Skip to main content
Log in

Cell biology of osteoarthritis: The chondrocyte’s response to injury

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Cartilage is comprised of a large amount of functional extracellular matrix that is made and maintained by a small number of chondrocytes, the sole resident cell type. Normal cartilage exists in a relatively steady state: that is, the anabolic processes (those that result in the synthesis of cartilage matrix components) are in equilibrium with the catabolic processes (those that result in the normal turnover of matrix molecules). If the functional extracellular matrix is disturbed by physical or molecular means, the cells respond in an attempt to repair the matrix. This stimulated activity does not result in repair due to the extent and complexity of the extracellular matrix. Eventually, the newly synthesized and activated catabolic enzymes degrade the matrix components. This review presents the cellular and molecular mechanisms that account for this activity and provides some possible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Sandell LJ, Aigner T: Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 2001, 3:107–113. This article reviews the concepts in the cell biology of osteoarthritis focusing on changes in the chondrocyte phenotype.

    Article  PubMed  CAS  Google Scholar 

  2. Aigner T, Zhu Y, Chansky HH, et al.: Reexpression of type IIA procollagen by adult articular chondrocytes in osteoarthritic cartilage. Arthritis Rheum 1999, 42:1443–1450.

    Article  PubMed  CAS  Google Scholar 

  3. Salminen H, Vuorio E, Saamanen AM: Expression of Sox9 and type IIA procollagen during attempted repair of articular cartilage damage in a transgenic mouse model of osteoarthritis. Arthritis Rheum 2001, 44:947–955. To study the pathogenesis of osteoarthritis, it is important to be able to determine events that are initiated early in the disease process. This paper examines early molecular events in a mouse model of osteoarthritis.

    Article  PubMed  CAS  Google Scholar 

  4. Boos N, Nerlich AG, Wiest I, et al.: Immunohistochemical analysis of type-X-collagen expression in osteoarthritis of the hip joint. J Orthop Res 1999, 17:495–502.

    Article  PubMed  CAS  Google Scholar 

  5. van Meurs JB, van Lent PL, Holthuysen AE, et al.: Kinetics of aggrecanase-and metalloproteinase-induced neoepitopes in various stages of cartilage destruction in murine arthritis. Arthritis Rheum 1999, 42:1128–1139.

    Article  PubMed  Google Scholar 

  6. Tortorella MD, Burn TC, Pratta MA, et al.: Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 1999, 284:1664–1666. The first publication of a new class of enzymes, ADAMTS, able to cleave aggrecan to generate fragments that are present in osteoarthritis tissue.

    Article  PubMed  CAS  Google Scholar 

  7. Abbaszade I, Liu RQ, Yang F, et al.: Cloning and characterization of ADAMTS11, and aggrecanase from the ADAMTS family. J Biol Chem 1999, 274:318–322.

    Article  Google Scholar 

  8. Flannery CR, Little CB, Hughes CE, Caterson B: Expression of ADAMTS homologues in articular cartilage. Biochem Biophys Res Commun 1999, 260:318–322.

    Article  PubMed  CAS  Google Scholar 

  9. Sandy JD, Verscharen C: Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem J 2001, 358:615–626.

    Article  PubMed  CAS  Google Scholar 

  10. Moos V, Fickert S, Muller B, Weber U, Sieper J: Immunohistological analysis of cytokine expression in human osteoarthritic and healthy cartilage. J Rheumatol 1999, 26:870–879.

    PubMed  CAS  Google Scholar 

  11. Chubinskaya S, Merrihew C, Cs-Szabo G, et al.: Human articular chondrocytes express osteogenic protein-1. J Histochem Cytochem 2000, 48:239–250.

    PubMed  CAS  Google Scholar 

  12. Shuler FD, Georgescu HI, Niyibizi C, et al.: Increased matrix synthesis following adenoviral transfer of a transforming growth factor beta 1 gene into articular chondrocytes. J Orthop Res 2000, 18:585–592.

    Article  PubMed  CAS  Google Scholar 

  13. Bakker AC, van de Loo FA, van Beuningen HM, et al.: Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthritis Cartilage 2001, 9:128–136.

    Article  PubMed  CAS  Google Scholar 

  14. van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB: Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthritis Cartilage 2000, 8:25–33.

    Article  PubMed  Google Scholar 

  15. Uchino M, Izumi T, Tominaga T, et al.: Growth factor expression in the osteophytes of the human femoral head in osteoarthritis. Clin Orthop 2000, 377:119–125.

    Article  PubMed  Google Scholar 

  16. Valcourt U, Ronziere MC, Winkler P, et al.: Different effects of bone morphogenetic proteins 2, 4, 12, and 13 on the expression of cartilage and bone markers in the MC615 chondrocyte cell line. Exp Cell Res 1999, 251:264–274.

    Article  PubMed  CAS  Google Scholar 

  17. Mi Z, Ghivizzani SC, Lechman ER, et al.: Adenovirus-mediated gene transfer of insulin-like growth factor 1 stimulates proteoglycan synthesis in rabbit joints. Arthritis Rheum 2000, 43:2563–2570.

    Article  PubMed  CAS  Google Scholar 

  18. Martin JA, Buckwalter JA: The role of chondrocyte-matrix interactions in maintaining and repairing articular cartilage. Biorheology 2000, 37:129–140.

    PubMed  CAS  Google Scholar 

  19. Loeser RF, Shanker G: Autocrine stimulation by insulin-like growth factor 1 and insulin-like growth factor 2 mediates chondrocyte survival in vitro. Arthritis Rheum 2000, 43:1552–1559.

    Article  PubMed  CAS  Google Scholar 

  20. Wu HB, Lee CY, Rechler MM: Proteolysis of insulin-like growth factor binding protein-3 in serum from pregnant, non-pregnant and fetal rats by matrix metalloproteinases and serine proteases. Horm Metab Res 1999, 31:186–191.

    Article  PubMed  CAS  Google Scholar 

  21. Whellams EJ, Maile LA, Fernihough JK, et al.: Alterations in insulin-like growth factor binding protein-3 proteolysis and complex formation in the arthritic joint. J Endocrinol 2000, 165:545–556.

    Article  PubMed  CAS  Google Scholar 

  22. Spagnoli A, Hwa V, Horton WA, et al.: Antiproliferative effects of insulin-like growth factor-binding protein-3 in mesenchymal chondrogenic cell line RCJ3.1C5.18. relationship to differentiation stage. J Biol Chem 2001, 276:5533–5540.

    Article  PubMed  CAS  Google Scholar 

  23. Goldring MB: Osteoarthritis and cartilage: the role of cytokines. Curr Rheum Rep 2000, 2:459–465. This review presents the latest developments in cytokines, growth factors, and molecular mechanisms of the cell response in arthritis.

    Article  CAS  Google Scholar 

  24. Saha N, Moldovan F, Tardif G, et al.: Interleukin-1 beta-converting enzyme/caspase-1 in human osteoarthritic tissues: localization and role in the maturation of interleukin-1 beta and interleukin-18. Arthritis Rheum 1999, 42:1577–1587.

    Article  PubMed  CAS  Google Scholar 

  25. Tetlow LC, Adlam DJ, Woolley DE: Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum 2001, 44:585–594.

    Article  PubMed  CAS  Google Scholar 

  26. Gouze JN, Bordji K, Gulberti S, et al.: Interleukin-1 beta downregulates the expression of glucuronosyltransferase I, a key enzyme priming glycosaminoglycan biosynthesis: influence of glucosamine on interleukin-1 beta-mediated effects in rat chondrocytes. Arthritis Rheum 2001, 44:351–360.

    Article  PubMed  CAS  Google Scholar 

  27. Bordji K, Griullasca JP, Gouze JN, et al.: Evidence for the presence of peroxisome proliferator-activated receptor (PPAR) alpha and gamma and retinoid Z receptor in cartilage. PPARgamma activation modulates the effects of interleukin-1 beta on rat chondrocytes. J Biol Chem 2000, 275:12243–12250.

    Article  PubMed  CAS  Google Scholar 

  28. Fahmi H, Di Battista JA, Pelletier JP, et al.: Peroxisome proliferator - activated receptor gamma activators inhibit interleukin-1 beta-induced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes. Arthritis Rheum 2001, 44:595–607.

    Article  PubMed  CAS  Google Scholar 

  29. Westacott CI, Barakat AF, Wood L, et al.: Tumor necrosis factor alpha can contribute to focal loss of cartilage in osteoarthritis. Osteoarthritis Cartilage 2000, 8:213–221.

    Article  PubMed  CAS  Google Scholar 

  30. Alsalameh S, Mattka B, Al-Ward R, et al.: Preferential expression of tumor necrosis factor receptor 55 (TNF-R55) on human articular chondrocytes: selective transcriptional upregulation of TNF-R75 by proinflammatory cytokines interleukin 1 beta, tumor necrosis factor-alpha, and basis fibroblast growth factor. J Rheumatol 1999, 26:645–653.

    PubMed  CAS  Google Scholar 

  31. Alaaeddine N, Di Battista JA, Pelletier JP, et al.: Differential effects of IL-8, LIF (pro-inflammatory) and IL-11 (antiinflammatory) on TNF-alpha-induced PGE(2)release and on signalling pathways in human OA synovial fibroblasts. Cytokine 1999, 11:1020–1030.

    Article  PubMed  CAS  Google Scholar 

  32. Martel-Pelletier J, Mineau F, Jovanovic D, et al.: Mitogenactivated protein kinase and nuclear factor kappaB together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes: possible role of transactivating factor mitogen-activated protein kinase-activated protein kinase (MAPKAPK). Arthritis Rheum 1999, 42:2399–2409. Mechanisms of signal transduction in chondrocytes are examined. This work helps provide a molecular understanding for the effects of cytokines and signaling molecules.

    Article  PubMed  CAS  Google Scholar 

  33. Olee T, Hashimoto S, Quack J, Lotz M: IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. J Immunol 1999, 162:1096–1100.

    PubMed  CAS  Google Scholar 

  34. Yuan GH, Masuko-Hongo K, Sakata M, et al.: The role of C-C chemokines and their receptors in osteoarthritis. Arthritis Rheum 2001, 44:1056–1070.

    Article  PubMed  CAS  Google Scholar 

  35. Alaaeddine N, Olee T, Hashimoto S, et al.: Production of the chemokine RANTES by articular chondrocytes and role in cartilage degradation. Arthritis Rheum 2001, 44:1633–1643.

    Article  PubMed  CAS  Google Scholar 

  36. Amin AR, Dave M, Attur M, Abramson SB: COX-2, NO, and cartilage damage and repair. Curr Rheum Rep 2000, 2:447–453.

    Article  CAS  Google Scholar 

  37. Borderie D, Hernvann A, Lemarechal H, et al.: Inhibition of the nitrosothiol production of cultured osteoarthritic chondrocytes by rhein, cortisol and declofenac. Osteoarthritis Cartilage 2001, 9:1–6.

    Article  PubMed  CAS  Google Scholar 

  38. van den Berg WB, van de Loo FA, Joosten AB, Arntz OJ:Animal models of arthritis in NOS2-deficient mice. Osteoarthritis Cartilage 1999, 7:413–415.

    Article  PubMed  Google Scholar 

  39. Pelletier JP, Jovanovic DV, Lascau-Coman V, et al.: Selective inhibition of inducible nitric oxide synthase reduces progression of experimental osteoarthritis in vivo: possible link with the reduction in chondrocyte apoptosis and caspase 3 level. Arthritis Rheum 2000, 43:1290–1299.

    Article  PubMed  CAS  Google Scholar 

  40. Jouzeau JY, Cipolleta C, Presle N, Netter P, Terlain B: Modulation of IL-1 effects on cartilage by NO synthase inhibitors: pharmacological studies in rats. Osteoarthritis Cartilage 1999, 7:382–385.

    Article  PubMed  CAS  Google Scholar 

  41. Studer RK, Georgescu HI, Miller LA, Evans CH: Inhibition of transforming growth factor beta production by nitric oxide-treated chondrocytes: implications for matrix synthesis. Arthritis Rheum 1999, 42:248–257.

    Article  PubMed  CAS  Google Scholar 

  42. Studer R, Jaffurs D, Stefanovic-Racic M, et al.: Nitric oxide in osteoarthritis. Osteoarthritis Cartilage 1999, 7:377–379.

    Article  PubMed  CAS  Google Scholar 

  43. Clancy R: Nitric oxide alters chondrocyte function by disrupting cytoskeletal signaling complexes. Osteoarthritis Cartilage 1999, 7:399–400.

    Article  PubMed  CAS  Google Scholar 

  44. Johnson K, Jung A, Murphy A, et al.: Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum 2000, 43:1560–1570.

    Article  PubMed  CAS  Google Scholar 

  45. Lubberts E, Joosten LA, van de Loo FA, et al.: Reduction of interleukin-17-induced inhibition of chondrocyte proteoglycan synthesis in intact murine articular cartilage by interleukin-4. Arthritis Rheum 2000, 43:1300–1306.

    Article  PubMed  CAS  Google Scholar 

  46. Watanabe S, Imagawa T, Boivin GP, et al.: Adeno-associated virus mediates long-term gene transfer and delivery of chondroprotective IL-4 to murine synovium. Mol Ther J Am Soc Gene Ther 2000, 2:147–152.

    CAS  Google Scholar 

  47. Lubberts E, Joosten LA, van den Bersselaar L, et al.: Adenoviral vector-mediated overexpression of IL-4 in the knee joint of mice with collagen-induced arthritis prevents cartilage destruction. J Immunol 1999, 163:4546–4556.

    PubMed  CAS  Google Scholar 

  48. Relic B, Guicheux J, Mezin F, et al.: I1-4 and IL-13, but not IL-10, protect human synoviocytes from apoptosis. J Immunol 2001, 166:2775–2782.

    PubMed  CAS  Google Scholar 

  49. Kim HA, Lee YJ, Seong SC, Choe KW, Song YW: Apoptotic chondrocyte death in human osteoarthritis. J Rheumatol 2000, 27:455–462.

    PubMed  CAS  Google Scholar 

  50. Heraud F, Heraud A, Harmand MF: Apoptosis in normal and osteoarthritic human articular cartilage. Ann Rheum Dis 2000, 59:959–965.

    Article  PubMed  CAS  Google Scholar 

  51. Kirsch T, Swoboda B, Nah H: Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthritis Cartilage 2000, 8:294–302.

    Article  PubMed  CAS  Google Scholar 

  52. Kouri JB, Aguilera JM, Reyes J, Lozoya KA, Gonzalez S:Apoptotic chondrocytes from osteoarthritic human articular cartilage and abnormal calcification of subchondral bone. J Rheumatol 2000, 27:1005–1019.

    PubMed  CAS  Google Scholar 

  53. Lotz M: The role of nitric oxide in articular cartilage damage. Rheum Dis Clin North Am 2000, 25:269–282.

    Article  Google Scholar 

  54. Lotz M, Hashimoto S, Kuhn K: Mechanisms of chondrocyte apoptosis. Osteoarthritis Cartilage 1999, 7:389–391. This article discusses the molecular mechanisms of apoptosis in cartilage.

    Article  PubMed  CAS  Google Scholar 

  55. Kuhn K, Lotz M: Regulation of CD95 (Fas/APO-1)-induced apoptosis in human chondrocytes. Arthritis Rheum 2001, 44:1644–1653.

    Article  PubMed  CAS  Google Scholar 

  56. Kuhn K, Hashimoto S, Lotz M: IL-1 beta protects human chondrocytes from CD95-induced apoptosis. J Immunol 2000, 164:2233–2239.

    PubMed  CAS  Google Scholar 

  57. Clancy R, Rediske J, Koehne C, et al.: Activation of stressactivated protein kinase in osteoarthritic cartilage: evidence for nitric oxide dependence. Osteoarthritis Cartilage 2001, 9:294–299.

    Article  PubMed  CAS  Google Scholar 

  58. Shakibaei M, Schulze-Tanzil G, de Souza P, et al.: Inhibition of mitogen-activated protein kinase induces apoptosis of human chondrocytes. J Biol Chem 2001, 276:13289–13294.

    Article  PubMed  CAS  Google Scholar 

  59. Takahashi K, Hashimoto S, Kubo T, et al.: Effect of hyaluronan on chondrocyte apoptosis and nitric oxide production in experimentally induced osteoarthritis. J Rheumatol 2000, 27:1713–1720.

    PubMed  CAS  Google Scholar 

  60. Aigner T, Hemmel M, Neureiter D, et al.: Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum 2001, 44:1304–1312. Apoptosis may be important in osteoarthritis. These authors show the possible pitfalls in the analysis of apoptosis in cartilage.

    Article  PubMed  CAS  Google Scholar 

  61. La Graverand M-PH, Sciore P, Eggerer J, et al.: Formation and phenotype of cell clusters in osteoarthritic meniscus. Arthritis Rheum 2001, 44:1808–1818. This article presents a hypothesis regarding the formation of chondrocyte clusters. This area has received little attention and is a basic response of cells in osteoarthritis.

    Article  Google Scholar 

  62. Honda K, Ohno S, Tanimoto K, et al.: The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. Eur J Cell Biol 2000, 79:601–109.

    Article  PubMed  CAS  Google Scholar 

  63. Fujisawa T, Hattori T, Takahashi K, et al.: Cyclic mechanical stress induces extracellular matrix degradation in cultured chondrocytes via gene expression of matrix metalloproteinases and interleukin-1. J Biochem 1999, 125:966–975.

    PubMed  CAS  Google Scholar 

  64. Xu Z, Buckley MJ, Evans Ch, Agarwa S: Cyclic tensile strain acts as an antagonist of IL-1 beta actions in chondrocytes. J Immunol 2000, 165:453–460.

    PubMed  CAS  Google Scholar 

  65. Bonassar LJ, Grodzinsky AJ, Frank EH, et al.: The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J Orthop Res 2001, 19:11–17. These authors show how mechanical influences can be tied to molecular response of the cell.

    Article  PubMed  CAS  Google Scholar 

  66. Martin JA, Buckwalter JA: Telomere erosion and senescence in human articular cartilage chondrocytes. J Gerontol A Biol Sci Med Sci 2001, 56:B172-B179.

    PubMed  CAS  Google Scholar 

  67. Loeser RF, Shanker G, Carlson CS, et al.: Reduction in the chondrocyte response to insulin-like growth factor 1 in aging and osteoarthritis: studies in a non-human primate model of naturally occurring disease. Arthritis Rheum 2000, 43:2110–2120.

    Article  PubMed  CAS  Google Scholar 

  68. Garnero P, Piperno M, Gineyts E, et al.: Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann Rheum Dis 2001, 60:619–626. The approach of examining multiple molecular markers has been pioneered by this group.

    Article  PubMed  CAS  Google Scholar 

  69. Chevalier X, Conrozier T, Gehrmann M, et al.: Tissue inhibitor of metalloprotease-1 (TIMP-1) serum level may predict progression of hip osteoarthritis. Osteoarthritis Cartilage 2001, 9:300–307.

    Article  PubMed  CAS  Google Scholar 

  70. Otterness IG, Weiner E, Swindell Ac, et al.: An analysis of 14 molecular markers for monitoring osteoarthritis. Relationship of the markers to clinical end-points. Osteoarthritis Cartilage 2001, 9:224–231. This manuscript shows the usefulness of using multiple markers to identify trends in osteoarthritis.

    Article  PubMed  CAS  Google Scholar 

  71. Volck B, Johansen JS, Stoltenberg M, et al.: Studies on YKL-40 in knee joints of patients with rheumatoid arthritis and osteoarthritis. Involvement of YKL-40 in the joint pathology. Osteoarthritis Cartilage 2001, 9:203–214.

    Article  PubMed  CAS  Google Scholar 

  72. Hembry RM, Dyce J, Driesang I, et al.: Immunolocalization of matrix metalloproteinases in partial-thickness defects in pig articular cartilage. A preliminary report. J Bone Joint Surg Am 2001, 83A:826–838.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukui, N., Purple, C.R. & Sandell, L.J. Cell biology of osteoarthritis: The chondrocyte’s response to injury. Curr Rheumatol Rep 3, 496–505 (2001). https://doi.org/10.1007/s11926-001-0064-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-001-0064-8

Keywords

Navigation