Skip to main content

Abstract

Although nephrotic syndrome (NS) is a common kidney disease, its pathogenesis remains unclear. It is classified into idiopathic and secondary, while congenital is a third category for children. The adjective “idiopathic” is used in medicine to describe a disease or condition that has no known cause. The pathogenesis of idiopathic nephrotic syndrome (INS) remains elusive. INS is grouped into the three histological variants: minimal change NS (MCNS), focal segmental glomerulosclerosis (FSGS), and membranous nephropathy (MN). MCNS, FSGS, and MN respectively account for approximately 75–80 %, 20 %, and <3 % of INS in children, whereas each accounts for one third of INS in adults. In the past decade, advances in molecular biology have both improved our understanding of the pathogenesis of INS and created confusion. The candidate active molecules in INS, other than cytokines, include: reactive oxygen species, nuclear factor-kappa B, hemopexin, CD80 (also known as B7.1), and angiopoietin-like 4; mammalian target of rapamycin complex 1 in MCNS; cardiotrophin-like cytokine-1 and soluble urokinase-type plasminogen activator receptor in FSGS; and M-type phospholipase A2 receptor and cationic bovine serum albumin in IMN. In this review, we briefly discuss the historical background of the research on pathogenesis of INS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kodner C. Nephrotic syndrome in adults: diagnosis and management. Am Fam Physician. 2009;80:1129–34.

    PubMed  Google Scholar 

  2. KDIGO Clinical Practice Guideline for Glomerulonephritis. Chapter 3: Steroid-sensitive nephrotic syndrome in children. Kidney Int Suppl. 2012;2:163–71. doi:10.1038/kisup.2012.16.

  3. Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet. 2003;362:629–39. doi:10.1016/s0140-6736(03)14184-0.

    Article  PubMed  Google Scholar 

  4. Zhang S, Audard V, Fan Q, Pawlak A, Lang P, Sahali D. Immunopathogenesis of idiopathic nephrotic syndrome. Contrib Nephrol. 2011;169:94–106. doi:10.1159/000313947.

    Article  CAS  PubMed  Google Scholar 

  5. KDIGO Clinical Practice Guideline for Glomerulonephritis. Chapter 7: Idiopathic membranous nephropathy. Kidney Int Suppl. 2012;2:186–97. doi:10.1038/kisup.2012.20.

  6. Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet. 1974;2:556–60.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmad H, Tejani A. Predictive value of repeat renal biopsies in children with nephrotic syndrome. Nephron. 2000;84:342–6. doi:10.1159/000045609.

    Article  CAS  PubMed  Google Scholar 

  8. Neuhaus TJ, Fay J, Dillon MJ, Trompeter RS, Barratt TM. Alternative treatment to corticosteroids in steroid sensitive idiopathic nephrotic syndrome. Arch Dis Child. 1994;71:522–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ali AA, Wilson E, Moorhead JF, Amlot P, Abdulla A, Fernando ON, et al. Minimal-change glomerular nephritis. Normal kidneys in an abnormal environment? Transplantation. 1994;58:849–52.

    Article  CAS  PubMed  Google Scholar 

  10. Mauer SM, Hellerstein S, Cohn RA, Sibley RK, Vernier RL. Recurrence of steroid-responsive nephrotic syndrome after renal transplantation. J Pediatr. 1979;95:261–4.

    Article  CAS  PubMed  Google Scholar 

  11. Assadi F. Neonatal nephrotic syndrome associated with placental transmission of proinflammatory cytokines. Pediatr Nephrol. 2011;26:469–71. doi:10.1007/s00467-010-1700-1.

    Article  PubMed  Google Scholar 

  12. Kobayashi T, Ando Y, Umino T, Miyata Y, Muto S, Hironaka M, et al. Complete remission of minimal-change nephrotic syndrome induced by apheresis monotherapy. Clin Nephrol. 2006;65:423–6.

    Article  CAS  PubMed  Google Scholar 

  13. Koyama A, Fujisaki M, Kobayashi M, Igarashi M, Narita M. A glomerular permeability factor produced by human T cell hybridomas. Kidney Int. 1991;40:453–60.

    Article  CAS  PubMed  Google Scholar 

  14. Savin VJ, Sharma R, Sharma M, McCarthy ET, Swan SK, Ellis E, et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med. 1996;334:878–83. doi:10.1056/nejm199604043341402.

    Article  CAS  PubMed  Google Scholar 

  15. Araya CE, Wasserfall CH, Brusko TM, Mu W, Segal MS, Johnson RJ, et al. A case of unfulfilled expectations. Cytokines in idiopathic minimal lesion nephrotic syndrome. Pediatr Nephrol. 2006;21:603–10. doi:10.1007/s00467-006-0026-5.

    Article  PubMed  Google Scholar 

  16. Daniel V, Trautmann Y, Konrad M, Nayir A, Scharer K. T-lymphocyte populations, cytokines and other growth factors in serum and urine of children with idiopathic nephrotic syndrome. Clin Nephrol. 1997;47:289–97.

    CAS  PubMed  Google Scholar 

  17. Hulton SA, Shah V, Byrne MR, Morgan G, Barratt TM, Dillon MJ. Lymphocyte subpopulations, interleukin-2 and interleukin-2 receptor expression in childhood nephrotic syndrome. Pediatr Nephrol. 1994;8:135–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kemper MJ, Meyer-Jark T, Lilova M, Muller-Wiefel DE. Combined T- and B-cell activation in childhood steroid-sensitive nephrotic syndrome. Clin Nephrol. 2003;60:242–7.

    Article  CAS  PubMed  Google Scholar 

  19. Mandreoli M, Beltrandi E, Casadei-Maldini M, Mancini R, Zucchelli A, Zucchelli P. Lymphocyte release of soluble IL-2 receptors in patients with minimal change nephropathy. Clin Nephrol. 1992;37:177–82.

    CAS  PubMed  Google Scholar 

  20. Neuhaus TJ, Wadhwa M, Callard R, Barratt TM. Increased IL-2, IL-4 and interferon-gamma (IFN-gamma) in steroid-sensitive nephrotic syndrome. Clin Exp Immunol. 1995;100:475–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cho BS, Yoon SR, Jang JY, Pyun KH, Lee CE. Up-regulation of interleukin-4 and CD23/FcepsilonRII in minimal change nephrotic syndrome. Pediatr Nephrol. 1999;13:199–204.

    Article  CAS  PubMed  Google Scholar 

  22. Lin CY, Chien JW. Increased interleukin-12 release from peripheral blood mononuclear cells in nephrotic phase of minimal change nephrotic syndrome. Acta Paediatr Taiwan. 2004;45:77–80.

    PubMed  Google Scholar 

  23. Matsumoto K, Kanmatsuse K. Elevated interleukin-18 levels in the urine of nephrotic patients. Nephron. 2001;88:334–9. doi:10.1159/000046017.

    Article  CAS  PubMed  Google Scholar 

  24. Suranyi MG, Guasch A, Hall BM, Myers BD. Elevated levels of tumor necrosis factor-alpha in the nephrotic syndrome in humans. Am J Kidney Dis. 1993;21:251–9.

    Article  CAS  PubMed  Google Scholar 

  25. Matsumoto K, Kanmatsuse K. Elevated vascular endothelial growth factor levels in the urine of patients with minimal-change nephrotic syndrome. Clin Nephrol. 2001;55:269–74.

    CAS  PubMed  Google Scholar 

  26. Saxena S, Mittal A, Andal A. Pattern of interleukins in minimal-change nephrotic syndrome of childhood. Nephron. 1993;65:56–61.

    Article  CAS  PubMed  Google Scholar 

  27. Stachowski J, Barth C, Michalkiewicz J, Krynicki T, Jarmolinski T, Runowski D, et al. Th1/Th2 balance and CD45-positive T cell subsets in primary nephrotic syndrome. Pediatr Nephrol. 2000;14:779–85.

    Article  CAS  PubMed  Google Scholar 

  28. Matsumoto K, Kanmatsuse K. Increased IL-12 release by monocytes in nephrotic patients. Clin Exp Immunol. 1999;117:361–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bustos C, Gonzalez E, Muley R, Alonso JL, Egido J. Increase of tumour necrosis factor alpha synthesis and gene expression in peripheral blood mononuclear cells of children with idiopathic nephrotic syndrome. Eur J Clin Invest. 1994;24:799–805.

    Article  CAS  PubMed  Google Scholar 

  30. Yap HK, Cheung W, Murugasu B, Sim SK, Seah CC, Jordan SC. Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. J Am Soc Nephrol. 1999;10:529–37.

    CAS  PubMed  Google Scholar 

  31. Kanai T, Shiraishi H, Yamagata T, Ito T, Odaka J, Saito T, et al. Th2 cells predominate in idiopathic steroid-sensitive nephrotic syndrome. Clin Exp Nephrol. 2010;14:578–83. doi:10.1007/s10157-010-0330-z.

    Article  CAS  PubMed  Google Scholar 

  32. van den Berg JG, Weening JJ. Role of the immune system in the pathogenesis of idiopathic nephrotic syndrome. Clin Sci (Lond). 2004;107:125–36. doi:10.1042/cs20040095.

    Article  Google Scholar 

  33. Wittig HJ, Goldman AS. Nephrotic syndrome associated with inhaled allergens. Lancet. 1970;1:542–3.

    Article  CAS  PubMed  Google Scholar 

  34. Meadow SR, Sarsfield JK, Scott DG, Rajah SM. Steroid-responsive nephrotic syndrome and allergy: immunological studies. Arch Dis Child. 1981;56:517–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kaneko K, Tuchiya K, Fujinaga S, Kawamura R, Ohtomo Y, Shimizu T, et al. Th1/Th2 balance in childhood idiopathic nephrotic syndrome. Clin Nephrol. 2002;58:393–7.

    Article  CAS  PubMed  Google Scholar 

  36. Bagga A, Sinha A, Moudgil A. Rituximab in patients with the steroid-resistant nephrotic syndrome. N Engl J Med. 2007;356:2751–2. doi:10.1056/NEJMc063706.

    Article  CAS  PubMed  Google Scholar 

  37. Kimata T, Hasui M, Kino J, Kitao T, Yamanouchi S, Tsuji S, et al. Novel use of rituximab for steroid-dependent nephrotic syndrome in children. Am J Nephrol. 2013;38:483–8. doi:10.1159/000356439.

    Article  CAS  PubMed  Google Scholar 

  38. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:575–82.

    Article  CAS  PubMed  Google Scholar 

  39. Chugh SS, Clement LC, Mace C. New insights into human minimal change disease: lessons from animal models. Am J Kidney Dis. 2012;59:284–92. doi:10.1053/j.ajkd.2011.07.024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Shimada M, Araya C, Rivard C, Ishimoto T, Johnson RJ, Garin EH. Minimal change disease: a “two-hit” podocyte immune disorder? Pediatr Nephrol. 2011;26:645–9. doi:10.1007/s00467-010-1676-x.

    Article  PubMed  Google Scholar 

  41. Simic I, Tabatabaeifar M, Schaefer F. Animal models of nephrotic syndrome. Pediatr Nephrol. 2013;28:2079–88. doi:10.1007/s00467-012-2376-5.

    Article  PubMed  Google Scholar 

  42. Tryggvason K, Wartiovaara J. Molecular basis of glomerular permselectivity. Curr Opin Nephrol Hypertens. 2001;10:543–9.

    Article  CAS  PubMed  Google Scholar 

  43. Drenckhahn D, Franke RP. Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Lab Invest. 1988;59:673–82.

    CAS  PubMed  Google Scholar 

  44. Mundel P, Gilbert P, Kriz W. Podocytes in glomerulus of rat kidney express a characteristic 44 KD protein. J Histochem Cytochem. 1991;39:1047–56.

    Article  CAS  PubMed  Google Scholar 

  45. Adler S. Characterization of glomerular epithelial cell matrix receptors. Am J Pathol. 1992;141:571–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Regele HM, Fillipovic E, Langer B, Poczewki H, Kraxberger I, Bittner RE, et al. Glomerular expression of dystroglycans is reduced in minimal change nephrosis but not in focal segmental glomerulosclerosis. J Am Soc Nephrol. 2000;11:403–12.

    CAS  PubMed  Google Scholar 

  47. Jalanko H. Congenital nephrotic syndrome. Pediatr Nephrol. 2009;24:2121–8. doi:10.1007/s00467-007-0633-9.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Bertelli R, Trivelli A, Magnasco A, Cioni M, Bodria M, Carrea A, et al. Failure of regulation results in an amplified oxidation burst by neutrophils in children with primary nephrotic syndrome. Clin Exp Immunol. 2010;161:151–8. doi:10.1111/j.1365-2249.2010.04160.x.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Ory V, Fan Q, Hamdaoui N, Zhang SY, Desvaux D, Audard V, et al. c-mip down-regulates NF-kappaB activity and promotes apoptosis in podocytes. Am J Pathol. 2012;180:2284–92. doi:10.1016/j.ajpath.2012.02.008.

    Article  CAS  PubMed  Google Scholar 

  50. Lennon R, Singh A, Welsh GI, Coward RJ, Satchell S, Ni L, et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol. 2008;19:2140–9. doi:10.1681/asn.2007080940.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Cara-Fuentes G, Wasserfall CH, Wang H, Johnson RJ, Garin EH. Minimal change disease: a dysregulation of the podocyte CD80-CTLA-4 axis? Pediatr Nephrol. 2014;29:2333–40. doi:10.1007/s00467-014-2874-8.

    Article  PubMed  Google Scholar 

  52. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, et al. Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol. 2009;20:260–6. doi:10.1681/asn.2007080836.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med. 2011;17:117–22. doi:10.1038/nm.2261.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Clement LC, Mace C, Avila-Casado C, Joles JA, Kersten S, Chugh SS. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med. 2014;20:37–46. doi:10.1038/nm.3396.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ito N, Nishibori Y, Ito Y, Takagi H, Akimoto Y, Kudo A, et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab Invest. 2011;91:1584–95. doi:10.1038/labinvest.2011.135.

    Article  CAS  PubMed  Google Scholar 

  56. McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2010;5:2115–21. doi:10.2215/cjn.03800609.

    Article  PubMed  Google Scholar 

  57. Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med. 2011;17:952–60. doi:10.1038/nm.2411.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Wei C, Trachtman H, Li J, Dong C, Friedman AL, Gassman JJ, et al. Circulating suPAR in two cohorts of primary FSGS. J Am Soc Nephrol. 2012;23:2051–9. doi:10.1681/asn.2012030302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Beck Jr LH, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med. 2009;361:11–21. doi:10.1056/NEJMoa0810457.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Debiec H, Lefeu F, Kemper MJ, Niaudet P, Deschenes G, Remuzzi G, et al. Early-childhood membranous nephropathy due to cationic bovine serum albumin. N Engl J Med. 2011;364:2101–10. doi:10.1056/NEJMoa1013792.

    Article  CAS  PubMed  Google Scholar 

  61. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med. 2008;14:931–8. doi:10.1038/nm.1857.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med. 2011;3:85ra46. doi:10.1126/scitranslmed.3002231.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Mathieson PW. The podocyte as a target for therapies--new and old. Nat Rev Nephrol. 2012;8:52–6. doi:10.1038/nrneph.2011.171.

    Article  CAS  Google Scholar 

  64. Schonenberger E, Ehrich JH, Haller H, Schiffer M. The podocyte as a direct target of immunosuppressive agents. Nephrol Dial Transplant. 2011;26:18–24. doi:10.1093/ndt/gfq617.

    Article  PubMed  Google Scholar 

Download references

Declaration of Competing Interests

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Kaneko M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kaneko, K. (2016). History of Research on Pathogenesis of Idiopathic Nephrotic Syndrome. In: Kaneko, K. (eds) Molecular Mechanisms in the Pathogenesis of Idiopathic Nephrotic Syndrome. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55270-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55270-3_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55269-7

  • Online ISBN: 978-4-431-55270-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics