Skip to main content

Advertisement

Log in

Animal Models of Chronic Migraine

  • Chronic Daily Headache (SJ Wang, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chronic migraine (CM) is a recalcitrant subtype of migraine which causes high degrees of disability, poor treatment responses, and frequent recurrences in sufferers. However, the pathophysiological mechanisms underlying the development and chronification of migraine attacks remain incompletely understood. A validated animal model could help to decipher the pathogenic mechanism of the disease, facilitating the development of possible therapeutic strategies for CM. In this review, we aimed to summarize current animal models of CM and discuss the validity of these models.

Recent Findings

Several methods have been available to induce recurrent headache-like behaviors or biochemical changes in rodents, including repeated dural application of inflammatory soup, chronic systemic infusion of nitroglycerin, repeated administration of acute migraine abortive treatment to simulate medication overuse headache, or genetic modification. These models exhibit some features that are believed to be associated with migraine; however, none of the model can recapitulate all the clinical phenotypes found in humans and each has its own weakness.

Summary

The complex features of CM increase the difficulty of constructing a proper animal model. Nonetheless, currently available models are valid to certain degrees. Future directions might consider simulating the spontaneity and chronicity of migraine by combining known genetic substrates and allostatic loads into the same model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Natoli JL, Manack A, Dean B, Butler Q, Turkel CC, Stovner L, et al. Global prevalence of chronic migraine: a systematic review. Cephalalgia. 2010;30(5):599–609.

    Article  PubMed  CAS  Google Scholar 

  2. Stark RJ, Ravishankar K, Siow HC, Lee KS, Pepperle R, Wang SJ. Chronic migraine and chronic daily headache in the Asia-Pacific region: a systematic review. Cephalalgia. 2013;33(4):266–83.

    Article  PubMed  Google Scholar 

  3. The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211.

  4. Lipton RB. Tracing transformation: chronic migraine classification, progression, and epidemiology. Neurology. 2009;72(5 Suppl):S3–7.

    Article  PubMed  Google Scholar 

  5. •• May A, Schulte LH. Chronic migraine: risk factors, mechanisms and treatment. Nat Rev Neurol. 2016;12(8):455–64. A comprehensive review for the clinical features and proposed pathophysiology of chronic migraine

    Article  PubMed  CAS  Google Scholar 

  6. Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Hypothalamic activation in spontaneous migraine attacks. Headache. 2007;47(10):1418–26.

    PubMed  Google Scholar 

  7. Welch KM, et al. Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness? Headache. 2001;41(7):629–37.

    Article  PubMed  CAS  Google Scholar 

  8. Cernuda-Morollon E, et al. Increased VIP levels in peripheral blood outside migraine attacks as a potential biomarker of cranial parasympathetic activation in chronic migraine. Cephalalgia. 2015;35(4):310–6.

    Article  PubMed  Google Scholar 

  9. Cernuda-Morollon E, Larrosa D, Ramon C, Vega J, Martinez-Camblor P, Pascual J. Interictal increase of CGRP levels in peripheral blood as a biomarker for chronic migraine. Neurology. 2013;81(14):1191–6.

    Article  PubMed  CAS  Google Scholar 

  10. Melo-Carrillo A, Lopez-Avila A. A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia. 2013;33(13):1096–105.

    Article  PubMed  Google Scholar 

  11. Schwedt TJ, Schlaggar BL, Mar S, Nolan T, Coalson RS, Nardos B, et al. Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache. 2013;53(5):737–51.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Coppola G, Iacovelli E, Bracaglia M, Serrao M, di Lorenzo C, Pierelli F. Electrophysiological correlates of episodic migraine chronification: evidence for thalamic involvement. J Headache Pain. 2013;14:76.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Burstein R, Jakubowski M, Garcia-Nicas E, Kainz V, Bajwa Z, Hargreaves R, et al. Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol. 2010;68(1):81–91.

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Felice M, et al. Triptan-induced latent sensitization: a possible basis for medication overuse headache. Ann Neurol. 2010;67(3):325–37.

    PubMed  PubMed Central  Google Scholar 

  15. De Felice M, et al. Triptan-induced enhancement of neuronal nitric oxide synthase in trigeminal ganglion dural afferents underlies increased responsiveness to potential migraine triggers. Brain. 2010;133(8):2475–88.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Green AL, Gu P, de Felice M, Dodick D, Ossipov MH, Porreca F. Increased susceptibility to cortical spreading depression in an animal model of medication-overuse headache. Cephalalgia. 2014;34(8):594–604.

    Article  PubMed  Google Scholar 

  17. Bigal ME, Lipton RB. What predicts the change from episodic to chronic migraine? Curr Opin Neurol. 2009;22(3):269–76.

    Article  PubMed  Google Scholar 

  18. Supornsilpchai W, le Grand SM, Srikiatkhachorn A. Cortical hyperexcitability and mechanism of medication-overuse headache. Cephalalgia. 2010;30(9):1101–9.

    Article  PubMed  Google Scholar 

  19. Schulte LH, Sprenger C, May A. Physiological brainstem mechanisms of trigeminal nociception: an fMRI study at 3T. NeuroImage. 2016;124(Pt A):518–25.

    Article  PubMed  Google Scholar 

  20. Weiller C, May A, Limmroth V, Jüptner M, Kaube H, Schayck RV, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1(7):658–60.

    Article  PubMed  CAS  Google Scholar 

  21. Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12(10):570–84.

    Article  PubMed  CAS  Google Scholar 

  22. Lai TH, Fuh JL, Lirng JF, Lin CP, Wang SJ. Brainstem 1H-MR spectroscopy in episodic and chronic migraine. J Headache Pain. 2012;13(8):645–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Aurora SK, et al. Brainstem dysfunction in chronic migraine as evidenced by neurophysiological and positron emission tomography studies. Headache. 2007;47(7):996–1003. discussion 1004–7

    Article  PubMed  Google Scholar 

  24. Bergerot A, Holland PR, Akerman S, Bartsch T, Ahn AH, MaassenVanDenBrink A, et al. Animal models of migraine: looking at the component parts of a complex disorder. Eur J Neurosci. 2006;24(6):1517–34.

    Article  PubMed  CAS  Google Scholar 

  25. Jansen-Olesen I, Tfelt-Hansen P, Olesen J. Animal migraine models for drug development: status and future perspectives. CNS Drugs. 2013;27(12):1049–68.

    Article  PubMed  CAS  Google Scholar 

  26. Munro G, Jansen-Olesen I, Olesen J. Animal models of pain and migraine in drug discovery. Drug Discov Today. 2017;22(7):1103–11.

    Article  PubMed  CAS  Google Scholar 

  27. Storer RJ, Supronsinchai W, Srikiatkhachorn A. Animal models of chronic migraine. Curr Pain Headache Rep. 2015;19(1):467.

    Article  PubMed  Google Scholar 

  28. Eikermann-Haerter K, Moskowitz MA. Animal models of migraine headache and aura. Curr Opin Neurol. 2008;21(3):294–300.

    Article  PubMed  Google Scholar 

  29. Chen SP, Ayata C. Novel therapeutic targets against spreading depression. Headache. 2017;57(9):1340–58.

    Article  PubMed  Google Scholar 

  30. Hoskin KL, Goadsby PJ. Comparison of more and less lipophilic serotonin (5HT1B/1D) agonists in a model of trigeminovascular nociception in cat. Exp Neurol. 1998;150(1):45–51.

    Article  PubMed  CAS  Google Scholar 

  31. Williamson DJ, Shepheard SL, Hill RG, Hargreaves RJ. The novel anti-migraine agent rizatriptan inhibits neurogenic dural vasodilation and extravasation. Eur J Pharmacol. 1997;328(1):61–4.

    Article  PubMed  CAS  Google Scholar 

  32. Goadsby PJ, Edvinsson L. Joint 1994 Wolff Award Presentation. Peripheral and central trigeminovascular activation in cat is blocked by the serotonin (5HT)-1D receptor agonist 311C90. Headache. 1994;34(7):394–9.

    Article  PubMed  CAS  Google Scholar 

  33. Bigal ME, et al. Migraine in the triptan era: lessons from epidemiology, pathophysiology, and clinical science. Headache. 2009;49(Suppl 1):S21–33.

    Article  PubMed  Google Scholar 

  34. Zagami AS, Goadsby PJ, Edvinsson L. Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides. 1990;16(2):69–75.

    Article  PubMed  CAS  Google Scholar 

  35. Buzzi MG, Carter WB, Shimizu T, Heath H 3rd, Moskowitz MA. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology. 1991;30(11):1193–200.

    Article  PubMed  CAS  Google Scholar 

  36. Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol. 1993;33(1):48–56.

    Article  PubMed  CAS  Google Scholar 

  37. Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004;350(11):1104–10.

    Article  PubMed  CAS  Google Scholar 

  38. Ho TW, Ferrari MD, Dodick DW, Galet V, Kost J, Fan X, et al. Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet. 2008;372(9656):2115–23.

    Article  PubMed  CAS  Google Scholar 

  39. Voss T, Lipton RB, Dodick DW, Dupre N, Ge JY, Bachman R, et al. A phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia. 2016;36(9):887–98.

    Article  PubMed  Google Scholar 

  40. Dodick DW, Goadsby PJ, Silberstein SD, Lipton RB, Olesen J, Ashina M, et al. Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, double-blind, placebo-controlled, exploratory phase 2 trial. Lancet Neurol. 2014;13(11):1100–7.

    Article  PubMed  CAS  Google Scholar 

  41. Bigal ME, Edvinsson L, Rapoport AM, Lipton RB, Spierings ELH, Diener HC, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of chronic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol. 2015;14(11):1091–100.

    Article  PubMed  CAS  Google Scholar 

  42. Bigal ME, Dodick DW, Rapoport AM, Silberstein SD, Ma Y, Yang R, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol. 2015;14(11):1081–90.

    Article  PubMed  CAS  Google Scholar 

  43. Sun H, Dodick DW, Silberstein S, Goadsby PJ, Reuter U, Ashina M, et al. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(4):382–90.

    Article  PubMed  CAS  Google Scholar 

  44. Dodick DW, Goadsby PJ, Spierings ELH, Scherer JC, Sweeney SP, Grayzel DS. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2014;13(9):885–92.

    Article  PubMed  CAS  Google Scholar 

  45. •• Silberstein SD, et al. Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med. 2017;377(22):2113–22. A phase 3 trial showing that CGRP monoclonal antibody is effective for chronic migraine, which might serve as a positive control to test the predictive validity of animal models

    Article  PubMed  CAS  Google Scholar 

  46. Belzung C, Lemoine M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol Mood Anxiety Disord. 2011;1(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu HY, Fuh JL, Lin YY, Chen WT, Wang SJ. Suicide risk in patients with migraine and comorbid fibromyalgia. Neurology. 2015;85(12):1017–23.

    Article  PubMed  CAS  Google Scholar 

  48. Kao CH, Wang SJ, Tsai CF, Chen SP, Wang YF, Fuh JL. Psychiatric comorbidities in allodynic migraineurs. Cephalalgia. 2014;34(3):211–8.

    Article  PubMed  Google Scholar 

  49. Chen YC, Tang CH, Ng K, Wang SJ. Comorbidity profiles of chronic migraine sufferers in a national database in Taiwan. J Headache Pain. 2012;13(4):311–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hamelsky SW, Lipton RB. Psychiatric comorbidity of migraine. Headache. 2006;46(9):1327–33.

    Article  PubMed  Google Scholar 

  51. Oh K, et al. Combination of anxiety and depression is associated with an increased headache frequency in migraineurs: a population-based study. BMC Neurol. 2014;14:238.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Peterlin BL, Katsnelson MJ, Calhoun AH. The associations between migraine, unipolar psychiatric comorbidities, and stress-related disorders and the role of estrogen. Curr Pain Headache Rep. 2009;13(5):404–12.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang SJ, Chen PK, Fuh JL. Comorbidities of migraine. Front Neurol. 2010;1:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bigal ME, Lipton RB. Overuse of acute migraine medications and migraine chronification. Curr Pain Headache Rep. 2009;13(4):301–7.

    Article  PubMed  Google Scholar 

  55. Bigal ME, Serrano D, Buse D, Scher A, Stewart WF, Lipton RB. Acute migraine medications and evolution from episodic to chronic migraine: a longitudinal population-based study. Headache. 2008;48(8):1157–68.

    Article  PubMed  Google Scholar 

  56. Wang SJ, Fuh JL, Lu SR, Juang KD. Chronic daily headache in adolescents: prevalence, impact, and medication overuse. Neurology. 2006;66(2):193–7.

    Article  PubMed  Google Scholar 

  57. Ferrari LF, Levine JD, Green PG. Mechanisms mediating nitroglycerin-induced delayed-onset hyperalgesia in the rat. Neuroscience. 2016;317:121–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tipton AF, Tarash I, McGuire B, Charles A, Pradhan AA. The effects of acute and preventive migraine therapies in a mouse model of chronic migraine. Cephalalgia. 2016;36(11):1048–56.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Oshinsky ML, Sanghvi MM, Maxwell CR, Gonzalez D, Spangenberg RJ, Cooper M, et al. Spontaneous trigeminal allodynia in rats: a model of primary headache. Headache. 2012;52(9):1336–49.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Boyer N, Dallel R, Artola A, Monconduit L. General trigeminospinal central sensitization and impaired descending pain inhibitory controls contribute to migraine progression. Pain. 2014;155(7):1196–205.

    Article  PubMed  Google Scholar 

  61. De Felice M, et al. Capturing the aversive state of cephalic pain preclinically. Ann Neurol. 2013;74(2):257–65.

    PubMed  PubMed Central  Google Scholar 

  62. Oshinsky ML, Gomonchareonsiri S. Episodic dural stimulation in awake rats: a model for recurrent headache. Headache. 2007;47(7):1026–36.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sufka KJ, Staszko SM, Johnson AP, Davis ME, Davis RE, Smitherman TA. Clinically relevant behavioral endpoints in a recurrent nitroglycerin migraine model in rats. J Headache Pain. 2016;17:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhang M, Liu Y, Zhao M, Tang W, Wang X, Dong Z, et al. Depression and anxiety behaviour in a rat model of chronic migraine. J Headache Pain. 2017;18(1):27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Chanda ML, Tuttle AH, Baran I, Atlin C, Guindi D, Hathaway G, et al. Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. Pain. 2013;154(8):1254–62.

    Article  PubMed  Google Scholar 

  66. Baliki MN, Apkarian AV. Nociception, pain, negative moods, and behavior selection. Neuron. 2015;87(3):474–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci. 2016;18(1):20–30.

    Article  PubMed  CAS  Google Scholar 

  68. Dodick D, Silberstein S. Central sensitization theory of migraine: clinical implications. Headache. 2006;46(Suppl 4):S182–91.

    Article  PubMed  Google Scholar 

  69. Malick A, Burstein R. Peripheral and central sensitization during migraine. Funct Neurol. 2000;15(Suppl 3):28–35.

    PubMed  Google Scholar 

  70. Dodick D, Silberstein S. Central sensitization theory of migraine: clinical implications. Headache: J Head Face Pain. 2006;46:S182–91.

    Article  Google Scholar 

  71. Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol. 2013;75:365–91.

    Article  PubMed  CAS  Google Scholar 

  72. Goadsby PJ, Lipton RB, Ferrari MD. Migraine—current understanding and treatment. N Engl J Med. 2002;346(4):257–70.

    Article  PubMed  CAS  Google Scholar 

  73. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8(2):136–42.

    Article  PubMed  CAS  Google Scholar 

  74. Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH. An association between migraine and cutaneous allodynia. Ann Neurol. 2000;47(5):614–24.

    Article  PubMed  CAS  Google Scholar 

  75. Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Noseda R, Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain. 2013;154(Suppl 1):S44–53.

    Article  PubMed  CAS  Google Scholar 

  77. De Felice M, Ossipov MH, Porreca F. Update on medication-overuse headache. Curr Pain Headache Rep. 2011;15(1):79–83.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Silberstein SD, Lipton RB, Dodick DW, Freitag FG, Ramadan N, Mathew N, et al. Efficacy and safety of topiramate for the treatment of chronic migraine: a randomized, double-blind, placebo-controlled trial. Headache. 2007;47(2):170–80.

    Article  PubMed  Google Scholar 

  79. Whiteside GT, Adedoyin A, Leventhal L. Predictive validity of animal pain models? A comparison of the pharmacokinetic-pharmacodynamic relationship for pain drugs in rats and humans. Neuropharmacology. 2008;54(5):767–75.

    Article  PubMed  CAS  Google Scholar 

  80. Berge O-G. Predictive validity of behavioural animal models for chronic pain. Br J Pharmacol. 2011;164(4):1195–206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Rice AS, Cimino-Brown D, Eisenach JC, Kontinen VK, Lacroix-Fralish ML, Machin I, et al. Animal models and the prediction of efficacy in clinical trials of analgesic drugs: a critical appraisal and call for uniform reporting standards. Pain. 2008;139(2):243–7.

    Article  PubMed  Google Scholar 

  82. Stucky NL, Gregory E, Winter MK, He YY, Hamilton ES, McCarson KE, et al. Sex differences in behavior and expression of CGRP-related genes in a rodent model of chronic migraine. Headache. 2011;51(5):674–92.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fried NT, et al. Region-specific disruption of the blood-brain barrier following repeated inflammatory dural stimulation in a rat model of chronic trigeminal allodynia. Cephalalgia. 2018;38(4):674–89.

  84. • Pradhan AA, et al. Characterization of a novel model of chronic migraine. Pain. 2014;155(2):269–74. The first mouse model showing that repetitive nitroglycerin infusion could elicit prolonged mechanical hyperalgesia simulating the behavior during the chronification of migraine

    Article  PubMed  CAS  Google Scholar 

  85. Kim SJ, et al. Differential development of facial and hind paw allodynia in a nitroglycerin-induced mouse model of chronic migraine; role of capsaicin sensitive primary afferents. Biol Pharm Bull. 2018;41(2):172–81.

  86. Ben Aissa, M., et al., Soluble guanylyl cyclase is a critical regulator of migraine-associated pain. Cephalalgia, 2017: p. 333102417737778.

  87. Yisarakun W, Chantong C, Supornsilpchai W, Thongtan T, Srikiatkhachorn A, Reuangwechvorachai P, et al. Up-regulation of calcitonin gene-related peptide in trigeminal ganglion following chronic exposure to paracetamol in a CSD migraine animal model. Neuropeptides. 2015;51:9–16.

    Article  PubMed  CAS  Google Scholar 

  88. Harris HM, Carpenter JM, Black JR, Smitherman TA, Sufka KJ. The effects of repeated nitroglycerin administrations in rats; modeling migraine-related endpoints and chronification. J Neurosci Methods. 2017;284:63–70.

    Article  PubMed  CAS  Google Scholar 

  89. Becerra L, Bishop J, Barmettler G, Xie Y, Navratilova E, Porreca F, et al. Triptans disrupt brain networks and promote stress-induced CSD-like responses in cortical and subcortical areas. J Neurophysiol. 2016;115(1):208–17.

    Article  PubMed  CAS  Google Scholar 

  90. Wanasuntronwong A, Jansri U, Srikiatkhachorn A. Neural hyperactivity in the amygdala induced by chronic treatment of rats with analgesics may elucidate the mechanisms underlying psychiatric comorbidities associated with medication-overuse headache. BMC Neurosci. 2017;18(1):1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Sukhotinsky I, Dilekoz E, Wang Y, Qin T, Eikermann-Haerter K, Waeber C, et al. Chronic daily cortical spreading depressions suppress spreading depression susceptibility. Cephalalgia. 2011;31(16):1601–8.

    Article  PubMed  Google Scholar 

  92. Chen SP, Tolner EA, Eikermann-Haerter K. Animal models of monogenic migraine. Cephalalgia. 2016;36(7):704–21.

    Article  PubMed  Google Scholar 

  93. Diener HC, Dodick DW, Goadsby PJ, Lipton RB, Olesen J, Silberstein SD. Chronic migraine—classification, characteristics and treatment. Nat Rev Neurol. 2012;8(3):162–71.

    Article  PubMed  CAS  Google Scholar 

  94. Goadsby PJ, Hargreaves R. Refractory migraine and chronic migraine: pathophysiological mechanisms. Headache. 2008;48(9):1399–405.

    Article  PubMed  Google Scholar 

  95. Goadsby PJ. Pathophysiology of migraine. Ann Indian Acad Neurol. 2012;15(Suppl 1):S15–22.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Schulte LH, Allers A, May A. Hypothalamus as a mediator of chronic migraine: evidence from high-resolution fMRI. Neurology. 2017;88(21):2011–6.

    Article  PubMed  Google Scholar 

  97. Xie JY, de Felice M, Kopruszinski CM, Eyde N, LaVigne J, Remeniuk B, et al. Kappa opioid receptor antagonists: a possible new class of therapeutics for migraine prevention. Cephalalgia. 2017;37(8):780–94.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Anttila V, et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet. 2013;45(8):912–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Chen, S.P., et al., Genome-wide association study identifies novel susceptibility loci for migraine in Han Chinese resided in Taiwan. Cephalalgia, 2018;38(3):466–75.

  100. Borsook D, Maleki N, Becerra L, McEwen B. Understanding migraine through the lens of maladaptive stress responses: a model disease of allostatic load. Neuron. 2012;73(2):219–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Pin Chen.

Ethics declarations

Conflict of Interest

Tse-Ming Chou and Shih-Pin Chen declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Chronic Daily Headache

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, TM., Chen, SP. Animal Models of Chronic Migraine. Curr Pain Headache Rep 22, 44 (2018). https://doi.org/10.1007/s11916-018-0693-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-018-0693-5

Keywords

Navigation