Skip to main content

Advertisement

Log in

Familial autoimmunity and the idiopathic inflammatory myopathies

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Many lines of evidence suggest that autoimmune diseases result from chronic immune activation following environmental exposures in genetically susceptible individuals. A genetic basis for autoimmunity is supported by twin and family studies, candidate gene investigations, animal models, and whole genome microsatellite scans. These findings predict, and clinical observations support, familial clustering of a number of individual autoimmune diseases, notably lupus, multiple sclerosis, type-1 diabetes mellitus, rheumatoid arthritis, and recently the idiopathic inflammatory myopathies. Yet, not only is the same autoimmune disease increased in prevalence in pedigrees of persons affected with a given disorder, but other autoimmune diseases are as well. We review these data and propose a hypthesis consistent with these findings. This model posits that a rheumatic disease, as currently classified, is actually composed of a number of elemental disorders. Each of these is defined by the minimal necessary and sufficient environmental exposures and genes that result in a pathology leading to a given sign-symptom complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Uramoto KM, Michet CJJ, Thumboo J, Sunku J, O’Fallon WM, Gabriel SE: Trends in the incidence and mortality of systemic lupus erythematosus, 1950–1992. Arthritis Rheum 1999, 42:46–50.

    Article  PubMed  CAS  Google Scholar 

  2. Oddis CV, Conte CG, Steen VD, Medsger TAJ: Incidence of polymyositis-dermatomyositis: a 20-year study of hospital diagnosed cases in Allegheny County, PA 1963–1982. J Rheumatol 1990, 17:1329–1334.

    PubMed  CAS  Google Scholar 

  3. Luppi P, Rossiello MR, Faas S, Trucco M: Genetic background and environment contribute synergistically to the onset of autoimmune diseases. J Mol Med 1995, 73:381–393.

    Article  PubMed  CAS  Google Scholar 

  4. Miller FW: Genetics of environmentally-associated rheumatic disease: Rheumatic Diseases and the Environment. Edited by Kaufman LD, Varga J. New York: Chapman Hall; 1998:33.

    Google Scholar 

  5. Miller FW: Humoral immunity and immunogenetics in the idiopathic inflammatory myopathies. Curr Opin Rheumatol 1991, 3:902–910.

    Article  PubMed  CAS  Google Scholar 

  6. Miller FW, Love LA, Barbieri SA, et al.: Lymphocyte activation markers in idiopathic myositis: changes with disease activity and differences among clinical and autoantibody subgroups. Clin Exp Immunol 1990, 81:373–379.

    Article  PubMed  CAS  Google Scholar 

  7. Carson DA: Genetic factors in the etiology and pathogenesis of autoimmunity. FASEB J 1992, 6:2800–2805.

    PubMed  CAS  Google Scholar 

  8. Vyse TJ, Todd JA: Genetic analysis of autoimmune disease. Cell 1996, 85:311–318. An excellent overview of the new approaches to analyzing the genetics of autoimmune diseases, focusing on murine models of diabetes. Extrapolations are made to human disease, using fine mapping studies of genes involved in diabetes and examples of family studies. An overview of comparative mapping in mice and humans integrates this readable paper.

    Article  PubMed  CAS  Google Scholar 

  9. Love LA, Miller FW: Noninfectious environmental agents associated with myopathies. Curr Opin Rheumatol 1993, 5:712–718.

    PubMed  CAS  Google Scholar 

  10. Oldstone MB: Overview: infectious agents as etiologic triggers of autoimmune disease. Curr Top Microbiol Immunol 1989, 145:1–3.

    PubMed  CAS  Google Scholar 

  11. Gross DM, Forsthuber T, Tary-Lehmann M, et al.: Identification of LFA-1 as a candidate autoantigen in treatment-resistant Lyme arthritis. Science 1998, 281:703–706.

    Article  PubMed  CAS  Google Scholar 

  12. Hertzman PA, Blevins WL, Mayer J, et al.: Association of the eosinophilia-myalgia syndrome with the ingestion of tryptophan. N Engl J Med 1990, 322:869–873.

    Article  PubMed  CAS  Google Scholar 

  13. Kammuller ME, Blom L: Drug-induced Autoimmunity Immunotoxicology and Immunopharmacology. New York: Raven Press; 1994.

    Google Scholar 

  14. Kausman D, Isenberg DA: Role of the biologics in autoimmunity. Lupus 1994, 3:461–466.

    PubMed  CAS  Google Scholar 

  15. Lowenstein MB, Rothfield NF: Family study of systemic lupus erythematosus: analysis of the clinical history, skin immunofluorescence, and serologic parameters. Arthritis Rheum 1977, 20:1293–1303.

    Article  PubMed  CAS  Google Scholar 

  16. Smith C, Cyr M: The history of lupus erythematosus from Hippocrates to Osler. Rheum Dis Clin North Am 1988, 14:1–19.

    PubMed  CAS  Google Scholar 

  17. Medaer R: Does the history of multiple sclerosis go back as far as the 14th century? Acta Neurol Scand 1979, 60:189–192.

    Article  PubMed  CAS  Google Scholar 

  18. Osler W: The visceral lesions of the erythema group. Br J Dermatol 1900, 12:227–245.

    Google Scholar 

  19. Cahill GF Jr: Diabetes Mellitus, Cecil Textbook of Medicine. Edited by Beeson PB, McDermott W, Wyngaarden JB. Philadelphia; Saunders, 1979.

    Google Scholar 

  20. Simpson NE: A review of family data. In The Genetics of Diabetes Mellitus. Edited by Creutzfeldt W, Kobberling J, Neel JV. Berlin, Springer-Verlag, 1976:12.

    Google Scholar 

  21. Eichhorst H: Multiple sklerose und spastische spinalparalyse. Med Klin 1913. 1617–1619.

  22. Spector DA, Jampol LM, Hayslett JP: Report of the familial occurrence of systemic lupus erythematosus in male siblings. Arthritis Rheum 1973, 16:221–224.

    Article  PubMed  CAS  Google Scholar 

  23. Deighton CM, Walker DJ: The familial nature of rheumatoid arthritis. Ann Rheum Dis 1991, 50:62–65.

    PubMed  CAS  Google Scholar 

  24. Lawrence JS: Rheumatoid Arthritis-nature or nurture? Ann Rheum Dis 1970, 29:357–379.

    PubMed  CAS  Google Scholar 

  25. Jaworski MA, Slater JD, Severini A, et al.: Unusual clustering of diseases in a Canadian Old Colony (Chortitza) Mennonite kindred and community. CMAJ 1988, 138:1017–1025.

    PubMed  CAS  Google Scholar 

  26. Lawrence JS, Martins CL, Drake GL: A family survey of lupus erythematosus. 1. Heritability. J Rheumatol 1987, 14:913–921.

    PubMed  CAS  Google Scholar 

  27. Lin JP, Cash JM, Doyle SZ, et al.: Familial clustering of rheumatoid arthritis with other autoimmune diseases. Hum Genet 1998, 103:475–482.

    Article  PubMed  CAS  Google Scholar 

  28. Sadovnick AD, Baird PA, Ward RH: Multiple sclerosis: updated risks for relatives. Am J Med Genet 1988.29:533–541,

    Article  PubMed  CAS  Google Scholar 

  29. Sadovnick AD, Baird PA: The familial nature of multiple sclerosis: age-corrected empiric recurrence risks for children and siblings of patients. Neurology 1988, 38:990–991.

    PubMed  CAS  Google Scholar 

  30. Dahlquist G, Blom L, Tuvemo T, et al.: The Swedish childhood diabetes study—results from a nine year case register and a one year case-referent study indicating that type 1 (insulindependent) diabetes mellitus is associated with both type 2 (non-insulin-dependent) diabetes mellitus and autoimmune disorders. Diabetologia 1989, 32:2–6.

    Article  PubMed  CAS  Google Scholar 

  31. Cheta D: Immunology and immunogenetics in metabolic diseases. Med Interna 1985, 23:3–12.

    CAS  Google Scholar 

  32. Todd JA, Acha-Orbea H, Bell JI, et al.: A molecular basis for MHC class II-associated autoimmunity. Science 1988, 240:1003–1009.

    Article  PubMed  CAS  Google Scholar 

  33. Sinha AA, Lopez MT, McDevitt HO: Autoimmune diseases: the failure of self tolerance. Science 1990, 248:1380–1388.

    Article  PubMed  CAS  Google Scholar 

  34. Ettinger RA, Liu AW, Nepom GT, Kwok WW: Exceptional stability of the HLA-DQA1*0102/DQB1*0602 alpha beta protein dimer, the class II MHC molecule associated with protection from insulin-dependent diabetes mellitus. J Immunol 1998, 161:6439–6445.

    PubMed  CAS  Google Scholar 

  35. Schmidt D, Verdaguer J, Averill N, Santamaria P: A mechanism for the major histocompatibility complex-linked resistance to autoimmunity. J Exp Med 1997, 186:1059–1075.

    Article  PubMed  CAS  Google Scholar 

  36. Rider LG, Shamim E, Okada S, et al.: Genetic risk and protective factors for idiopathic inflammatory myopathy in koreans and american whites: a tale of two loci. Arthritis Rheum 1999, 42(6):1285–1290.

    Article  PubMed  CAS  Google Scholar 

  37. Miller FW: Genetics of autoimmune diseases. Exp Clin Immunogenet 1995, 12:182–190.

    PubMed  CAS  Google Scholar 

  38. Becker KG, Simon RM, Bailey-Wilson JE, et al.: Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci U S A 1998, 95:9979–9984. This paper is a meta-analysis of genetic linkage data from 23 published genome-wide scans of human autoimmune diseases and their murine models. Significant clustering of many non-MHC loci from these studies suggests that many autoimmune conditions share comdi i

    Article  PubMed  CAS  Google Scholar 

  39. Albani S, Carson DA, Roudier J: Genetic and environmental factors in the immune pathogenesis of rheumatoid arthritis. Rheum Dis Clin North Am 1992, 18:729–740.

    PubMed  CAS  Google Scholar 

  40. Carson DA: Genetic factors in the etiology and pathogenesis of autoimmunity. FASEB J 1992, 6:2800–2805.

    PubMed  CAS  Google Scholar 

  41. Grubb R: Immunogenetic markers as probes for polymorphism, gene regulation and gene transfer in man—the Gm system in perspective. APMIS 1991:199–209.

  42. Daser A, Mitchison H, Mitchison A, Muller B: Non-classical-MHC genetics of immunological disease in man and mouse. The key role of pro-inflammatory cytokine genes. Cytokine 1996, 8:593–597.

    Article  PubMed  CAS  Google Scholar 

  43. Robinson MA, Kindt TJ: Linkage between T cell receptor genes and susceptibility to multiple sclerosis: a complex issue. Reg Immunol 1992, 4:274–283.

    PubMed  CAS  Google Scholar 

  44. Foissac A, Cambon-Thomsen A: Microsatellites in the HLA region: 1998 update. Tissue Antigens 1998, 52:318–352.

    PubMed  CAS  Google Scholar 

  45. Lander ES, Schork NJ: Genetic dissection of complex traits. Science 1994, 265:2037–2048. This informative review article explains important concepts and the terminology of the genetics of diseases. Aspects of the polygenic nature of autoimmune disease and the statistical approaches to genetic associations are highlighted.

    Article  PubMed  CAS  Google Scholar 

  46. Unverricht H: Polymyositis acuta progressiva. Z Klin Med 1987,. 12:533.

    Google Scholar 

  47. Miller FW: Inflammatory Myopathies: Polymyositis, Dermatomyositis, and Related Conditions, Arthritis and Allied Conditions, A Textbook of Rheumatology. Edited by Koopman W. Baltimore: Williams and Wilkins; 1996:1407.

    Google Scholar 

  48. Wedgewood RPJ, Cook CD, Cohen J: Dermatomyositis: report of 26 cases in children with a discussion of endocrine therapy in 13. Pediatrics 1953, 12:447–466.

    Google Scholar 

  49. Winkler K: Uber die Dermatomyositis [German]. Z. Haut Geschlechtskr 1956, 19:296–300.

    Google Scholar 

  50. Christianson HB, Brunsting LB, Perry HD: Dermatomyostis: unusual features, complications and treatment. Arch Derm (Chicago) 1956, 74:581–589.

    Google Scholar 

  51. Rider LG, Gurley RC, Pandey JP, et al.: Clinical, serologic, and immunogenetic features of familial idiopathic inflammatory myopathy. Arthritis Rheum 1998, 41:710–719. This is the largest published series of familial myositis pedigrees. Important differences are noted between sporadic and familial myositis, including the finding that homozygosity of DQA1 alleles was a unique risk factor for familial IIM. It was noted that families of patients with JDM showed a higher frequency of autoimmune disease compared with the normal population, but such frequencies were not higher than those seen in pedigrees of sporadic IIM patients.

    Article  PubMed  CAS  Google Scholar 

  52. Arnett FC, Targoff IN, Mimori T, et al.: Interrelationship of major histocompatibility complex class II alleles and autoantibodies in four ethnic groups with various forms of myositis. Arthritis Rheum 1996, 39:1507–1518. This important paper defines HLA risk factors for the development of myositis in multiple ethnic groups including Caucasians, African Americans, Mexican Americans, and Japanese. Differences in MSA frequencies are also described in these genetically different populations. Data from this paper suggest that a common motif in the first hypervariable region of HLA DRB1 is a risk factor for myositis in many ethnic groups.

    Article  PubMed  CAS  Google Scholar 

  53. Dawkins RL, Christiansen FT, Kay PH, et al.: Disease associations with complotypes, supratypes and haplotypes. Immunol Rev 1983, 70:1–22.

    Article  PubMed  CAS  Google Scholar 

  54. Hausmanowa-Petrusewicz I, Kowalska-Oledzka E, Miller FW, Jarzabek-Chorzelska M, Targoff IN, Blaszczyk-Kostanecka M, Jablonska S: Clinical, serologic, and immunogenetic features in Polish patients with idiopathic inflammatory myopathies. Arthritis Rheum 1997, 40:1257–1266.

    PubMed  CAS  Google Scholar 

  55. Love LA, Leff RL, Fraser DD, et al.: A new approach to the classification of idiopathic inflammatory myopathy: myositisspecific autoantibodies define useful homogeneous patient groups. Medicine (Baltimore) 1991, 70:360–374.

    CAS  Google Scholar 

  56. Garlepp MJ: Genetics of the idiopathic inflammatory myopathies. Curr Opin Rheumatol 1996, 8:514–520.

    Article  PubMed  CAS  Google Scholar 

  57. Carroll GJ, Will RK, Peter JB, et al.: Penicillamine induced polymyositis and dermatomyositis. J Rheumatol 1987, 14:995–1001.

    PubMed  CAS  Google Scholar 

  58. Halla JT, Fallahi S, Koopman WJ: Penicillamine-induced myositis. Observations and unique features in two patients and review of the literature. Am J Med 1984, 77:719–722.

    Article  PubMed  CAS  Google Scholar 

  59. Carroll GJ, Will RK, Peter JB, Garlepp MJ, Dawkins RL: Penicillamine induced polymyositis and dermatomyositis. J Rheumatol 1987, 14:995–1001.

    PubMed  CAS  Google Scholar 

  60. Taneja V, Mehra N, Singh YN, et al.: HLA-D region genes and susceptibility to D-penicillamine-induced myositis [letter]. Arthritis Rheum 1990, 33:1445–1447.

    Article  PubMed  CAS  Google Scholar 

  61. Love LA, Weiner SR, Vasey FB, et al.: Clinical and immunogenetic features of woman who develop myositis after silicone implants. Arthritis Rheum 1992, 35:S46.

    Google Scholar 

  62. Strom BL, Reidenberg MM, West S, et al.: Shingles, allergies, family medical history, oral contraceptives, and other potential risk factors for systemic lupus erythematosus. Am J Epidemiol 1994, 140:632–642.

    PubMed  CAS  Google Scholar 

  63. Cederholm J, Wibell L: Familial influence on type 1 (insulindependent) diabetes mellitus by relatives with either insulintreated or type 2 (non-insulin-dependent) diabetes mellitus. Diabetes Res 1991, 18:109–113.

    PubMed  CAS  Google Scholar 

  64. Midgard R, Gronning M, Riise T, Kvale G, Nyland H: Multiple sclerosis and chronic inflammatory diseases: a case-control study. Acta Neurol Scand 1996, 93:322–328.

    Article  PubMed  CAS  Google Scholar 

  65. Rider LG, Wallace CA, Sherry DD, Miller FW: Autoimmune diseases in family members of children with Idiopathic Inflammatory Myopathies (IIM) [Abstract]. Arthritis Rheum 1994, 37:S403.

    Article  Google Scholar 

  66. Pachman LM, Hayford JR, Hochberg MC, et al.: New-onset juvenile dermatomyositis: comparisons with a healthy cohort and children with juvenile rheumatoid arthritis. Arthritis Rheum 1997, 40:1526–1533. This is one of the first studies to assess the prevalence of connective tissue diseases in families of children with autoimmune diseases. Pedigrees of patients with JRA showed higher frequency of autoimmune diseases compared with those of patients with JDM.

    Article  PubMed  CAS  Google Scholar 

  67. Ginn LR, Lin JP, Plotz PH, et al.: Familial autoimmunity in pedigrees of idiopathic inflammatory myopathy patients suggests common genetic risk factors for many autoimmune diseases. Arthritis Rheum 1998, 41:400–405. Autoimmune diseases were found to be significantly increased in frequency in first-degree relatives of idiopathic inflammatory myopathy patients, to affect more women than men, to increase with age, and to be distributed in a pattern similar to that in the general population. Genetic modeling of these data suggested that many autoimmune disorders share genes that together act as polygenic risk factors for autoimmunity.

    Article  PubMed  CAS  Google Scholar 

  68. Bohan A, Peter JB: Polymyositis and dermatomyositiss (first of two parts). N Engl J Med 1975, 292:344–347.

    Article  PubMed  CAS  Google Scholar 

  69. Bohan A, Peter JB: Polymyositis and dermatomyositis (second of two parts). N Engl J Med 1975, 292:403–407.

    Article  PubMed  CAS  Google Scholar 

  70. Thompson D, Juby A, Davis P: The clinical significance of autoantibody profiles in patients with systemic lupus erythematosus. Lupus 1993, 2:15–19.

    PubMed  CAS  Google Scholar 

  71. Weyand CM, McCarthy TG, Goronzy JJ: Correlation between disease phenotype and genetic heterogeneity in rheumatoid arthritis. J Clin Invest 1995, 95:2120–2126.

    Article  PubMed  CAS  Google Scholar 

  72. Arnett FC: HLA and autoimmunity in scleroderma (systemic sclerosis). Int Rev Immunol 1995, 12:107–128.

    PubMed  CAS  Google Scholar 

  73. Lahita RG, Chiorazzi N, Gibofsky A, et al.: Familial systemic lupus erythematosus in males. Arthritis Rheum 1983, 26:39–44.

    Article  PubMed  CAS  Google Scholar 

  74. Deapen D, Escalante A, Weinrib L, et al.: A revised estimate of twin concordance in systemic lupus erythematosus [A revised estimate of twin concordance in systemic lupus erythematosus]. Arthritis Rheum 1992, 35:311–318.

    Article  PubMed  CAS  Google Scholar 

  75. Sadovnick AD, Armstrong H, Rice GP, et al.: A populationbased study of multiple sclerosis in twins: update. Ann Neurol 1993, 33:281–285.

    Article  PubMed  CAS  Google Scholar 

  76. Kyvik KO, Green A, Beck-Nielsen H: Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ 1995, 311:913–917.

    PubMed  CAS  Google Scholar 

  77. Silman AJ, MacGregor AJ, Thomson W, et al.: Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br J Rheumatol 1993, 32:903–907.

    Article  PubMed  CAS  Google Scholar 

  78. Heward J, Gough SC: Genetic susceptibility to the development of autoimmune disease [editorial]. Clin Sci (Colch) 1997, 93:479–491.

    CAS  Google Scholar 

  79. Yao Z, Kimura A, Hartung K, et al.: Polymorphism of the DQA1 promoter region (QAP) and DRB1, QAP, DQA1, DQB1 haplotypes in systemic lupus erythematosus: SLE Study Group members. Immunogenetics 1993, 38:421–429.

    Article  PubMed  CAS  Google Scholar 

  80. Haines JL, Terwedow HA, Burgess K, et al.: Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity: the Multiple Sclerosis Genetics Group. Hum Mol Genet 1998, 7:1229–1234. This study analyzed data from 98 multiplex MS families and confirmed a strong association with HLA DR2. These data suggested that sporadic and familial MS share one common genetic susceptibility.

    Article  PubMed  CAS  Google Scholar 

  81. Todd JA, Bell JI, McDevitt HO: HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987, 329:599–604.

    Article  PubMed  CAS  Google Scholar 

  82. Tisch R, McDevitt H: Insulin-dependent Diabetes Mellitus. Cell 1996, 85:291–297.

    Article  PubMed  CAS  Google Scholar 

  83. Gaffney PM, Kearns GM, Shark KB, et al.: A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc Natl Acad Sci U S A 1998, 95:14875–14879. In this investigation genetic analses of 105 SLE sib-pair families showed that the HLA locus had the highest lod score but three other loci were associationed with SLE. Thus, as in the case of murine lupus, multiple genes likely play a role in human susceptibility to SLE.

    Article  PubMed  CAS  Google Scholar 

  84. Sawcer S, Jones HB, Feakes R, et al.: A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 1996, 13:464–468.

    Article  PubMed  CAS  Google Scholar 

  85. Kuokkanen S, Gschwend M, Rioux JD, et al.: Genomewide scan of multiple sclerosis in Finnish multiplex families. Am J Hum Genet 1997, 61(6):1379–1387.

    Article  PubMed  CAS  Google Scholar 

  86. Cordell HJ, Todd JA: Multifactorial inheritance in type-1 diabetes. Trends Genet 1995, 11:499–504.

    Article  PubMed  CAS  Google Scholar 

  87. Todd JA, Farrall M: Panning for gold: genome-wide scanning for linkage in type 1 diabetes. Hum Mol Genet 1995, 5:1443–1448.

    Google Scholar 

  88. Cornelis F, Faure S, Martinez M, et al.: New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc Natl Acad Sci U S A 1998, 95:10746–10750.

    Article  PubMed  CAS  Google Scholar 

  89. Lambie JA, Duff IF: Familial occurrence of dermatomyositis case reports and a family survey. Ann Intern Med 1963, 59:839–847.

    PubMed  CAS  Google Scholar 

  90. Lewkonia RM, Buxton PH: Myositis in father and daughter. J Neurol Neurosurg Psychiatry 1973, 36:820–825.

    Article  PubMed  CAS  Google Scholar 

  91. Harati Y, Niakan E, Bergman EW: Childhood dermatomyositis in monozygotic twins. Neurology 1986, 36:721–723.

    PubMed  CAS  Google Scholar 

  92. Hennekam RC, Hiemstra I, Jennekens FG, Kuis W: Juvenile dermatomyositis in first cousins [letter]. N Engl J Med 1990, 323:199.

    PubMed  CAS  Google Scholar 

  93. Massa R, Weller B, Karpati G, et al.: Familial inclusion body myositis among Kurdish-Iranian Jews. Arch Neurol 1991, 48:519–522.

    PubMed  CAS  Google Scholar 

  94. Garcia-de la Torre I lT, I, Ramirez-Casillas A, Hernandez-Vazquez L: Acute familial myositis with a common autoimmune response. Arthritis Rheum 1991, 34:744–750.

    Article  Google Scholar 

  95. Neville HE, Baumbach LL, Ringel SP, et al.: Familial inclusion body myositis: evidence for autosomal dominant inheritance. Neurology 1992, 42:897–902.

    PubMed  CAS  Google Scholar 

  96. Andreu OMI, Fernandez-Sola J, Clotet EP, Coll-Vinent B: myositis con cuerpos de inclusion: presentacion familiar de tres casos. Rev Clin Esp 1994, 194:974–977.

    Google Scholar 

  97. Naumann M, Reichmann H, Goebel HH, et al.: Glucocorticoidsensitive hereditary inclusion body myositis. J Neurol 1996, 243:126–130.

    Article  PubMed  CAS  Google Scholar 

  98. Sivakumar K, Semino-Mora C, Dalakas MC: An inflammatory, familial, inclusion body myositis with autoimmune features and a phenotype identical to sporadic inclusion body myositis. Studies in three families. Brain 1997, 120 (Pt 4):653–661.

    Article  PubMed  Google Scholar 

  99. Andrews A, Hickling P, Hutton C: Familial dermatomyositis. Br J Rheumatol 1998, 37:231–232.

    Article  PubMed  CAS  Google Scholar 

  100. Amato AA, Shebert RT: Inclusion body myositis in twins. Neurology 1998, 51:598–600.

    PubMed  CAS  Google Scholar 

  101. Cassidy JT, Pierce DR: Juvenile Dermatomyostis, Textbook of Pediatric Rheumatology. Philadelphia: W.B. Saunders & Co.; 1995:323–364.

    Google Scholar 

  102. Pachman LM, Jonasson O, Cannon RA, Friedman JM: HLA-B8 in juvenile dermatomyositis [letter]. Lancet 1977, 2:567–568.

    Article  PubMed  CAS  Google Scholar 

  103. Hirsch TJ, Enlow RW, Bias WB, Arnett FC: HLA-D related (DR) antigens in various kinds of myositis. Hum Immunol 1981, 3:181–186.

    Article  PubMed  CAS  Google Scholar 

  104. Moulds JM, Rolih C, Goldstein R, et al.: C4 null genes in American whites and blacks with myositis. J Rheumatol 1990, 17:331–334.

    PubMed  CAS  Google Scholar 

  105. Furuya T, Hakoda M, Higami K, et al.: Association of HLA class I and class II alleles with myositis in Japanese patients. J Rheumatol 1998, 25:1109–1114.

    PubMed  CAS  Google Scholar 

  106. Behan WM, Behan PO, Dick HA: HLA-B8 in polymyositis [letter]. N Engl J Med 1978, 298:1260–1261.

    PubMed  CAS  Google Scholar 

  107. Mierau R, Dick T, Bartz-Bazzanella P, et al.: Strong association of dermatomyositis-specific Mi-2 autoantibodies with a tryptophan at position 9 of the HLA-DR beta chain. Arthritis Rheum 1996, 39:868–876.

    Article  PubMed  CAS  Google Scholar 

  108. Love LA, Leff RL, Fraser DD, et al.: A new approach to the classification of idiopathic inflammatory myopathy: myositisspecific autoantibodies define useful homogeneous patient groups. Medicine (Baltimore) 1991, 70:360–374.

    CAS  Google Scholar 

  109. Koffman BM, Sivakumar K, Simonis T, et al.: HLA allele distribution distinguishes sporadic inclusion body myositis from hereditary inclusion body myopathies. J Neuroimmunol 1998, 84:139–142.

    Article  PubMed  CAS  Google Scholar 

  110. Pachman LM, Jonasson O, Cannon RA, Friedman JM: Increased frequency of HLA-B8 in juvenile dermatomyositis [letter]. Lancet 1977, 2:1238.

    Article  PubMed  CAS  Google Scholar 

  111. Friedman JM, Pachman LM, Maryjowski ML, et al.: Immunogenetic studies of juvenile dermatomyositis. HLA antigens in patients and their families. Tissue Antigens 1983, 21:45–49.

    Article  PubMed  CAS  Google Scholar 

  112. Reed AM, Stirling JD: Association of the HLA-DQA1*0501 allele in multiple racial groups with juvenile dermatomyositis. Hum Immunol 1995, 44:131–135.

    Article  PubMed  CAS  Google Scholar 

  113. Reed AM, Pachman LM, Hayford J, Ober C: Immunogenetic studies in families of children with juvenile dermatomyositis. J Rheumatol 1998, 25:1000–1002.

    PubMed  CAS  Google Scholar 

  114. Arnett FC, Hirsch TJ, Bias WB, Nishikai M, Reichlin M: The Jo-1 antibody system in myositis: relationships to clinical features and HLA. J Rheumatol 1981, 8:925–930.

    PubMed  CAS  Google Scholar 

  115. Goldstein R, Duvic M, Targoff IN, et al.: HLA-D region genes associated with autoantibody responses to histidyl-transfer RNA synthetase (Jo-1) and other translation-related factors in myositis. Arthritis Rheum 1990, 33:1240–1248.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamim, E.A., Miller, F.W. Familial autoimmunity and the idiopathic inflammatory myopathies. Curr Rheumatol Rep 2, 201–211 (2000). https://doi.org/10.1007/s11926-000-0080-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-000-0080-0

Keywords

Navigation