negative disease, with the former subgroup primarily responsible for association and linkage with the HLA-DRB1 shared epitope (SE). There is preliminary evidence that non-HLA genes contribute differentially to anti-CCP-positive and negative disease. The phenotypic differences evident in anti-CCP-positive and negative disease suggest a need to reclassify RA based on the presence or absence of this autoantibody. Some recent work also suggests marked interactions between cigarette smoking, anti-CCP antibodies, and the SE, though these relationships may vary across populations. Lastly, a recent single nucleotide polymorphism-based genome-wide linkage analysis of multicase RA families revealed novel genomic regions that likely contain genes that predispose to RA or more specific phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. MacGregor AJ, Sneider H, Rigby AS, et al.: Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 2000, 43:30–37.

    Article  PubMed  CAS  Google Scholar 

  2. Arnett FC, Edworthy SM, Bloch DA, et al.: The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1998, 31:315–324.

    Article  Google Scholar 

  3. Deighton CM, Criswell LA: The contribution of genetic factors to rheumatoid arthritis. In Rheumatology, 4th Edition. Edited by Hochberg MC, Silman AJ, Smolen JS, et al.: Edinburgh: Mosby; In press.

  4. Gregersen PK, Silver J, Winchester R: The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987, 30:1205–1213.

    Article  PubMed  CAS  Google Scholar 

  5. Newton JL, Harney SMJ, Wordsworth BP, Brown MA: A review of the MHC genetics of rheumatoid arthritis. Genes Immun 2004, 5:151–157.

    Article  PubMed  CAS  Google Scholar 

  6. Deighton CM, Walker DJ, Griffiths ID, Roberts DF: The contribution of HLA to rheumatoid arthritis. Clin Genet 1989, 36:178–182.

    Article  PubMed  CAS  Google Scholar 

  7. Deighton CM: What is the future for the genetics of rheumatoid arthritis? Brit J Rheumatol 1993, 32:857–858.

    Article  CAS  Google Scholar 

  8. Schellekens GA, Visser H, de Jong BA, et al.: The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 2000, 45:155–163.

    Article  Google Scholar 

  9. van GaalenFA, Linn-Rasker SP, van VenrooijWJ, et al.: Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: a prospective cohort study. Arthritis Rheum 2004, 50:709–715.

    Article  PubMed  CAS  Google Scholar 

  10. Huizinga TW, Amos CI, van der Helm-van MilAH, et al.: Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum 2005, 52:3433–3438. A ground-breaking paper using association, linkage, an early RA cohort, and a large collection of affected sibling pairs to demonstrate significant genetic and phenotypic differences between anti-CCP positive and negative disease.

    Article  PubMed  CAS  Google Scholar 

  11. van der Helm-van MilAHM, Verpoort KN, Breedveld FC, et al.: The HLA-DRB1 shared epitope alleles are primarily a risk factor for anti-cyclic citrullinated peptide antibodies and are not an independent risk factor for development of rheumatoid arthritis. Arthritis Rheum 2006, 54:1117–1121. A useful paper in a large inception cohort that dissects out the interrelationships between anti-CCP, SE, and the progression of undifferentiated arthritis into RA.

    Article  PubMed  CAS  Google Scholar 

  12. Verpoort KN, van GaalenFA, van der Helm-van MilAHM, et al.: Associaition of HLA-DR3 with anti-cyclic citrullinated peptide antibody-negative rheumatoid arthritis. Arthritis Rheum 2005, 52:3058–3062.

    Article  PubMed  CAS  Google Scholar 

  13. Irigoyen P, Lee AT, Wener MH, et al.: Regulation of anticitrullinated peptide antibodies in rheumatoid arthritis: contrasting effects of HLA-DR3 and the shared epitope alleles. Arthritis Rheum 2005, 52:3813–3818.

    Article  PubMed  CAS  Google Scholar 

  14. van der Helm-van Mil AH, Huizinga TWJ, Schreuder GM, et al.: An independent role of protective HLA class II alleles in rheumatoid arthritis severity and susceptibility. Arthritis Rheum 2005, 2637–2644. A prospective study showing that DERAA sequences at the site of the shared epitope independently protect from RA, and render the disease less severe when present.

  15. Gorman JD: Smoking and rheumatoid arthritis: another reason to just say no [editorial]. Arthritis Rheum 2006, 54:10–13.

    Article  PubMed  CAS  Google Scholar 

  16. Klareskog L, Stolt P, Lundberg K, et al.: A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum 2006, 54:38–46. An important paper that demonstrates profound interactions between smoking, the SE, anti-CCP and the predisposition to RA. The paper also provides preliminary evidence for cigarette smoking leading to citrullination of alveolar proteins.

    Article  PubMed  CAS  Google Scholar 

  17. Padyukov L, Silva C, Stolt P, et al.: A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum 2004, 50:3085–3092.

    Article  PubMed  CAS  Google Scholar 

  18. Jawaheer D, Lum RF, Gregersen PK, Criswell LA: Influence of male sex on disease phenotype in familial rheumatoid arthritis. Arthritis Rheum 2006, In press.

  19. Irigoyen P, Lee H-S, Vlietinck R, et al.: Lack of association between smoking and anti-CCP antibodies in three large North American cohorts [abstract]. Arthritis Rheum 2006, Submitted. Submitted abstract describing an important study based on a large sample of North American RA patients that contradicts the Swedish data.

  20. Hill AJ, Southwood S, Sette A, et al.: Cutting edge: the conversion of citrulline to arginine allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol 2003, 171:538–541.

    PubMed  CAS  Google Scholar 

  21. Lundberg K, Nijenhuis S, Vossenaar E, et al.: Citrullinated proteins have increased immunogenicity and arthritogenicity and their presence in arthritic joints correlates with disease severity. Arthritis Res Ther 2005, 7:R458–467.

    Article  PubMed  CAS  Google Scholar 

  22. Hill J, Wehrli B, Jevnikar AM, et al.: Citrullinated.brinogen induces arthritis in HLA-DRB1*0401 transgenic mice [abstract]. Arthritis Rheum 2003, 48(Suppl 9):S348.

    Google Scholar 

  23. Masson-Bessiere C, Sebbag M, Girbal-Neuhauser E, et al.: The major synovial targets of the rheumatoid arthritisspeci fic antifilaggrin autoantibodies are deiminated forms of the alpha and beta-chains of fibrin. J Immunol 2001, 166:4177–4184.

    PubMed  CAS  Google Scholar 

  24. Vossenaar ER, Despres N, Lapointe E, et al.: Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin. Arthritis Res Ther 2004, 6:R142–150.

    Article  PubMed  CAS  Google Scholar 

  25. Auger I, Sebbag M, Vincent C, et al.: Influence of HLA-DR genes on the production of rheumatoid arthritis-specific autoantibodies to citrullinated fibrinogen. Arthritis Rheum 2005, 52:3424–3432. An important study showing an association between HLADRB1* 0404 and the production of autoantibodies to citrullinated.brinogen, and to a lesser extent for other SEs.

    Article  PubMed  CAS  Google Scholar 

  26. Jawaheer D, Li W, Graham RR, et al.: Dissecting the genetic complexity of the association between human leukocyte antigens and rhuematoid arthritis. Am J Hum Genet 2002, 71:585–594.

    Article  PubMed  CAS  Google Scholar 

  27. Newton J, Brown MA, Milicic A, et al.: The effect of HLADR on susceptibility to rheumatoid arthritis is influenced by the associated lymphotoxin alpha-tumor necrosis factor haplotype. Arthritis Rheum 2003, 48:90–96.

    Article  PubMed  CAS  Google Scholar 

  28. Kilding R, Iles MM, Timms JM, et al.: Additional genetic susceptibility for rheumatoid arthritis telomeric of the DRB1 locus. Arthritis Rheum 2004, 50:763–769.

    Article  PubMed  CAS  Google Scholar 

  29. Brintnell W, Eleftheria Z, Barton A, et al.: Evidence for a novel rheumatoid arthritis susceptibility locus on chromosome 6p. Arthritis Rheum 2004, 50:3823–3830.

    Article  PubMed  CAS  Google Scholar 

  30. Laivoranta-Nyman S, Mottonen T, Hermann R, et al.: HLADR-DQ haplotypes and genotypes in Finnish patients with rheumatoid arthritis. Ann Rheum Dis 2004, 63:1406–1412.

    Article  PubMed  CAS  Google Scholar 

  31. Khanna D, Wu H, Park G, et al.: Association of tumor necrosis factor alpha polymorphism, but not the shared epitope, with increased radiographic progression in a seropositive rheumatoid arthritis inception cohort. Arthritis Rheum 2006, 54:1105–1116.

    Article  PubMed  CAS  Google Scholar 

  32. Oliver JE, Worthington J, Silman AJ: Genetic epidemiology of rheumatoid arthritis. Curr Op Rheumatol 2006, 18:141–146. A useful update of non-MHC contributions to RA, influences on disease severity and treatment response. Covers areas that the current review could not due to space restrictions.

    Article  Google Scholar 

  33. Amos CI, Chen WV, Lee A, et al.: High-density SNP analysis of 642 Caucasian families with rheumatoid arthritis identifies two new linkage regions on 11p12 and 2q33. Genes Immun 2006, Epub ahead of print. The largest single linkage analysis performed to date, demonstrating linkage with new loci not previously described. Also demonstrating further genetic differences between anti-CCP positive and negative disease.

  34. Wordsworth P, Bell J: Polygenic susceptibility in rheumatoid arthritis. Ann Rheum Dis 1991, 50:343–346.

    Article  PubMed  CAS  Google Scholar 

  35. John S, Amos C, Shephard N, et al.: Linkage analysis of rheumatoid arthritis families in US and UK families reveals interactions between HLA-DRB1 and loci on chromosomes 6q and 16p. Arthritis Rheum 2006, 54:1482–1490. A collaboration between two U.S. studies and one U.K. family study using joint modeling with HLA and demonstrating significant linkage for susceptibility genes on 6q and 16p.

    Article  PubMed  CAS  Google Scholar 

  36. Fisher SA, Lanchbury JS, Lewis CM: Meta-analysis of four rheumatoid arthritis genome-wide linkage studies. Confirmation of a susceptibility locus on chromosome 16. Arthritis Rheum 2003, 48:1200–1206.

    Article  PubMed  CAS  Google Scholar 

  37. Gregersen PK, Batliwalla F: PTPN22 and rheumatoid arthritis: gratifying replication [editorial]. Arthritis Rheum 2005, 1952–1955. A useful overview of the latest research on PTPN22 and RA. A Canadian study providing the latest support for this locus influencing RA appears in the same journal.

  38. Hinks A, Worthington J, Thomson W: The association of PTPN22 with rheumatoid arthritis and juvenile idiopathic arthritis [editorial]. Rheumatology 2006, 45:365–368. A useful overview of the latest research on PTPN22 and RA.

    Article  PubMed  CAS  Google Scholar 

  39. Begovich AB, Carlton VE, Honigberg LA, et al.: A misssense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004, 75:330–337.

    Article  PubMed  CAS  Google Scholar 

  40. Burkhardt H, Hüffmeier U, Spiewald B, et al.: HLADRB1 shared epitope and humoral autoimmunity to an immunodominant epitope of cartilage-specific type II collagen in early rheumatoid arthritis. Arthritis Rheum 2006, 54:82–89. An interesting observation of anticartilage antibodies in a minority of early RA patients, but showing associations with the SE and PTNP22.

    Article  PubMed  CAS  Google Scholar 

  41. Plenge RM, Padyokov L, Remmers EF, et al.: Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: Association of susceptibility with PTPN22, CTLA4, and PAD14. Am J Hum Genet 2005, 77:1044 -1060. A population sufficiently powered to address non-HLA genes in RA and showing further differences in genetic associations with anti-CCP positive RA.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsey A. Criswell MD, MPH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deighton, C., Criswell, L.A. Recent advances in the genetics of rheumatoid arthritis. Curr Rheumatol Rep 8, 394–400 (2006). https://doi.org/10.1007/s11926-006-0071-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-006-0071-x

Keywords

Navigation