Skip to main content
Log in

Hypocretins, Neural Systems, Physiology, and Psychiatric Disorders

  • Sleep Disorders (P Gehrman, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

The hypocretins (Hcrts), also known as orexins, have been among the most intensely studied neuropeptide systems since their discovery about two decades ago. Anatomical evidence shows that the hypothalamic neurons that produce hypocretins/orexins project widely throughout the entire brain, innervating the noradrenergic locus coeruleus, the cholinergic basal forebrain, the dopaminergic ventral tegmental area, the serotonergic raphe nuclei, the histaminergic tuberomammillary nucleus, and many other brain regions. By interacting with other neural systems, the Hcrt system profoundly modulates versatile physiological processes including arousal, food intake, emotion, attention, and reward. Importantly, interruption of the interactions between these systems has the potential to cause neurological and psychiatric diseases. Here, we review the modulation of diverse neural systems by Hcrts and summarize potential therapeutic strategies based on our understanding of the Hcrt system’s role in physiology and pathophysiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. de Lecea L, Kilduff TS, Peyron C, Gao XB, Foye PE, Danielson PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A. 1998;95(1):322–7.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior (vol 92, pg 573, 1998). Cell. 1998;92(5):U29-U.

  3. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K. Distribution of orexin neurons in the adult rat brain. Brain Res. 1999;827(1–2):243–60.

    Article  CAS  PubMed  Google Scholar 

  4. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015.

    CAS  PubMed  Google Scholar 

  5. Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, et al. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron. 2005;46(2):297–308.

    Article  CAS  PubMed  Google Scholar 

  6. Hervieu GJ, Cluderay JE, Harrison DC, Roberts JC, Leslie RA. Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord. Neuroscience. 2001;103(3):777–97.

    Article  CAS  PubMed  Google Scholar 

  7. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 1998;438(1–2):71–5.

    Article  CAS  PubMed  Google Scholar 

  8. Zarepour L, Fatahi Z, Sarihi A, Haghparast A. Blockade of orexin-1 receptors in the ventral tegmental area could attenuate the lateral hypothalamic stimulation-induced potentiation of rewarding properties of morphine. Neuropeptides. 2014;48(3):179–85.

    Article  CAS  PubMed  Google Scholar 

  9. Balcita-Pedicino JJ, Sesack SR. Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and gamma-aminobutyric acid neurons. J Comp Neurol. 2007;503(5):668–84.

    Article  PubMed  Google Scholar 

  10. Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005;437(7058):556–9.

    Article  CAS  PubMed  Google Scholar 

  11. Hutcheson DM, Quarta D, Halbout B, Rigal A, Valerio E, Heidbreder C. Orexin-1 receptor antagonist SB-334867 reduces the acquisition and expression of cocaine-conditioned reinforcement and the expression of amphetamine-conditioned reward. Behav Pharmacol. 2011;22(2):173–81.

    Article  CAS  PubMed  Google Scholar 

  12. James MH, Charnley JL, Levi EM, Jones E, Yeoh JW, Smith DW, et al. Orexin-1 receptor signalling within the ventral tegmental area, but not the paraventricular thalamus, is critical to regulating cue-induced reinstatement of cocaine-seeking. Int J Neuropsychopharmacol / Off Sci J Coll Int Neuropsychopharmacologicum. 2011;14(5):684–90.

    CAS  Google Scholar 

  13. Bentzley BS, Aston-Jones G. Orexin-1 receptor signaling increases motivation for cocaine-associated cues. Eur J Neurosci. 2015;41(9):1149–56.

    Article  PubMed  Google Scholar 

  14. Uslaner JM, Winrow CJ, Gotter AL, Roecker AJ, Coleman PJ, Hutson PH, et al. Selective orexin 2 receptor antagonism blocks cue-induced reinstatement, but not nicotine self-administration or nicotine-induced reinstatement. Behav Brain Res. 2014;269:61–5.

    Article  CAS  PubMed  Google Scholar 

  15. Martin-Fardon R, Weiss F. Blockade of hypocretin receptor-1 preferentially prevents cocaine seeking: comparison with natural reward seeking. Neuroreport. 2014;25(7):485–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Hollander JA, Pham D, Fowler CD, Kenny PJ. Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: pharmacological and behavioral genetics evidence. Front Behav Neurosci. 2012;6:47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Baimel C, Borgland SL. Orexin signaling in the VTA gates morphine-induced synaptic plasticity. J Neurosci. 2015;35(18):7295–303.

    Article  CAS  PubMed  Google Scholar 

  18. Prince CD, Rau AR, Yorgason JT, Espana RA. Hypocretin/orexin regulation of dopamine signaling and cocaine self-administration is mediated predominantly by hypocretin receptor 1. ACS Chem Neurosci. 2015;6(1):138–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Baimel C, Borgland SL. Hypocretin modulation of drug-induced synaptic plasticity. Prog Brain Res. 2012;198:123–31.

    Article  CAS  PubMed  Google Scholar 

  20. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron. 2006;49(4):589–601.

    Article  CAS  PubMed  Google Scholar 

  21. Borgland SL, Storm E, Bonci A. Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons. Eur J Neurosci. 2008;28(8):1545–56.

    Article  CAS  PubMed  Google Scholar 

  22. Muschamp JW, Hollander JA, Thompson JL, Voren G, Hassinger LC, Onvani S, et al. Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc Natl Acad Sci U S A. 2014;111(16):E1648–55. In this study, Hcrt was shown to facilitate reward by counteracting the antireward effects of dynorphin, which is released from the same synaptic vesicles in the VTA.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Fadel J, Deutch AY. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience. 2002;111(2):379–87.

    Article  CAS  PubMed  Google Scholar 

  24. Espana RA, Melchior JR, Roberts DC, Jones SR. Hypocretin 1/orexin A in the ventral tegmental area enhances dopamine responses to cocaine and promotes cocaine self-administration. Psychopharmacology. 2011;214(2):415–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, et al. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci U S A. 2005;102(52):19168–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, et al. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol. 2015;172(2):334–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Brown RE, Sergeeva OA, Eriksson KS, Haas HL. Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci. 2002;22(20):8850–9.

    CAS  PubMed  Google Scholar 

  28. Kohlmeier KA, Tyler CJ, Kalogiannis M, Ishibashi M, Kristensen MP, Gumenchuk I, et al. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy. Front Neurosci. 2013;7:246.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Liu RJ, van den Pol AN, Aghajanian GK. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci. 2002;22(21):9453–64.

    CAS  PubMed  Google Scholar 

  30. Hasegawa E, Yanagisawa M, Sakurai T, Mieda M. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J Clin Invest. 2014;124(2):604–16. This paper shows DR serotonergic and LC noradrenergic neurons represent different facets of gating narcoleptic symptoms.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Muraki Y, Yamanaka A, Tsujino N, Kilduff TS, Goto K, Sakurai T. Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. J Neurosci. 2004;24(32):7159–66.

    Article  CAS  PubMed  Google Scholar 

  32. Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L. Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A. 2012;109(39):E2635–44. Using optogenetic manipulation of Hcrt neurons in lateral hypothalamus and noradrenergic neurons in locus coeruleus (LC), this article demonstrates that the Hcrt-LC circuit is critical for tuning sleep-to-wake transitions.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;13(12):1526–U117.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE. Behavioral state instability in orexin knock-out mice. J Neurosci. 2004;24(28):6291–300.

    Article  CAS  PubMed  Google Scholar 

  35. Tsujino N, Tsunematsu T, Uchigashima M, Konno K, Yamanaka A, Kobayashi K, et al. Chronic alterations in monoaminergic cells in the locus coeruleus in orexin neuron-ablated narcoleptic mice. PLoS One. 2013;8(7), e70012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Torrealba F, Yanagisawa M, Saper CB. Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience. 2003;119(4):1033–44.

    Article  CAS  PubMed  Google Scholar 

  37. Eriksson KS, Sergeeva O, Brown RE, Haas HL. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci. 2001;21(23):9273–9.

    CAS  PubMed  Google Scholar 

  38. Schöne C, Cao ZF, Apergis-Schoute J, Adamantidis A, Sakurai T, Burdakov D. Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ. J Neurosci. 2012;32(36):12437–43.

    Article  PubMed  CAS  Google Scholar 

  39. Bassetti CL, Baumann CR, Dauvilliers Y, Croyal M, Robert P, Schwartz JC. Cerebrospinal fluid histamine levels are decreased in patients with narcolepsy and excessive daytime sleepiness of other origin. J Sleep Res. 2010;19(4):620–3.

    Article  PubMed  Google Scholar 

  40. Valko PO, Gavrilov YV, Yamamoto M, Finn K, Reddy H, Haybaeck J, et al. Damage to histaminergic tuberomammillary neurons and other hypothalamic neurons with traumatic brain injury. Ann Neurol. 2015;77(1):177–82.

    Article  PubMed  Google Scholar 

  41. Valko PO, Gavrilov YV, Yamamoto M, Reddy H, Haybaeck J, Mignot E, et al. Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann Neurol. 2013;74(6):794–804.

    Article  CAS  PubMed  Google Scholar 

  42. Eggermann E, Serafin M, Bayer L, Machard D, Saint-Mleux B, Jones BE, et al. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience. 2001;108(2):177–81.

    Article  CAS  PubMed  Google Scholar 

  43. Fadel J, Burk JA. Orexin/hypocretin modulation of the basal forebrain cholinergic system: role in attention. Brain Res. 2010;1314:112–23.

    Article  CAS  PubMed  Google Scholar 

  44. Ishibashi M, Gumenchuk I, Kang B, Steger C, Lynn E, Molina NE, et al. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca(2+)-dependent resonance in LDT and PPT cholinergic neurons. Front Neurol. 2015;6:120.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Irmak SO, de Lecea L. Basal forebrain cholinergic modulation of sleep transitions. Sleep. 2014;37(12):1941–51.

    PubMed  Google Scholar 

  46. Boschen KE, Fadel JR, Burk JA. Systemic and intrabasalis administration of the orexin-1 receptor antagonist, SB-334867, disrupts attentional performance in rats. Psychopharmacology. 2009;206(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  47. Piantadosi PT, Holmes A, Roberts BM, Bailey AM. Orexin receptor activity in the basal forebrain alters performance on an olfactory discrimination task. Brain Res. 2015;1594:215–22.

    Article  CAS  PubMed  Google Scholar 

  48. Alam MN, Kumar S, Suntsova N, Bashir T, Szymusiak R, McGinty D. GABAergic regulation of the perifornical-lateral hypothalamic neurons during non-rapid eye movement sleep in rats. Neuroscience. 2010;167(3):920–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Vazquez-DeRose J, Schwartz MD, Nguyen AT, Warrier DR, Gulati S, Mathew TK et al. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain. Brain Struct Funct. 2014

  50. Avolio E, Alo R, Carelli A, Canonaco M. Amygdalar orexinergic-GABAergic interactions regulate anxiety behaviors of the Syrian golden hamster. Behav Brain Res. 2011;218(2):288–95.

    Article  CAS  PubMed  Google Scholar 

  51. Gottesmann C. GABA mechanisms and sleep. Neuroscience. 2002;111(2):231–9.

    Article  CAS  PubMed  Google Scholar 

  52. Harrison NL. Mechanisms of sleep induction by GABA(A) receptor agonists. J Clin Psychiatry. 2007;68 Suppl 5:6–12.

    CAS  PubMed  Google Scholar 

  53. Matsuki T, Nomiyama M, Takahira H, Hirashima N, Kunita S, Takahashi S, et al. Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci U S A. 2009;106(11):4459–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Apergis-Schoute J, Iordanidou P, Faure C, Jego S, Schone C, Aitta-Aho T, et al. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J Neurosci. 2015;35(14):5435–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Li Y, van den Pol AN. Direct and indirect inhibition by catecholamines of hypocretin/orexin neurons. J Neurosci. 2005;25(1):173–83.

    Article  CAS  PubMed  Google Scholar 

  56. Gotter AL, Garson SL, Stevens J, Munden RL, Fox SV, Tannenbaum PL, et al. Differential sleep-promoting effects of dual orexin receptor antagonists and GABAA receptor modulators. BMC Neurosci. 2014;15:109.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Ida T, Nakahara K, Murakami T, Hanada R, Nakazato M, Murakami N. Possible involvement of orexin in the stress reaction in rats. Biochem Biophys Res Commun. 2000;270(1):318–23.

    Article  CAS  PubMed  Google Scholar 

  58. Sakamoto F, Yamada S, Ueta Y. Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Regul Pept. 2004;118(3):183–91.

    Article  CAS  PubMed  Google Scholar 

  59. Kayaba Y, Nakamura A, Kasuya Y, Ohuchi T, Yanagisawa M, Komuro I, et al. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol-Reg I. 2003;285(3):R581–93.

    Google Scholar 

  60. Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383–95.

    PubMed Central  PubMed  Google Scholar 

  61. Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, et al. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci. 2004;24(50):11439–48.

    Article  CAS  PubMed  Google Scholar 

  62. Winsky-Sommerer R, Boutrel B, de Lecea L. Stress and arousal—the corticotrophin-releasing factor/hypocretin circuitry. Mol Neurobiol. 2005;32(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  63. Bonnavion P, Jackson AC, Carter ME, de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun. 2015;6. This article reveals that Hcrt neurons regulate corticosterone release and peripheral metabolic signals modulate activity of Hcrt neurons in response to stress.

  64. Quarta D, Smolders I. Rewarding, reinforcing and incentive salient events involve orexigenic hypothalamic neuropeptides regulating mesolimbic dopaminergic neurotransmission. Eur J Pharm Sci : Off J Eur Fed Pharm Sci. 2014;57:2–10.

    Article  CAS  Google Scholar 

  65. van den Top M, Lee K, Whyment AD, Blanks AM, Spanswick D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat Neurosci. 2004;7(5):493–4.

    Article  PubMed  CAS  Google Scholar 

  66. Horvath TL, Diano S, van den Pol AN. Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J Neurosci. 1999;19(3):1072–87.

    CAS  PubMed  Google Scholar 

  67. Muroya S, Funahashi H, Yamanaka A, Kohno D, Uramura K, Nambu T, et al. Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca 2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci. 2004;19(6):1524–34.

    Article  PubMed  Google Scholar 

  68. Fu LY, Acuna-Goycolea C, van den Pol AN. Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms: tonic depression of the hypothalamic arousal system. J Neurosci. 2004;24(40):8741–51.

    Article  CAS  PubMed  Google Scholar 

  69. Horvath TL, Abizaid A, Dietrich MO, Li Y, Takahashi JS, Bass J. Ghrelin-immunopositive hypothalamic neurons tie the circadian clock and visual system to the lateral hypothalamic arousal center. Mol Metab. 2012;1(1–2):79–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Toshinai K, Date Y, Murakami N, Shimada M, Mondal MS, Shimbara T, et al. Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology. 2003;144(4):1506–12.

    Article  PubMed  CAS  Google Scholar 

  71. Li X, Marchant NJ, Shaham Y. Opposing roles of cotransmission of dynorphin and hypocretin on reward and motivation. Proc Natl Acad Sci U S A. 2014;111(16):5765–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Crocker A, Espana RA, Papadopoulou M, Saper CB, Faraco J, Sakurai T, et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology. 2005;65(8):1184–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450(7168):420–4.

    Article  CAS  PubMed  Google Scholar 

  74. Brisbare-Roch C, Dingemanse J, Koberstein R, Hoever P, Aissaoui H, Flores S, et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med. 2007;13(2):150–5.

    Article  CAS  PubMed  Google Scholar 

  75. Vassalli A, Dellepiane JM, Emmenegger Y, Jimenez S, Vandi S, Plazzi G, et al. Electroencephalogram paroxysmal theta characterizes cataplexy in mice and children. Brain : J Neurol. 2013;136(Pt 5):1592–608.

    Article  Google Scholar 

  76. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30(2):345–54.

    Article  CAS  PubMed  Google Scholar 

  77. Liu M, Blanco-Centurion C, Konadhode R, Begum S, Pelluru D, Gerashchenko D, et al. Orexin gene transfer into zona incerta neurons suppresses muscle paralysis in narcoleptic mice. J Neurosci. 2011;31(16):6028–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Mieda M, Hasegawa E, Kisanuki YY, Sinton CM, Yanagisawa M, Sakurai T. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci. 2011;31(17):6518–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Burgess CR, Oishi Y, Mochizuki T, Peever JH, Scammell TE. Amygdala lesions reduce cataplexy in orexin knock-out mice. J Neurosci. 2013;33(23):9734–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Elbaz I, Yelin-Bekerman L, Nicenboim J, Vatine G, Appelbaum L. Genetic ablation of hypocretin neurons alters behavioral state transitions in zebrafish. J Neurosci. 2012;32(37):12961–72.

    Article  CAS  PubMed  Google Scholar 

  81. Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci. 2006;26(51):13400–10.

    Article  CAS  PubMed  Google Scholar 

  82. Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem S, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59(10):1553–62.

    Article  PubMed  Google Scholar 

  83. Baier PC, Hallschmid M, Seeck-Hirschner M, Weinhold SL, Burkert S, Diessner N, et al. Effects of intranasal hypocretin-1 (orexin A) on sleep in narcolepsy with cataplexy. Sleep Med. 2011;12(10):941–6.

    Article  CAS  PubMed  Google Scholar 

  84. Dubey AK, Handu SS, Mediratta PK. Suvorexant: the first orexin receptor antagonist to treat insomnia. J Pharmacol Pharmacother. 2015;6(2):118–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Michelson D, Snyder E, Paradis E, Chengan-Liu M, Snavely DB, Hutzelmann J, et al. Safety and efficacy of suvorexant during 1-year treatment of insomnia with subsequent abrupt treatment discontinuation: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2014;13(5):461–71. In this clinical study, suvorexant, a potent and selective Hcrt receptor antagonist, was shown to be effective, safe and well tolerated for treating insomnia.

    Article  CAS  PubMed  Google Scholar 

  86. Hoyer D, Durst T, Fendt M, Jacobson LH, Betschart C, Hintermann S, et al. Distinct effects of IPSU and suvorexant on mouse sleep architecture. Front Neurosci. 2013;7:235.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Han F, Lin L, Warby SC, Faraco J, Li J, Dong SX, et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann Neurol. 2011;70(3):410–7.

    Article  PubMed  Google Scholar 

  88. Heier MS, Gautvik KM, Wannag E, Bronder KH, Midtlyng E, Kamaleri Y, et al. Incidence of narcolepsy in Norwegian children and adolescents after vaccination against H1N1 influenza A. Sleep Med. 2013;14(9):867–71.

    Article  CAS  PubMed  Google Scholar 

  89. Kornum BR, Faraco J, Mignot E. Narcolepsy with hypocretin/orexin deficiency, infections and autoimmunity of the brain. Curr Opin Neurobiol. 2011;21(6):897–903.

    Article  CAS  PubMed  Google Scholar 

  90. Johnson PL, Truitt W, Fitz SD, Minick PE, Dietrich A, Sanghani S, et al. A key role for orexin in panic anxiety. Nat Med. 2010;16(1):111–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Dauvilliers Y, Bayard S, Shneerson JM, Plazzi G, Myers AJ, Garcia-Borreguero D. High pain frequency in narcolepsy with cataplexy. Sleep Med. 2011;12(6):572–7.

    Article  PubMed  Google Scholar 

  92. Watanabe S, Kuwaki T, Yanagisawa M, Fukuda Y, Shimoyama M. Persistent pain and stress activate pain-inhibitory orexin pathways. Neuroreport. 2005;16(1):5–8.

    Article  PubMed  Google Scholar 

  93. Mobarakeh JI, Takahashi K, Sakurada S, Nishino S, Watanabe H, Kato M, et al. Enhanced antinociception by intracerebroventricularly and intrathecally-administered orexin A and B (hypocretin-1 and -2) in mice. Peptides. 2005;26(5):767–77.

    Article  CAS  PubMed  Google Scholar 

  94. Rainero I, Gallone S, Valfre W, Ferrero M, Angilella G, Rivoiro C, et al. A polymorphism of the hypocretin receptor 2 gene is associated with cluster headache. Neurology. 2004;63(7):1286–8.

    Article  CAS  PubMed  Google Scholar 

  95. Hara J, Yanagisawa Y, Sakurai T. Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci Lett. 2005;380(3):239–42.

    Article  CAS  PubMed  Google Scholar 

  96. Haynes AC, Jackson B, Chapman H, Tadayyon M, Johns A, Porter RA, et al. A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul Pept. 2000;96(1–2):45–51.

    Article  CAS  PubMed  Google Scholar 

  97. Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, Sakurai T, et al. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab. 2009;9(1):64–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Burdakov D, Karnani MM, Gonzalez A. Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav. 2013;121:117–24.

    Article  CAS  PubMed  Google Scholar 

  99. Goforth PB, Leinninger GM, Patterson CM, Satin LS, Myers MG. Leptin acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J Neurosci. 2014;34(34):11405–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Karnani MM, Apergis-Schoute J, Adamantidis A, Jensen LT, de Lecea L, Fugger L, et al. Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron. 2011;72(4):616–29.

    Article  CAS  PubMed  Google Scholar 

  101. Tsujino N, Yamanaka A, Ichiki K, Muraki Y, Kilduff TS, Yagami K, et al. Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor. J Neurosci. 2005;25(32):7459–69.

    Article  CAS  PubMed  Google Scholar 

  102. Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D. Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci U S A. 2007;104(25):10685–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 2003;38(5):701–13.

    Article  CAS  PubMed  Google Scholar 

  104. Akiyama M, Yuasa T, Hayasaka N, Horikawa K, Sakurai T, Shibata S. Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice. Eur J Neurosci. 2004;20(11):3054–62.

    Article  PubMed  Google Scholar 

  105. Mieda M, Williams SC, Sinton CM, Richardson JA, Sakurai T, Yanagisawa M. Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J Neurosci. 2004;24(46):10493–501.

    Article  CAS  PubMed  Google Scholar 

  106. Gooley JJ, Schomer A, Saper CB. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci. 2006;9(3):398–407.

    Article  CAS  PubMed  Google Scholar 

  107. Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A. 2006;103(32):12150–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Thorpe AJ, Kotz CM. Orexin A in the nucleus accumbens stimulates feeding and locomotor activity. Brain Res. 2005;1050(1–2):156–62.

    Article  CAS  PubMed  Google Scholar 

  109. Piccoli L, Micioni Di Bonaventura MV, Cifani C, Costantini VJ, Massagrande M, Montanari D, et al. Role of orexin-1 receptor mechanisms on compulsive food consumption in a model of binge eating in female rats. Neuropsychopharmacol : Off Publ Am Coll Neuropsychopharmacol. 2012;37(9):1999–2011.

    Article  CAS  Google Scholar 

  110. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003;289(23):3095–105.

    Article  PubMed  Google Scholar 

  111. Nollet M, Leman S. Role of orexin in the pathophysiology of depression: potential for pharmacological intervention. CNS Drugs. 2013;27(6):411–22.

    Article  CAS  PubMed  Google Scholar 

  112. Kim TK, Kim JE, Park JY, Lee JE, Choi J, Kim H, et al. Antidepressant effects of exercise are produced via suppression of hypocretin/orexin and melanin-concentrating hormone in the basolateral amygdala. Neurobiol Dis. 2015;79:59–69.

    Article  CAS  PubMed  Google Scholar 

  113. Nollet M, Gaillard P, Minier F, Tanti A, Belzung C, Leman S. Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression. Neuropharmacology. 2011;61(1–2):336–46.

    Article  CAS  PubMed  Google Scholar 

  114. Jalewa J, Wong-Lin K, McGinnity TM, Prasad G, Holscher C. Increased number of orexin/hypocretin neurons with high and prolonged external stress-induced depression. Behav Brain Res. 2014;272:196–204.

    Article  CAS  PubMed  Google Scholar 

  115. Mikrouli E, Wortwein G, Soylu R, Mathe AA, Petersen A. Increased numbers of orexin/hypocretin neurons in a genetic rat depression model. Neuropeptides. 2011;45(6):401–6.

    Article  CAS  PubMed  Google Scholar 

  116. James MH, Campbell EJ, Walker FR, Smith DW, Richardson HN, Hodgson DM, et al. Exercise reverses the effects of early life stress on orexin cell reactivity in male but not female rats. Front Behav Neurosci. 2014;8:244.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Cho CH, Lee HJ, Woo HG, Choi JH, Greenwood TA, Kelsoe JR. CDH13 and HCRTR2 may be associated with hypersomnia symptom of bipolar depression: a genome-wide functional enrichment pathway analysis. Psychiatr Invest. 2015;12(3):402–7.

    Article  Google Scholar 

  118. Schmidt FM, Arendt E, Steinmetzer A, Bruegel M, Kratzsch J, Strauss M, et al. CSF-hypocretin-1 levels in patients with major depressive disorder compared to healthy controls. Psychiatry Res. 2011;190(2–3):240–3.

    Article  CAS  PubMed  Google Scholar 

  119. Salomon RM, Ripley B, Kennedy JS, Johnson B, Schmidt D, Zeitzer JM, et al. Diurnal variation of cerebrospinal fluid hypocretin-1 (orexin-A) levels in control and depressed subjects. Biol Psychiatry. 2003;54(2):96–104.

    Article  CAS  PubMed  Google Scholar 

  120. Nocjar C, Zhang J, Feng P, Panksepp J. The social defeat animal model of depression shows diminished levels of orexin in mesocortical regions of the dopamine system, and of dynorphin and orexin in the hypothalamus. Neuroscience. 2012;218:138–53.

    Article  CAS  PubMed  Google Scholar 

  121. Scott MM, Marcus JN, Pettersen A, Birnbaum SG, Mochizuki T, Scammell TE, et al. Hcrtr1 and 2 signaling differentially regulates depression-like behaviors. Behav Brain Res. 2011;222(2):289–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Arendt DH, Ronan PJ, Oliver KD, Callahan LB, Summers TR, Summers CH. Depressive behavior and activation of the orexin/hypocretin system. Behav Neurosci. 2013;127(1):86–94.

    Article  CAS  PubMed  Google Scholar 

  123. Huang YS, Guilleminault C, Chen CH, Lai PC, Hwang FM. Narcolepsy-cataplexy and schizophrenia in adolescents. Sleep Med. 2014;15(1):15–22.

    Article  PubMed  Google Scholar 

  124. Lambe EK, Liu RJ, Aghajanian GK. Schizophrenia, hypocretin (orexin), and the thalamocortical activating system. Schizophr Bull. 2007;33(6):1284–90.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Chien YL, Liu CM, Shan JC, Lee HJ, Hsieh MH, Hwu HG, et al. Elevated plasma orexin A levels in a subgroup of patients with schizophrenia associated with fewer negative and disorganized symptoms. Psychoneuroendocrinology. 2015;53:1–9.

    Article  CAS  PubMed  Google Scholar 

  126. Borgland SL, Labouebe G. Orexin/hypocretin in psychiatric disorders: present state of knowledge and future potential. Neuropsychopharmacol : Off Publ Am Coll Neuropsychopharmacol. 2010;35(1):353–4.

    Article  Google Scholar 

  127. Dalal MA, Schuld A, Pollmacher T. Lower CSF orexin A (hypocretin-1) levels in patients with schizophrenia treated with haloperidol compared to unmedicated subjects. Mol Psychiatry. 2003;8(10):836–7.

    Article  CAS  PubMed  Google Scholar 

  128. Annerbrink K, Westberg L, Olsson M, Andersch S, Sjodin I, Holm G, et al. Panic disorder is associated with the Val308Iso polymorphism in the hypocretin receptor gene. Psychiatr Genet. 2011;21(2):85–9.

    Article  PubMed  Google Scholar 

  129. Johnson PL, Samuels BC, Fitz SD, Federici LM, Hammes N, Early MC, et al. Orexin 1 receptors are a novel target to modulate panic responses and the panic brain network. Physiol Behav. 2012;107(5):733–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Fortuyn HA, Lappenschaar MA, Furer JW, Hodiamont PP, Rijnders CA, Renier WO, et al. Anxiety and mood disorders in narcolepsy: a case-control study. Gen Hosp Psychiatry. 2010;32(1):49–56.

    Article  PubMed  Google Scholar 

  131. Fronczek R, van Geest S, Frolich M, Overeem S, Roelandse FW, Lammers GJ, et al. Hypocretin (orexin) loss in Alzheimer’s disease. Neurobiol Aging. 2012;33(8):1642–50.

    Article  CAS  PubMed  Google Scholar 

  132. Kasanuki K, Iseki E, Kondo D, Fujishiro H, Minegishi M, Sato K, et al. Neuropathological investigation of hypocretin expression in brains of dementia with Lewy bodies. Neurosci Lett. 2014;569:68–73.

    Article  CAS  PubMed  Google Scholar 

  133. Wienecke M, Werth E, Poryazova R, Baumann-Vogel H, Bassetti CL, Weller M, et al. Progressive dopamine and hypocretin deficiencies in Parkinson’s disease: is there an impact on sleep and wakefulness? J Sleep Res. 2012;21(6):710–7.

    Article  PubMed  Google Scholar 

  134. Drouot X, Moutereau S, Lefaucheur JP, Palfi S, Covali-Noroc A, Margarit L, et al. Low level of ventricular CSF orexin-A is not associated with objective sleepiness in PD. Sleep Med. 2011;12(9):936–7.

    Article  CAS  PubMed  Google Scholar 

  135. Chang GQ, Karatayev O, Liang SC, Barson JR, Leibowitz SF. Prenatal ethanol exposure stimulates neurogenesis in hypothalamic and limbic peptide systems: possible mechanism for offspring ethanol overconsumption. Neuroscience. 2012;222:417–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Chang GQ, Karatayev O, Leibowitz SF. Prenatal exposure to nicotine stimulates neurogenesis of orexigenic peptide-expressing neurons in hypothalamus and amygdala. J Neurosci. 2013;33(34):13600–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Morgan AJ, Harrod SB, Lacy RT, Stanley EM, Fadel JR. Intravenous prenatal nicotine exposure increases orexin expression in the lateral hypothalamus and orexin innervation of the ventral tegmental area in adult male rats. Drug Alcohol Depend. 2013;132(3):562–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Braun SM, Jessberger S. Adult neurogenesis: mechanisms and functional significance. Development. 2014;141(10):1983–6.

    Article  CAS  PubMed  Google Scholar 

  139. Hsieh J. Orchestrating transcriptional control of adult neurogenesis. Genes Dev. 2012;26(10):1010–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A. 2001;98(8):4710–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Mirescu C, Peters JD, Noiman L, Gould E. Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. Proc Natl Acad Sci U S A. 2006;103(50):19170–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Haan N, Goodman T, Najdi-Samiei A, Stratford CM, Rice R, El Agha E, et al. Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci. 2013;33(14):6170–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci. 2012;15(5):700–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Lee DA, Yoo S, Pak T, Salvatierra J, Velarde E, Aja S et al. Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Frontiers in Neuroscience. 2014;8.

  146. Pierce AA, Xu AW. De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci. 2010;30(2):723–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Sousa-Ferreira L, Alvaro AR, Aveleira C, Santana M, Brandao I, Kugler S et al. Proliferative hypothalamic neurospheres express NPY, AGRP, POMC, CART and orexin-A and differentiate to functional neurons. PloS one. 2011;6(5).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis de Lecea.

Ethics declarations

Conflict of Interest

The de Lecea laboratory receives funding from Merck and Johnson & Johnson.

Shi-Bin Li, Jeff R. Jones, and Luis de Lecea declare that they have no other conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sleep Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SB., Jones, J.R. & de Lecea, L. Hypocretins, Neural Systems, Physiology, and Psychiatric Disorders. Curr Psychiatry Rep 18, 7 (2016). https://doi.org/10.1007/s11920-015-0639-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-015-0639-0

Keywords

Navigation