Skip to main content

Advertisement

Log in

The pathogenesis of fibrosis and renal disease in scleroderma: Recent insights from glomerulosclerosis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Acute and chronic renal diseases remain common complications of systemic sclerosis. Although treatment for acute scleroderma renal crisis may arrest the rapid progression of renal disease, many patients develop persistent renal dysfunction. Based on recent insights gained from progressive renal diseases of diverse etiologies, novel approaches to understanding the pathobiology of scleroderma renal disease may be applicable. Key factors involved in progression of renal disease include accumulation of extracellular matrix in the glomerular and tubulointerstitial compartments, epithelial to mesenchymal transformation, and vascular changes. The relevant factors mediating these events include the reninangiotensin system, the profibrotic growth factors, transforming growth factor-beta and connective tissue growth factor, and reactive oxygen species. Much of the molecular details of the role of these factors have been revealed and promise to alter the practice of therapy of progressive renal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Livi R, Teghini L, Pignone A, et al.: Renal functional reserve is impaired in patients with systemic sclerosis without clinical sings of kidney involvement. Ann Rheum Dis 2002, 61:682.

    Article  PubMed  CAS  Google Scholar 

  2. Cunard R, Kelly CJ: Immune-related renal disease. J Allergy Clin Immunol 2003, 111:S637.

    Article  PubMed  CAS  Google Scholar 

  3. Steen VD: Scleroderma renal crisis. Rheum Dis Clin North Am 2003, 29:315.

    Article  PubMed  Google Scholar 

  4. Helfrich DJ, Banner B, Steen VD: Normotensive renal failure in systemic sclerosis. Arthritis Rheum 1989, 32:1128.

    Article  PubMed  CAS  Google Scholar 

  5. Laszik Z, Silva FG: Hemolytic-uremic syndrome, thrombotic thrombocytopenic purpura, and systemic scleroiss. In Pathology of the Kidney, edn 5. Boston: Little, Brown, and Company Medical Division; 1998:1003–1057.

    Google Scholar 

  6. Kobayashi H, Nishimaki T, Kaise S: Immunohistochemical study of endothelin-1 and endothelin-A and B receptors in two patients with scleroderma renal crisis. Clin Rheumatol 1999, 18:425–427.

    Article  PubMed  CAS  Google Scholar 

  7. Maynard SE, Min JY, Merchan J, et al.: Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in pre-eclampsia. J Clin Invest 2003, 111:649–658. Groundbreaking study showing that increased production of soluble flt1 contributes to renal disease of pre-eclampsia in a mouse model, with documentation of increased levels in pateints with pre-eclampsia.

    Article  PubMed  CAS  Google Scholar 

  8. Lin CQ, Bissel MJ: Multi-faced regulation of cell differentiation by extracellular matrix. FASEB 1993, 7:737–743.

    CAS  Google Scholar 

  9. Black CM, Denton CP: Pathogenesis of scleroderma. Available at http://www.uptodate.com.

  10. Mezzano SA, Marta RO, Egido J: Angiotensin II and renal fibrosis. Hypertension 2001, 38:635–638.

    PubMed  CAS  Google Scholar 

  11. Fogo AB: Renal fibrosis and the renin-angiotensin system. Adv Nephrol 2001, 31:69–87.

    Article  CAS  Google Scholar 

  12. Matsubara H: Pathophysiological role of angiotensin type 2 receptor cellular immune responses through a calcineurindependent pathway. Circ Res 1998, 83:1182–1191.

    PubMed  CAS  Google Scholar 

  13. Ardaillou R: Ang II receptors. J Am Soc Nephrol 1999, 10:S30-S39.

    PubMed  CAS  Google Scholar 

  14. Nakamura S, Nakamura L, Ma L, et al.: Plasminogen activator inhibitor-I expression is regulated by the angiotensin type I receptor in vivo. Kidney Int 2000, 58:251–259.

    Article  PubMed  CAS  Google Scholar 

  15. Ruiz-Oretega M, Lorenzo O, Suzuki Y: Proinflammatory actions of Ang II. Curr Opin Nephrol Hypertens 2001, 10:321–329.

    Article  Google Scholar 

  16. Schriffin EL, Amiri F, Benkirane K: Peroxisome proliferatoractiviated receptors vascular and cardiac effects in hypertension. Hypertension 2003, 42:664–668.

    Article  CAS  Google Scholar 

  17. Diep QN, Amiri F: PPARa activiator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 2002, 40:866–871.

    Article  PubMed  CAS  Google Scholar 

  18. Guan Y, Breyer MD: Peroxisome proliferators-activated receptors (RRPARs): novel therapeutic targets in renal disease. Kidney Int 2001, 60:14–30.

    Article  PubMed  CAS  Google Scholar 

  19. Brown NJ, Vaughan DE, Fogo AB: The renin-angiotensinaldosterone system and fibrinolysis in progressive renal disease. Semin Nephrol 2002, 22:399–406. Authoritative review of the renin-angiotensin-aldosterone axis as well as PAI-1 in renal disease.

    Article  PubMed  CAS  Google Scholar 

  20. Davies M, Martin J, Thomas GJ: Proteinases and glomerular matrix turnover. Kidney Int 1992, 41:671–678.

    Article  PubMed  CAS  Google Scholar 

  21. Border WA, Noble NA: TGF-B in kidney fibrosis: a target for gene therapy. Kidney Int 1997, 51:1388–1396.

    Article  PubMed  CAS  Google Scholar 

  22. Ziyadeh F, Hoffman B, Han D, et al.: Long-term prevention of renal insufficiency excess matrix gene expression and glomerular mesangial matrix expansion by treatment with monoclonal anti-transforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A 2000, 97:8015–8020. First description of the use of an anti-TGF-β strategy in a model of spontaneous progressive kidney disease, with relevance to human disease.

    Article  PubMed  CAS  Google Scholar 

  23. Tsuchida KI, Zhu Y, Siva S, et al.: Role of Smad4 on TGF-betainduced extracellular matrix stimulation in mesangial cells. Kidney Int 2003, 63:2000–2009.

    Article  PubMed  CAS  Google Scholar 

  24. Sirard C, Kim S, Mirtsos C, et al.: Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor beta-related signaling. J Biol Chem 2000, 275:2063–2070.

    Article  PubMed  CAS  Google Scholar 

  25. Roberts AB, Piek E, Bottinger EP, et al.: Is Smad3 a major player in signal transduction pathways leading to fiborgenesis. Chest 2001, 120:43S-47S.

    Article  PubMed  CAS  Google Scholar 

  26. Sato M, Muragaki Y, Saika S, et al.: Targeted disruption of TGF-b1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003, 112:1486–1494. Excellent study showing the almost complete abrogation of tubulointerstitial fibrosis and epithelial-mesnechymal trasnformation in a well-accepted murine model of renal interstitial fibrosis.

    Article  PubMed  CAS  Google Scholar 

  27. Lan HY, Mu W, Tomita N, et al.: Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microobubble system in rat UUO model. J Am Soc Nephrol 2003, 14:1535–1548. Elegant study with a novel ultrasound technique showing increased Smad7 is an effective inhibitor of fibrosis in a rat model of renal fibrosis.

    Article  PubMed  CAS  Google Scholar 

  28. Mori Y, Chen YJ, Varga J: Expression and regulation of intracellular Smad signaling in scleroderma skin fibroblasts. Arthritis Rheum 2003, 48:1964–1978.

    Article  PubMed  CAS  Google Scholar 

  29. Dong C, Zhu S, Wang T, et al.: Deficient Smad7 expression: a putative molecular defect in scleroderma. PNAS 2002, 99:3908–3913.

    Article  PubMed  CAS  Google Scholar 

  30. Ledbetter S, Kurtzberg L, Doyle S, et al.: Renal fibrosis in mice treated with human recombinant transforming growth factor-B2. Kidney Int 2002, 58:2367–2376.

    Article  Google Scholar 

  31. Sharma K, Deelman L, Madesh M, et al.: Involvement of transforming growth factor-b in regulation of calcium transients in diabetic vascular smooth muscle cells. Am J Physiol Renal Physiol 2003, in press.

  32. Islam M, Burke J, McGowan T, et al.: Effect of anti-transforming growth factor-b antibodies in cylcosporine-induced renal dysfunction. Kidney Int 2000, 59:498–506.

    Article  Google Scholar 

  33. Riser BL, Denichilo M, Cortes P, et al.: Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol 2000, 11:25–38.

    Article  PubMed  CAS  Google Scholar 

  34. Gilbert RE, Akdeniz A, Weitz S, et al.: Urinary connective tissue growth factor excretion in patients with type 1 diabetes and nephropathy. Diabetes Care 2003, 26:2632–2636.

    Article  PubMed  CAS  Google Scholar 

  35. Gore-Hyer E, Shegogue D, Markiewicz M, et al.: TGF-B and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol Renal Physiol 2002, 283:F707-F716.

    PubMed  Google Scholar 

  36. Holmes A, Abraham DJ, Sa S, et al.: CTGF and Smads: maintenance of scleroderma phenotype is independent of Smad signaling. J Biol Chem 2000, 276:10594–10601.

    Article  Google Scholar 

  37. Fu M, Zhang J, Zhu X, et al.: Peroxisome proliferator-activated receptor-y inhibits transforming growth factor expression in human aortic smooth muscle cells by interfering with Smad3. J Biol Chem 2001, 276:45888–45894.

    Article  PubMed  CAS  Google Scholar 

  38. Sambo P, Baroni SS, Luchetti M, et al.: Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. [comment]. Arthritis Rheum 2001, 44:2653–2664.

    Article  PubMed  CAS  Google Scholar 

  39. Ruperez M, Lorenzo O, Blanco-Colio LM, et al.: Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation 2003, 108:1499–1505. An important study showing the link between Ang II and CTGF in vascular smooth muscle cells. This study may underlie some of the non-blood pressure, reno-protective effects of ACE inhibitors in renal and cardiovascular diseases.

    Article  PubMed  CAS  Google Scholar 

  40. Yang J, Dai C, Liu Y: Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am J Path 2003, 163:621–632.

    PubMed  CAS  Google Scholar 

  41. Li Y, Yang J, Dai C, et al.: Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrosis. J Clin Invest 2003, 112:503–516. Excellent study showing a critical role for TGF-β-induced ILK in several models of renal disease, including diabetes.

    Article  PubMed  CAS  Google Scholar 

  42. Caskey FJ, Thacker EJ, Johnston PA, et al.: Failure of losartan to control blood pressure in scleroderma renal crisis. Lancet 1997, 349:620.

    Article  PubMed  CAS  Google Scholar 

  43. Tsakiris D, Simpson HK, Jones EG, et al.: Rare diseases in renal replacement therapy in the ERA-EDTA Registry. Nephrol Dial Transplant 1996, 11:4.

    PubMed  Google Scholar 

  44. Bleyer AJ, Donaldson L, McIntosh M: Relationship between underlying renal disease and renal transplantation outcome. Am J Kidney Dis 2001, 37:1152–1157.

    Article  PubMed  CAS  Google Scholar 

  45. Chang YJ, Spiera H: Renal transplantation in scleroderma. Medicine 1999, 78:382.

    Article  PubMed  CAS  Google Scholar 

  46. Merino GE, Sutherland DE, Kjellstrand CM, et al.: Renal transplantation for progressive systemic sclerosis with renal failure: case report and review of previous experience. Am J Surg 1977, 133:745.

    Article  PubMed  CAS  Google Scholar 

  47. Williamson DJ, Wallman LL, Jones R, et al.: Hemodynamic effects of Bosentan, an endothelin receptor antagonist, in patients with pulmonary hypertension. Circulation 2000, 102:411–418.

    PubMed  CAS  Google Scholar 

  48. Channick RN, Simonneau G, Sitbon O, et al.: Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomized placebocontrolled study [comment]. Lancet 2001, 358:1119–1123.

    Article  PubMed  CAS  Google Scholar 

  49. Mizuno S, Matsumoto K, Nakamura T: Hepatocyte growth factor suppresses interstitial fibrosis in a mouse model of obstructive nephropathy. Kidney Int 2000, 59:1304–1314.

    Article  Google Scholar 

  50. Zeisberg M, Bottiglio C, Kumar N, et al.: Bone morphogenetic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J Physiol Renal Physiol 2003, 285:F1060-F1067.

    PubMed  CAS  Google Scholar 

  51. Stratton R, Shiwen X, Martini G, et al.: Iloprost suppresses connective tissue growth factor production in fibroblasts and in the skin of scleroderma patients. J Clin Invest 2001, 108:241–250.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Lee, S. & Sharma, K. The pathogenesis of fibrosis and renal disease in scleroderma: Recent insights from glomerulosclerosis. Curr Rheumatol Rep 6, 141–148 (2004). https://doi.org/10.1007/s11926-004-0059-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-004-0059-3

Keywords

Navigation