Skip to main content

Advertisement

Log in

Heat shock proteins in juvenile idiopathic arthritis: Keys for understanding remitting arthritis and candidate antigens for immune therapy

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Juvenile idiopathic arthritis (JIA) is in a majority of the cases of self-limiting, and sometimes even a self-remitting, disease. A growing amount of data suggests that active T cell regulation determines, at least partly, the clinical outcome of JIA. In experimental models of arthritis, a group of highly conserved microbial proteins, heat shock proteins (hsps), can be used to effectively prevent and treat arthritis. This protection is mediated through the induction of cross-reactive T cell responses to self-hsps. In JIA, naturally occurring T cell immune responses to hsps are associated with disease remission in restricted oligoarticular JIA. Moreover, those responses are associated with the induction of T cells with a regulatory phenotype. Taken together, these data imply that immune modulation with hsps can be an effective way to restore natural occurring T cell responses, and, thus, treat JIA and rheumatoid arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Woo P, Wedderburn LR: Juvenile chronic arthritis. Lancet 1998, 351:969–973.

    PubMed  CAS  Google Scholar 

  2. Kulas DT, Schanberg L:Juvenile idiopathic arthritis. Curr Opin Rheumatol 2001, 13:392–398.

    Article  PubMed  CAS  Google Scholar 

  3. Petty RE: Classification of childhood arthritis: a work in progress. Baillieres Clin Rheumatol 1998, 12:181–190.

    Article  PubMed  CAS  Google Scholar 

  4. Glass DN, Giannini EH:Juvenile rheumatoid arthritis as a complex genetic trait. Arthritis Rheum 1999, 42:2261–2268. s is an excellent review describing the interaction between several immunogenetic factors, including major histocompatibility complex polymorphisms, that may lead to clinical susceptibility of disease

    Article  PubMed  CAS  Google Scholar 

  5. Grom AA, Hirsch R:T-cell and T-cell receptor abnormalities in the immunopathogenesis of juvenile rheumatoid arthritis. Curr Opin Rheumatol 2000, 12:420–424.

    Article  PubMed  CAS  Google Scholar 

  6. Wedderburn LR, Robinson N, Patel A, et al.: Selective recruitment of polarized T cells expressing CCR5 and CXCR3 to the inflamed joints of children with juvenile idiopathic arthritis. Arthritis Rheum 2000, 43:765–774. This study shows that synovial T cells from patients with JIA express high levels of chemokine receptors CCR5 and CXCR3 and have a bias towards a Th1 cytokine profile. The authors show that this is because of a specific recruitment of those cells towards the inflamed synovium.

    Article  PubMed  CAS  Google Scholar 

  7. Shevach EM:Regulatory T cells in autoimmunity. Ann Rev Immunol 2001, 18:423–449.

    Article  Google Scholar 

  8. Prakken ABJ, van Hoeij MJ, Kuis W, et al.: T-cell reactivity to human hsp60 in oligoarticular juvenile chronic arthritis is associated with a favorable prognosis and the generation of regulatory cytokines in the inflamed joint. Immunol Lett 1997, 57:139–142.

    Article  PubMed  CAS  Google Scholar 

  9. Murray KJ, Grom AA, Thompson SD, et al.:Contrasting cytokine profiles in the synovium of different forms of juvenile rheumatoid arthritis and juvenile spondyloarthropathy: prominence of interleukin 4 in restricted disease. J Rheumatol 1998, 25:1388–1398.

    PubMed  CAS  Google Scholar 

  10. Thompson SD, Luyrink LK, Graham TB, et al.: Chemokine receptor CCR4 on CD4+ T cells in juvenile rheumatoid arthritis synovial fluid defines a subset of cells with increased IL-4:IFN-gamma mRNA ratios. J Immunol 2001, 166:6899–6906. This elegant study shows an accumulation of CCR4-positive CD4- positive T cells in the inflamed joint of patients with JIA. The authors show that these cells have anti-inflammatory capacities, and suggest that they play a role in controlling inflammation during the early years of disease.

    PubMed  CAS  Google Scholar 

  11. Taams LS, Smith J, Rustin MH, et al.: Human anergic/ suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol 2001, 31:1122–1131. Important study, being the first proof of the presence of suppressive CD4/CD25 double positive cells in humans

    Article  PubMed  CAS  Google Scholar 

  12. Pugh MT, Southwood T, Hill Gaston JS: The role of infection in juvenile chronic arthritis. Br J Rheumatol 1993, 32:838–844.

    Article  PubMed  CAS  Google Scholar 

  13. Chen J, Field JA, Glickstein L, et al.: Association of antibiotic treatment-resistant Lyme arthritis with T cell responses to dominant epitopes of outer surface protein A of Borrelia burgdorferi. Arthritis Rheum 1999, 42:1813–1822.

    Article  PubMed  CAS  Google Scholar 

  14. Albani S, Carson DA: A multistep molecular mimicry hypothesis for the pathogenesis of rheumatoid arthritis. Immunol Today 1996, 17:466–470.

    Article  PubMed  CAS  Google Scholar 

  15. Benoist C, Mathis D: Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol 2001, 2:797–801. This excellent review discusses the concept and molecular mechanisms (in experimental models) of antigenic mimicry at the T cell level leading to autoimmunity. The authors conclude that evidence that this type of antigenic mimicry actually leads to autoimmunity is not convincing at all.

    Article  PubMed  CAS  Google Scholar 

  16. Gaston JSH: Heat shock proteins and arthritis: new readers start here. Autoimmunity 1997, 26:33–42.

    Article  PubMed  CAS  Google Scholar 

  17. Van Eden W, van der Zee R, Paul AGA, et al.:Do heat shock proteins control the balance of T-cell regulation in inflammatory diseases? Immunol Today 1998, 19:303–307.

    Article  PubMed  Google Scholar 

  18. Van Eden W, Thole JER, van der Zee R, et al.:Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 1988, 331:171–173.

    Article  PubMed  Google Scholar 

  19. Ragno S, Winrow VR, Mascagni P, et al.:A synthetic 10-kD heatshock protein (hsp10) from Mycobacterium tuberculosis modulates adjuvant arthritis. Clin Exp Immunol 1996, 103:384–390.

    Article  PubMed  CAS  Google Scholar 

  20. Kingston AE, Hicks CA, Colston MJ, Billingham MEJ: A 71-kD heat shock protein (hsp) from Mycobacterium tuberculosis has modulatory effects on experimental rat arthritis. Clin Exp Immunol 1996, 103:77–82.

    Article  PubMed  CAS  Google Scholar 

  21. Wendling U, Paul L, van der Zee R, et al.: A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10- producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol 2000, 164:2711–2717.

    PubMed  CAS  Google Scholar 

  22. Anderton SM, van der Zee R, Noordzij A, Van Eden W: Differential mycobacterial 65-kDa heat shock protein T cell epitope recognition after Adjuvant Arthritis-inducing or protective immunization protocols. J Immunol 1994, 152:3656–3664.

    PubMed  CAS  Google Scholar 

  23. Anderton SM, van der Zee R, Prakken ABJ, et al.:Activation of T-cells recognizing self 60 kDa heat shock protein can protect against experimental arthritis. J Exp Med 1995, 181:943–952.

    Article  PubMed  CAS  Google Scholar 

  24. Cohen IR, Young DB:Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today 1991, 12:105–110.

    Article  PubMed  CAS  Google Scholar 

  25. Prakken BJ, Wendling U, van der Zee R, et al.:Induction of IL-10 and inhibition of experimental arthritis are specific features of microbial heat shock proteins that are absent for other evolutionarily conserved immunodominant proteins. J Immunol 2001, 167:4147–4153. Study showing the unique capacity of hsps to protect in arthritis and their capacity to induce IL-10 production.

    PubMed  CAS  Google Scholar 

  26. Van Eden W, Wendling U, Paul AG, et al.:Arthritis protective regulatory potential of self-hsp cross-reactive T cells. Cell Stress Chaperones 2000, 5:452–457.

    Article  PubMed  Google Scholar 

  27. Abulafia-Lapid R, Elias D, Raz I, et al.:T cell proliferative responses of type 1 Diabetes patients and healthy individuals to human hsp60 and its peptides. J Autoimmunity 1999, 12:121–129.

    Article  CAS  Google Scholar 

  28. Boog CJP, de Graeff-Meeder ER, Lucassen MA, et al.: Two monoclonal antibodies generated against human hsp60 show reactivity with synovial membranes of patients with juvenile chronic arthritis. J Exp Med 1992, 175:1805–1810.

    Article  PubMed  CAS  Google Scholar 

  29. de Graeff-Meeder ER, Rijkers GT, Voorhorst-Ogink MM, et al.: Antibodies to human hsp60 in patients with juvenile chronic arthritis, diabetes mellitus and cystic fibrosis. Pediatr Res 1993, 34:424–428.

    Article  PubMed  Google Scholar 

  30. de Graeff-Meeder ER, Voorhorst M, Van Eden W, et al.: Antibodies to the mycobacterial 65-kD heat shock protein are reactive with synovial tissue of adjuvant arthritic rats and patients with rheumatoid arthritis and osteoarthritis. Am J Path 1990, 137:1013–1017.

    PubMed  Google Scholar 

  31. Life P, Hassel A, Williams K, et al.:Responses to gram negative enteric bacterial antigens by synovial T cells from patients with juvenile chronic arthritis: recognition of heat shock protein hsp60. J Rheumatol 1993, 20:1388–1396.

    PubMed  CAS  Google Scholar 

  32. Prakken ABJ, Van Eden W, Rijkers GT, et al.:Autoreactivity to human heat-shock protein 60 predicts disease remission in oligoarticular juvenile rheumatoid arthritis. Arthritis Rheum 1996, 39:1826–1832.

    Article  PubMed  CAS  Google Scholar 

  33. Albani S, Ravelli A, Massa M, et al.:Immune responses to the Escherichia coli dnaJ heat shock protein in juvenile rheumatoid arthritis and their correlation with disease activity. J Pediatr 1994, 124:561–565.

    Article  PubMed  CAS  Google Scholar 

  34. Prakken BJ, Carson DA, Albani S:T cell repertoire formation and molecular mimicry in rheumatoid arthritis. Curr Dir Autoimmun 2001, 3:51–63. Review describing the formation of the T cell repertoire in relationship to the concept of molecular mimicry in RA.

    Article  PubMed  CAS  Google Scholar 

  35. de Graeff-Meeder ER, Van Eden W, Rijkers GT, et al.: Juvenile chronic arthritis: T cell reactivity to human HSP60 in patients with a favorable course of arthritis. J Clin Invest 1995, 95:934–940.

    PubMed  Google Scholar 

  36. Prakken ABJ, Van Eden W, Rijkers GT, et al.:Autoreactivity to human heat-shock protein 60 predicts disease remission in oligoarticular juvenile rheumatoid arthritis. Arthritis Rheum 1996, 39:1826–1832.

    Article  PubMed  CAS  Google Scholar 

  37. Del Prete G, De Carli M, D’Elios MM, et al.: CD30-mediated signaling promotes the development of human T helper type2-like T cells. J Exp Med 1995, 182:1655–1661.

    Article  PubMed  Google Scholar 

  38. van Roon JAG, Van Eden W, van Roy JLAM, et al.: Stimulation of suppressive T cell responses by human but not bacterial 60-kD heat-shock protein in synovial fluid of patients with rheumatoid arthritis. J Clin Invest 1997, 100:459–463.

    PubMed  Google Scholar 

  39. Ronaghy A, Prakken BJ, Takabayashi K, et al.: Immunostimulatory DNA sequences influence the course of adjuvant arthritis. J Immunol 2002, 168:51–56.

    PubMed  CAS  Google Scholar 

  40. Taggart DP, Bakkenist CJ, Biddolph SC, et al.: Induction of myocardial heat shock protein 70 during cardiac surgery. J Pathol 1997, 182:362–366.

    Article  PubMed  CAS  Google Scholar 

  41. Trost SU, Omens JH, Karlon WJ, et al.: Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J Clin Invest 1998, 101:855–862.

    PubMed  CAS  Google Scholar 

  42. Hohlfeld R, Engel AG: Expression of 65-kd heat shock proteins in the inflammatory myopathies. Ann Neurol 1992, 32:821–823.

    Article  PubMed  CAS  Google Scholar 

  43. Khoury SJ, Hancock WW, Weiner HL:Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor b, interleukin 4 and prostaglandin E expression in the brain. J Exp Med 1992, 176:1355–1364.

    Article  PubMed  CAS  Google Scholar 

  44. Weiner HL, Friedman A, Miller A, et al.:Oral tolerance: Immunologic mechanisms and treatment of animal and human organ specific autoimmune diseases by oral administration of autoantigens. Ann Rev Immunol 1994, 12:809–837.

    Article  CAS  Google Scholar 

  45. Metzler B, Wraith DC:Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int Immunol 1993, 5:1159–1165.

    Article  PubMed  CAS  Google Scholar 

  46. Prakken BJ, van der Zee R, Anderton SM, et al.:Peptide induced nasal tolerance for a mycobacterial hsp60 T cell epitope in rats suppresses both adjuvant arthritis and non-microbially induced experimental arthritis. Proc Natl Acad Sci U S A 1997, 94:3284–3289.

    Article  PubMed  CAS  Google Scholar 

  47. Prakken B, Wauben M, van Kooten P, et al.: Nasal administration of arthritis-related T cell epitopes of heat shock protein 60 as a promising way for immunotherapy in chronic arthritis. Biotherapy 1998, 10:205–211.

    PubMed  CAS  Google Scholar 

  48. Prakken BJ, Roord STA, van Kooten PJS, et al.: Inhibition of adjuvant arthritis by IL-10 driven regulatory cells induced via nasal administration of a peptide analogue of an arthritis related hsp60 T cell epitope. Arthritis Rheum 2002, 46:1937–1946.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakken, B., Kuis, W., Eden, W.v. et al. Heat shock proteins in juvenile idiopathic arthritis: Keys for understanding remitting arthritis and candidate antigens for immune therapy. Curr Rheumatol Rep 4, 466–473 (2002). https://doi.org/10.1007/s11926-002-0052-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-002-0052-7

Keywords

Navigation