Skip to main content

Advertisement

Log in

Animal Models of Chronic Migraine

  • Chronic Daily Headache (SJ Wang, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Many animal models of migraine have been described. Some of them have been useful in the development of new therapies. All of them have their shortcomings. Animal models of chronic migraine have been relatively less frequently described. Whether a rigid distinction between episodic and chronic migraine is useful when their underlying pathophysiology is likely to be the same and that migraine frequency probably depends on complex polygenic influences remains to be determined. Any model of chronic migraine must reflect the chronicity of the disorder and be reliable and validated with pharmacological interventions. Future animal models of chronic migraine are likely to involve recurrent activation of the trigeminal nociceptive system. Valid models would provide a means for investigating pathophysiological mechanism of the transformation from episodic to chronic migraine and may also be used to test the efficacy of potential preventive medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol. 2014;87:162–71.

    Article  CAS  PubMed  Google Scholar 

  2. Nuffield Council on Bioethics. The ethics of research involving animals. London: Nuffield Council on Bioethics; 2005.

  3. Humphrey PP. How it started. Cephalalgia. 2001;21 Suppl 1:2–5.

    Article  PubMed  Google Scholar 

  4. Tepper SJ, Stillman MJ. Clinical and preclinical rationale for CGRP-receptor antagonists in the treatment of migraine. Headache. 2008;48:1259–68.

    Article  PubMed  Google Scholar 

  5. Headache Classification Committee of the International Headache Society (IHS). The international classification of headache disorders, 3rd edition (beta version). Cephalalgia. 2013;33:629–808. The most current classification scheme for headache disorders.

    Article  Google Scholar 

  6. Mathew NT. Pathophysiology of chronic migraine and mode of action of preventive medications. Headache. 2011;51 Suppl 2:84–92.

    Article  PubMed  Google Scholar 

  7. McGonigle P. Animal models of CNS disorders. Biochem Pharmacol. 2014;87:140–9. Review that dicusses the validity of animal models of neurological disorders.

    Article  CAS  PubMed  Google Scholar 

  8. Gasparini CF, Sutherland HG, Griffiths LR. Studies on the pathophysiology and genetic basis of migraine. Curr Genomics. 2013;14:300–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Eising E, de Vries B, Ferrari MD, Terwindt GM, van den Maagdenberg AM. Pearls and pitfalls in genetic studies of migraine. Cephalalgia. 2013;33:614–25.

    Article  PubMed  Google Scholar 

  10. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Willner P. The validity of animal models of depression. Psychopharmacology (Berl). 1984;83:1–16.

    Article  CAS  Google Scholar 

  12. Geyer MA, Markou A. Animal models of psychiatric disorders. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology: the fourth generation of progress. New York: Raven; 1995. p. 787–98.

    Google Scholar 

  13. Mogil JS. Animal models of pain: progress and challenges. Nat Rev Neurosci. 2009;10:283–94.

    Article  CAS  PubMed  Google Scholar 

  14. Romero-Reyes M, Ye Y. Pearls and pitfalls in experimental in vivo models of headache: conscious behavioral research. Cephalalgia. 2013;33:566–76.

    Article  PubMed  Google Scholar 

  15. Roon KI, Olesen J, Diener HC, Ellis P, Hettiarachchi J, Poole PH, et al. No acute antimigraine efficacy of CP-122,288, a highly potent inhibitor of neurogenic inflammation: results of two randomized, double-blind, placebo-controlled clinical trials. Ann Neurol. 2000;47:238–41.

    Article  CAS  PubMed  Google Scholar 

  16. Goadsby PJ, Hoskin KL. Differential effects of low dose CP122,288 and eletriptan on Fos expression due to stimulation of the superior sagittal sinus in cat. Pain. 1999;82:15–22.

    Article  CAS  PubMed  Google Scholar 

  17. Goldstein DJ, Wang O, Saper JR, Stoltz R, Silberstein SD, Mathew NT. Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia. 1997;17:785–90.

    Article  CAS  PubMed  Google Scholar 

  18. Goadsby PJ, Hoskin KL, Knight YE. Substance P blockade with the potent and centrally acting antagonist GR205171 does not effect central trigeminal activity with superior sagittal sinus stimulation. Neuroscience. 1998;86:337–43.

    Article  CAS  PubMed  Google Scholar 

  19. Bergerot A, Holland PR, Akerman S, Bartsch T, Ahn AH, MaassenVanDenBrink A, et al. Animal models of migraine: looking at the component parts of a complex disorder. Eur J Neurosci. 2006;24:1517–34.

    Article  CAS  PubMed  Google Scholar 

  20. Andreou AP, Summ O, Charbit AR, Romero-Reyes M, Goadsby PJ. Animal models of headache: from bedside to bench and back to bedside. Expert Rev Neurother. 2010;10:389–411.

    Article  PubMed  Google Scholar 

  21. Akerman S, Holland PR, Hoffmann J. Pearls and pitfalls in experimental in vivo models of migraine: dural trigeminovascular nociception. Cephalalgia. 2013;33:577–92. Review of animal models of migraine based on activation of the trigeminal system that addresses their caveats.

    Article  PubMed  Google Scholar 

  22. Ayata C. Pearls and pitfalls in experimental models of spreading depression. Cephalalgia. 2013;33:604–13.

    Article  PubMed  Google Scholar 

  23. De Felice M, Ossipov MH, Porreca F. Persistent medication-induced neural adaptations, descending facilitation, and medication overuse headache. Curr Opin Neurol. 2011;24:193–6.

    Article  PubMed  Google Scholar 

  24. Gould TD, Gottesman II. Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav. 2006;5:113–9.

    Article  CAS  PubMed  Google Scholar 

  25. van den Maagdenberg AM, Pizzorusso T, Kaja S, Terpolilli N, Shapovalova M, Hoebeek FE, et al. High cortical spreading depression susceptibility and migraine-associated symptoms in Ca(v)2.1 S218L mice. Ann Neurol. 2010;67:85–98.

    Article  PubMed  Google Scholar 

  26. Brennan KC, Bates EA, Shapiro RE, Zyuzin J, Hallows WC, Huang Y, et al. Casein kinase Iδ mutations in familial migraine and advanced sleep phase. Sci Transl Med. 2013;5:183ra56:1–11.

    Google Scholar 

  27. Russo AF, Kuburas A, Kaiser EA, Raddant AC, Recober A. A potential preclinical migraine model: CGRP-sensitized mice. Mol Cell Pharmacol. 2009;1:264–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Anttila V, Winsvold BS, Gormley P, Kurth T, Bettella F, McMahon G, et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet. 2013;45:912–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kuhlenbaumer G, Hullmann J, Appenzeller S. Novel genomic techniques open new avenues in the analysis of monogenic disorders. Hum Mutat. 2011;32:144–51.

    Article  PubMed  Google Scholar 

  30. Russell JF, Fu Y-H, Ptáček LJ. Episodic neurologic disorders: syndromes, genes, and mechanisms. Annu Rev Neurosci. 2013;36:25–50. Review of migraine as a channelopathy.

    Article  CAS  PubMed  Google Scholar 

  31. Ptácek L. The place of migraine as a channelopathy. Curr Opin Neurol. 1998;11:217–26.

    Article  PubMed  Google Scholar 

  32. Eriksen MK, Thomsen LL, Andersen I, Nazim F, Olesen J. Clinical characteristics of 362 patients with familial migraine with aura. Cephalalgia. 2004;24:564–75.

    Article  CAS  PubMed  Google Scholar 

  33. Carrera P, Stenirri S, Ferrari M, Battistini S. Familial hemiplegic migraine: a ion channel disorder. Brain Res Bull. 2001;56:239–41.

    Article  CAS  PubMed  Google Scholar 

  34. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol. 2009;8:679–90.

    Article  PubMed  Google Scholar 

  35. Ray BS, Wolff HG. Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch Surg. 1940;41:813–56.

    Article  Google Scholar 

  36. Penfield W, McNaughton F. Dural headache and innervation of the dura mater. Arch Neurol Psychiatr. 1940;44:43–75.

    Article  Google Scholar 

  37. Feindel W, Penfield W, McNaughton F. The tentorial nerves and localization of intracranial pain in man. Neurology. 1960;10:555–63.

    Article  CAS  PubMed  Google Scholar 

  38. Bogduk N. Anatomy and physiology of headache. Biomed Pharmacother. 1995;49:435–45.

    Article  CAS  PubMed  Google Scholar 

  39. Strassman A, Raymond S, Burstein R. Sensitization of meningeal sensory neurons and the origin of headaches. Nature. 1996;384(6609):560–4.

    Article  CAS  PubMed  Google Scholar 

  40. Moskowitz MA. Basic mechanisms in vascular headache. Neurol Clin. 1990;8:801–15.

    CAS  PubMed  Google Scholar 

  41. Peroutka SJ. Neurogenic inflammation and migraine: implications for the therapeutics. Mol Interv. 2005;5:304–11.

    Article  CAS  PubMed  Google Scholar 

  42. Mitsikostas D, Sanchez del Rio M. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine. Brain Res Brain Res Rev. 2001;35:20–35.

    Article  CAS  PubMed  Google Scholar 

  43. Burstein R, Yamamura H, Malick A, Strassman A. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol. 1998;79:964–82.

    CAS  PubMed  Google Scholar 

  44. Olesen J. The role of nitric oxide (NO) in migraine, tension-type headache and cluster headache. Pharmacol Ther. 2008;120:157–71.

    Article  CAS  PubMed  Google Scholar 

  45. Messlinger K, Lennerz JK, Eberhardt M, Fischer MJ. CGRP and NO in the trigeminal system: mechanisms and role in headache generation. Headache. 2012;52:1411–27.

    Article  PubMed  Google Scholar 

  46. Schoonman GG, van der Grond J, Kortmann C, van der Geest RJ, Terwindt GM, Ferrari MD. Migraine headache is not associated with cerebral or meningeal vasodilatation—a 3 T magnetic resonance angiography study. Brain. 2008;131:2192–200.

    Article  CAS  PubMed  Google Scholar 

  47. Bates EA, Nikai T, Brennan KC, Fu YH, Charles AC, Basbaum AI, et al. Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia. 2010;30:170–8.

    CAS  PubMed  Google Scholar 

  48. Markovics A, Kormos V, Gaszner B, Lashgarara A, Szoke E, Sandor K, et al. Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice. Neurobiol Dis. 2012;45:633–44.

    Article  CAS  PubMed  Google Scholar 

  49. Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of C-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci. 1993;13:1167–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Ebersberger A, Schaible HG, Averbeck B, Richter F. Is there a correlation between spreading depression, neurogenic inflammation, and nociception that might cause migraine headache? Ann Neurol. 2001;49:7–13.

    Article  CAS  PubMed  Google Scholar 

  51. Lambert GA, Michalicek J, Storer RJ, Zagami AS. Effect of cortical spreading depression on activity of trigeminovascular sensory neurons. Cephalalgia. 1999;19:631–8.

    Article  CAS  PubMed  Google Scholar 

  52. Lambert GA, Truong L, Zagami AS. Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system. Cephalalgia. 2011;31:1439–51.

    Article  PubMed  Google Scholar 

  53. Gorji A. Spreading depression: a review of the clinical relevance. Brain Res Brain Res Rev. 2001;38:33–60.

    Article  CAS  PubMed  Google Scholar 

  54. Ayata C. Cortical spreading depression triggers migraine attack: pro. Headache. 2010;50:725–30.

    Article  PubMed  Google Scholar 

  55. Charles A. Does cortical spreading depression initiate a migraine attack? Maybe not. Headache. 2010;50:731–3.

    Article  PubMed  Google Scholar 

  56. Goadsby PJ. Migraine, aura, and cortical spreading depression: why are we still talking about it? Ann Neurol. 2001;49:4–6.

    Article  CAS  PubMed  Google Scholar 

  57. Lambert GA, Zagami AS. The mode of action of migraine triggers: a hypothesis. Headache. 2009;49:253–75.

    Article  PubMed  Google Scholar 

  58. Lambert GA. The lack of peripheral pathology in migraine headache. Headache. 2010;50:895–908.

    Article  PubMed  Google Scholar 

  59. Blau JN. Migraine prodromes separated from the aura: complete migraine. Br Med J. 1980;281:658–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Charles A. The evolution of a migraine attack a review of recent evidence. Headache. 2013;53:413–9.

    Article  PubMed  Google Scholar 

  61. Bergerot A, Storer R, Goadsby P. Dopamine inhibits trigeminovascular transmission in the rat. Ann Neurol. 2007;61:251–62.

    Article  CAS  PubMed  Google Scholar 

  62. Holland P, Goadsby P. The hypothalamic orexinergic system: pain and primary headaches. Headache. 2007;47:951–62.

    Article  PubMed  Google Scholar 

  63. Silberstein SD, Lipton RB, Dodick DW. Operational diagnostic criteria for chronic migraine: expert opinion. Headache. 2014;54:1258–66.

    Article  PubMed  Google Scholar 

  64. Tepper SJ. Editorial—chronic migraine and medication overuse headache. Headache. 2014;54:1249–50.

    Article  PubMed  Google Scholar 

  65. Schwedt TJ. Chronic migraine. BMJ. 2014;348:g1416. doi:10.1136/bmj.g1416. Review of the disorder and its treatment with expert opinion.

    Article  PubMed  Google Scholar 

  66. Diener H-C, Dodick DW, Goadsby PJ, Lipton RB, Olesen J, Silberstein SD. Chronic migraine—classification, characteristics and treatment. Nat Rev Neurol. 2012;8(3):162–71. doi:10.1038/nrneurol.2012.13. Review of the disorder and its treatment with expert opinion.

    Article  CAS  PubMed  Google Scholar 

  67. Ferrari A, Leone S, Vergoni AV, Bertolini A, Sances G, Coccia CP, et al. Similarities and differences between chronic migraine and episodic migraine. Headache. 2007;47:65–72.

    Article  PubMed  Google Scholar 

  68. Goadsby PJ, Lipton RB, Ferrari MD. Migraine—current understanding and treatment. N Engl J Med. 2002;346:257–70.

    Article  CAS  PubMed  Google Scholar 

  69. Cooke L, Eliasziw M, Becker WJ. Cutaneous allodynia in transformed migraine patients. Headache. 2007;47:531–9.

    PubMed  Google Scholar 

  70. de Tommaso M, Losito L, Difruscolo O, Libro G, Guido M, Livrea P. Changes in cortical processing of pain in chronic migraine. Headache. 2005;45:1208–18.

    Article  PubMed  Google Scholar 

  71. Aurora SK, Barrodale P, Chronicle EP, Mulleners WM. Cortical inhibition is reduced in chronic and episodic migraine and demonstrates a spectrum of illness. Headache. 2005;45:546–52.

    Article  PubMed  Google Scholar 

  72. Obermann M, Gizewski ER, Limmroth V, Diener HC, Katsarava Z. Symptomatic migraine and pontine vascular malformation: evidence for a key role of the brainstem in the pathophysiology of chronic migraine. Cephalalgia. 2006;26:763–6.

    Article  CAS  PubMed  Google Scholar 

  73. Aurora SK, Kulthia A, Barrodale PM. Mechanism of chronic migraine. Curr Pain Headache Rep. 2011;15:57–63.

    Article  PubMed  Google Scholar 

  74. Kruit MC, van Buchem MA, Launer LJ, Terwindt GM, Ferrari MD. Migraine is associated with an increased risk of deep white matter lesions, subclinical posterior circulation infarcts and brain iron accumulation: the population-based MRI CAMERA study. Cephalalgia. 2010;30:129–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Craig AD. A rat is not a monkey is not a human: comment on Mogil (Nature Rev. Neurosci. 10, 283–294 (2009)). Nat Rev Neurosci. 2009;10:466.

    Article  CAS  PubMed  Google Scholar 

  76. Francis GJ, Becker WJ, Pringsheim TM. Acute and preventive pharmacologic treatment of cluster headache. Neurology. 2010;75:463–73.

    Article  PubMed  Google Scholar 

  77. Oshinsky ML, Gomonchareonsiri S. Episodic dural stimulation in awake rats: a model for recurrent headache. Headache. 2007;47:1026–36.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Melo-Carrillo A, Lopez-Avila A. A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia. 2013;33:1096–105. Intracranial infusions of inflammatory soup in rats produced a spontaneous increase of nociceptive-related behavior (resting, freezing, and “ipsilateral hindpaw facial grooming”), while it decreased exploratory behavior. Findings reflect the behavioral quiescence, unilateral nature of migrainous pain, and the intense hemifacial touching displayed by migraineurs. Rats treated with zolmitriptan showed a significant reduction in the nociception-related behaviors.

    Article  PubMed  Google Scholar 

  79. Stucky NL, Gregory E, Winter MK, He YY, Hamilton ES, McCarson KE, et al. Sex differences in behavior and expression of CGRP-related genes in a rodent model of chronic migraine. Headache. 2011;51:674–92. Repeated stimulation of the trigeminovascular system using inflammatory soup caused behavioral changes including allodynia, and changes in expression of CGRP-related genes, crucial in migraine pathophysiology, in both the trigeminal ganglion and medulla (caudal trigeminal nucleus). The changes in the CGRP-related genes could be evoked by intracranial pressure or meningeal stretch, but inflammation was required to effect behavioral changes.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ, Charles A. Characterization of a novel model of chronic migraine. Pain. 2014;155:269–74. A mouse model of chronic migraine involving the repeated intraperitoneal administration of glyceryl trinitrate resulting in acute hyperalgesia, reduced by sumatriptan and chronic dosing with topiramate, and a chronic basal hyperalgesia reduced by topiramate, but not sumatriptan. The hyperalgesia was increased by sildenafil, persisted for days after cessation of glyceryl trinitrate, and was more pronounced in female mice. Model may be adapted to transgenic mice.

    Article  CAS  PubMed  Google Scholar 

  81. Estevez M. Invertebrate modeling of a migraine channelopathy. Headache. 2006;46 Suppl 1:S25–31.

    Article  PubMed  Google Scholar 

  82. Cui Y, Li QH, Yamada H, Watanabe Y, Kataoka Y. Chronic degeneration of dorsal raphe serotonergic neurons modulates cortical spreading depression: a possible pathophysiology of migraine. J Neurosci Res. 2013;91:737–44. Findings suggest the excitability of the cerebral cortex is increased when the dorsal raphe serotonergic nervous system is dysfunctional, and might explain the pathogenisis of migraine by a low-serotonin state.

    Article  CAS  PubMed  Google Scholar 

  83. Pusic AD, Grinberg YY, Mitchell HM, Kraig RP. Modeling neural immune signaling of episodic and chronic migraine using spreading depression in vitro. JoVE. 2011(52). http://www.jove.com/index/Details.stp?ID=2910, doi: 10.3791/2910. Accessed 30 June 2014. Novel in vitro model of central spreading depression in hippocampal brain slice cultures.

  84. Ramadan NM. Glutamate and migraine: from Ikeda to the 21st century. Cephalalgia. 2014;34:86–9.

    Article  PubMed  Google Scholar 

  85. Vos BP, Strassman AM, Maciewicz RJ. Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat’s infraorbital nerve. J Neurosci. 1994;14:2708–23.

    CAS  PubMed  Google Scholar 

  86. Liverman CS, Brown JW, Sandhir R, Klein RM, McCarson K, Berman NE. Oestrogen increases nociception through ERK activation in the trigeminal ganglion: evidence for a peripheral mechanism of allodynia. Cephalalgia. 2009;29:520–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Goadsby PJ. Migraine: emerging treatment options for preventive and acute attack therapy. Expert Opin Emerg Drugs. 2006;11:419–27.

    Article  CAS  PubMed  Google Scholar 

  88. Goadsby PJ. Emerging therapies for migraine. Nat Clin Pract Neurol. 2007;3:610–9.

    Article  CAS  PubMed  Google Scholar 

  89. Goadsby PJ. How do the currently used prophylactic agents work in migraine? Cephalalgia. 1997;17:85–92.

    Article  CAS  PubMed  Google Scholar 

  90. Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12:570–84.

    Article  CAS  PubMed  Google Scholar 

  91. Storer RJ. 5-ht1F agonists inhibit nociceptive transmission at the trigeminocervical complex. Cephalalgia. 2011;31 Suppl 1:9–10.

    Google Scholar 

  92. Storer RJ, Goadsby PJ. Microiontophoretic application of serotonin (5HT)1B/1D agonists inhibits trigeminal cell firing in the cat. Brain. 1997;120:2171–7.

    Article  PubMed  Google Scholar 

  93. Lambert G, Hoskin K, Zagami A. Cortico-NRM influences on trigeminal neuronal sensation. Cephalalgia. 2008;28:640–52.

    Article  CAS  PubMed  Google Scholar 

  94. Amrutkar DV, Ploug KB, Hay-Schmidt A, Porreca F, Olesen J, Jansen-Olesen I. mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1 F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system. Pain. 2012;153:830–8.

    Article  CAS  PubMed  Google Scholar 

  95. Storer RJ, Immke DC, Goadsby PJ. Large conductance calcium-activated potassium channels (BKCa) modulate trigeminovascular nociceptive transmission. Cephalalgia. 2009;29:1242–58.

    Article  CAS  PubMed  Google Scholar 

  96. Maneepark M, Srikiatkhachorn A, Bongsebandhu-phubhakdi S. Involvement of AMPA receptors in CSD-induced impairment of LTP in the hippocampus. Headache. 2012;52(10):1535–45.

    Article  PubMed  Google Scholar 

  97. Borgland SL, Connor M, Ryan RM, Ball HJ, Christie MJ. Prostaglandin E(2) inhibits calcium current in two sub-populations of acutely isolated mouse trigeminal sensory neurons. J Physiol. 2002;539:433–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Fioravanti B, Kasasbeh A, Edelmayer R, Skinner Jr DP, Hartings JA, Burklund RD, et al. Evaluation of cutaneous allodynia following induction of cortical spreading depression in freely moving rats. Cephalalgia. 2011;31:1090–100.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Storer RJ, Goadsby PJ. Topiramate is likely to act outside of the trigeminocervical complex. Cephalalgia. 2013;33:291–300.

    Article  PubMed  Google Scholar 

  100. Guerrini R. Genetic malformations of the cerebral cortex and epilepsy. Epilepsia. 2005;46 Suppl 1:32–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Robin James Storer, Dr. Weera Supronsinchai, and Dr. Anan Srikiatkhachorn each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anan Srikiatkhachorn.

Additional information

This article is part of the Topical Collection on Chronic Daily Headache

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storer, R.J., Supronsinchai, W. & Srikiatkhachorn, A. Animal Models of Chronic Migraine. Curr Pain Headache Rep 19, 467 (2015). https://doi.org/10.1007/s11916-014-0467-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-014-0467-7

Keywords

Navigation