Skip to main content

Advertisement

Log in

Conditioned Pain Modulation: A Predictor for Development and Treatment of Neuropathic Pain

  • Neuropathic Pain (E Eisenberg, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Psychophysical evaluation of endogenous pain inhibition via conditioned pain modulation (CPM) represents a new generation of laboratory tests for pain assessment. In this review we discuss recent findings on CPM in neuropathic pain and refer to psychophysical, neurophysiological, and methodological aspects of its clinical implications. Typically, chronic neuropathic pain patients express less efficient CPM, to the extent that incidence of acquiring neuropathic pain (e.g. post-surgery) and its intensity can be predicted by a pre-surgery CPM assessment. Moreover, pre-treatment CPM evaluation may assist in the correct choice of serotonin-noradrenalin reuptake inhibitor analgesic agents for individual patients. Evaluation of pain modulation capabilities can serve as a step forward in individualizing pain medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Finnerup NB, Otto M, McQuay HJ, et al. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain. 2005;118:289–305.

    Article  PubMed  CAS  Google Scholar 

  2. Finnerup NB, Sindrup SH, Jensen TS. The evidence for pharmacological treatment of neuropathic pain. Pain. 2010;150:573–81.

    Article  PubMed  Google Scholar 

  3. Bril V, England J, Franklin GM, et al. Evidence-based guideline: treatment of painful diabetic neuropathy report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. PMR. 2011;3:345–52.

    Google Scholar 

  4. Attal N, Cruccu G, Baron R, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol. 2010;17:1113–e88.

    Article  PubMed  CAS  Google Scholar 

  5. Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9:807–19.

    Article  PubMed  Google Scholar 

  6. Dworkin RH, O'Connor AB, Audette J, et al. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc. 2010;85(3 Suppl):S3–14.

    Article  PubMed  CAS  Google Scholar 

  7. Treede RD, Jensen TS, Campbell JN, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70:1630–5.

    Article  PubMed  CAS  Google Scholar 

  8. Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353:1959–64.

    Article  PubMed  CAS  Google Scholar 

  9. Urban MO, Gebhart GF. Supraspinal contributions to hyperalgesia. Proc Natl Acad Sci U S A. 1999;96:7687–92.

    Article  PubMed  CAS  Google Scholar 

  10. Coderre TJ, Katz J. Peripheral and central hyperexcitability: differential signs and symptoms in persistent pain. Behav Brain Sci. 1997;20:404–19.

    PubMed  CAS  Google Scholar 

  11. Le Bars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain. 1976;6:305–27.

    Article  Google Scholar 

  12. Le Bars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain. 1979;6:283–304.

    Article  PubMed  Google Scholar 

  13. Gammon GD, Starr I. Studies of the relief of pain by counterirritation. J Clin Invest. 1941;20:13–20.

    Article  PubMed  CAS  Google Scholar 

  14. • Yarnitsky D, Arendt-Nielsen L, Bouhassira D, et al. Recommendations on terminology and practice of psychophysical DNIC testing. Eur J Pain. 2010;14:339. CPM is a recommended terminology for the DNIC assessment in humans.

    Article  PubMed  Google Scholar 

  15. Arendt-Nielsen L, Yarnitsky D. Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera. J Pain. 2009;10:556–72.

    Article  PubMed  Google Scholar 

  16. Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991;44:293–9.

    Article  PubMed  CAS  Google Scholar 

  17. • Staud R. Evidence for shared pain mechanisms in osteoarthritis, low back pain, and fibromyalgia. Curr Rheumatol Rep. 2011;13:513–20. Patients with these chronic pain disorders show signs of central sensitization and abnormal endogenous pain modulation.

    Article  PubMed  Google Scholar 

  18. Kosek E, Hansson P. Modultory influence on somatosensory perception from vibration and heterotopic noxious conditioning stimulation (HNCS) in fibromyalgia and healthy subjects. Pain. 1997;70:41–51.

    Article  PubMed  CAS  Google Scholar 

  19. Lautenbacher S, Rollman GB. Possible deficiencies of pain modulation in fibromyalgia. Clin J Pain. 1997;13:189–96.

    Article  PubMed  CAS  Google Scholar 

  20. Price DD, Staud R. Neurobiology of fibromyalgia syndrome. J Rheumatol Suppl. 2005;75:22–8.

    PubMed  Google Scholar 

  21. Kosek E, Ordeberg G. Lack of pressure pain modulation by heterotopic noxious conditioning stimulation in patients with painful osteoarthritis before, but not following, surgical pain relief. Pain. 2000;88:69–78.

    Article  PubMed  CAS  Google Scholar 

  22. Quante M, Hille S, Schofer MD, et al. Noxious counterirritation in patients with advanced osteoarthritis of the knee reduces MCC but not SII pain generators: A combined use of MEG and EEG. J Pain Res. 2008;1:1–8.

    PubMed  Google Scholar 

  23. Arendt-Nielsen L, Nie H, Laursen MB, et al. Sensitization in patients with painful knee osteoarthritis. Pain. 2010;149:573–81.

    Article  PubMed  Google Scholar 

  24. Graven-Nielsen T, Arendt-Nielsen L. Assessment of mechanisms in localized and widespread musculoskeletal pain. Nat Rev Rheumatol. 2010;6:599–606.

    Article  PubMed  Google Scholar 

  25. •• Graven-Nielsen T, Wodehouse T, Langford RM, et al. Normalization of widespread hyperesthesia and facilitated spatial summation of deep-tissue pain in knee osteoarthritis patients after knee replacement. Arthritis Rheum. 2012;64:2907–16. CPM has been restored after the surgery, in parallel with pain alleviation.

    Article  PubMed  CAS  Google Scholar 

  26. Sandrini G, Rossi P, Milanov I, et al. Abnormal modulatory influence of diffuse noxious inhibitory controls in migraine and chronic tension-type headache patients. Cephalalgia. 2006;26:782–9.

    Article  PubMed  CAS  Google Scholar 

  27. Pielsticker A, Haag G, Zaudig M, et al. Impairment of pain inhibition in chronic tension-type headache. Pain. 2005;118:215–23.

    Article  PubMed  Google Scholar 

  28. Buchgreitz L, Egsgaard LL, Jensen R, et al. Abnormal pain processing in chronic tension-type headache: a high-density EEG brain mapping study. Brain. 2008;131:3232–8.

    Article  PubMed  CAS  Google Scholar 

  29. Nahman-Averbuch H, Granovsky Y, Coghill RC, et al. Waning of "Conditioned Pain Modulation": A Novel Expression of Subtle Pronociception in Migraine. Headache. 2013 Apr 17 [Epub ahead of print].

  30. Chang L. Brain responses to visceral and somatic stimuli in irritable bowel syndrome: a central nervous system disorder? Gastroenterol Clin North Am. 2005;34:271–9.

    Article  PubMed  Google Scholar 

  31. Song GH, Venkatraman V, Ho KY, et al. Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain. 2006;126:79–90.

    Article  PubMed  Google Scholar 

  32. King C, Wong F, Currie T, et al. Deficiency in endogenous modulation of prolonged heat pain in patients with irritable bowel syndrome and temporomandibular disorder. Pain. 2009;143:172–8.

    Article  PubMed  Google Scholar 

  33. • Daenen L, Nijs J, Roussel N, et al. Dysfunctional pain inhibition in patients with chronic whiplash-associated disorders: an experimental study. Clin Rheumatol. 2013;32:23–31. Chronic whiplash pain is associated with less efficient CPM.

    Article  PubMed  Google Scholar 

  34. •• van Wijk G, Veldhuijzen DS. Perspective on diffuse noxious inhibitory controls as a model of endogenous pain modulation in clinical pain syndromes. J Pain. 2010;11:408–19. This review summarizes recent findings on CPM with a specific focus on sex, age, and ethnic differences in CPM effects and psychological mediators, such as attention, expectation, and pain catastrophizing.

    Article  PubMed  Google Scholar 

  35. •• Yarnitsky D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): its relevance for acute and chronic pain states. Curr Opin Anaesthesiol. 2010;23:611–5. Less efficient CPM is associated with higher pain morbidity and vice versa.

    Article  PubMed  Google Scholar 

  36. •• Lewis GN, Rice DA, McNair PJ. Conditioned pain modulation in populations with chronic pain: a systematic review and meta-analysis. J Pain. 2012;13:936–44. This review compared the efficacy of conditioned pain modulation between chronic pain and healthy populations.

    Article  PubMed  Google Scholar 

  37. •• De Felice M, Sanoja R, Wang R, et al. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain. 2011;152:2701–9. Engagement of descending inhibition protects neuropathic pain transition from acute to chronic.

    Article  PubMed  Google Scholar 

  38. Nahman-Averbuch H, Yarnitsky D, Granovsky Y, et al. Pronociceptive pain modulation in patients with painful chemotherapy-induced polyneuropathy. J Pain Symptom Manage. 2011;42:229–38.

    Article  PubMed  Google Scholar 

  39. Aasvang EK, Brandsborg B, Christensen B, et al. Neurophysiological characterization of postherniotomy pain. Pain. 2008;137:173–81.

    Article  PubMed  Google Scholar 

  40. Vilholm OJ, Cold S, Rasmussen L, et al. Sensory function and pain in a population of patients treated for breast cancer. Acta Anaesthesiol Scand. 2009;53:800–6.

    Article  PubMed  CAS  Google Scholar 

  41. Tuveson B, Leffler AS, Hansson P. Heterotopic noxious conditioning stimulation (HNCS) reduced the intensity of spontaneous pain, but not of allodynia in painful peripheral neuropathy. Eur J Pain. 2007;11:452–62.

    Article  PubMed  Google Scholar 

  42. Tuveson B, Leffler AS, Hansson P. Influence of heterotopic noxious conditioning stimulation on spontaneous pain and dynamic mechanical allodynia in central post-stroke pain patients. Pain. 2009;143:84–91.

    Article  PubMed  Google Scholar 

  43. Leonard G, Goffaux P, Mathieu D, et al. Evidence of descending inhibition deficits in atypical but not classical trigeminal neuralgia. Pain. 2009;147:217–23.

    Article  PubMed  Google Scholar 

  44. Witting N, Svensson P, Jensen TS. Differential recruitment of endogenous pain inhibitory systems in neuropathic pain patients. Pain. 2003;103:75–81.

    Article  PubMed  Google Scholar 

  45. Roosink M, Renzenbrink GJ, Buitenweg JR, et al. Somatosensory symptoms and signs and conditioned pain modulation in chronic post-stroke shoulder pain. J Pain. 2011;12:476–85.

    Article  PubMed  Google Scholar 

  46. Bouhassira D, Danziger N, Attal N, et al. Comparison of the pain suppressive effects of clinical and experimental painful conditioning stimuli. Brain. 2003;126:1068–78.

    Article  PubMed  Google Scholar 

  47. Danziger N, Weil-Fugazza J, Le Bars D, et al. Alteration of descending modulation of nociception during the course of monoarthritis in the rat. J Neurosci. 1999;19:2394–400.

    PubMed  CAS  Google Scholar 

  48. Danziger N, Gautron M, Le Bars D, et al. Activation of diffuse noxious inhibitory controls (DNIC) in rats with an experimental peripheral mononeuropathy. Pain. 2001;91:287–96.

    Article  PubMed  CAS  Google Scholar 

  49. Bouhassira D, Le Bars D, Villanueva L. Heterotopic activation of A delta and C fibres triggers inhibition of trigeminal and spinal convergent neurones in the rat. J Physiol. 1987;389:301–17.

    PubMed  CAS  Google Scholar 

  50. Ochoa JL, Yarnitsky D. Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes. Ann Neurol. 1993;33:465–72.

    Article  PubMed  CAS  Google Scholar 

  51. Cline MA, Ochoa J, Torebjörk HE. Chronic hyperalgesia and skin warming caused by sensitized C nociceptors. Brain. 1989;112:621–47.

    Article  PubMed  Google Scholar 

  52. Woolf CJ, Wall PD. Chronic peripheral nerve section diminishes the primary afferent A-fibre mediated inhibition of rat dorsal horn neurones. Brain Res. 1982;242:77–85.

    Article  PubMed  CAS  Google Scholar 

  53. Miletic G, Miletic V. Long-term changes in sciatic-evoked A-fiber dorsal horn field potentials accompany loose ligation of the sciatic nerve in rats. Pain. 2000;84:353–9.

    Article  PubMed  CAS  Google Scholar 

  54. Pertovaara A, Kalmari J. Neuropathy reduces viscero-somatic inhibition via segmental mechanisms in rats. Neuroreport. 2002;13:1047–50.

    Article  PubMed  Google Scholar 

  55. El-Khoury C, Hawwa N, Baliki M, et al. Attenuation of neuropathic pain by segmental and supraspinal activation of the dorsal column system in awake rats. Neuroscience. 2002;112:541–53.

    Article  PubMed  CAS  Google Scholar 

  56. Kohama I, Ishikawa K, Kocsis JD. Synaptic reorganization in the substantia gelatinosa after peripheral nerve neuroma formation: aberrant innervation of lamina II neurons by Ab afferents. J Neurosci. 2000;20:1538–49.

    PubMed  CAS  Google Scholar 

  57. Malmberg AB, Chen C, Tonegawa S, et al. Preserved acute pain and reduced neuropathic pain in mice lacking PKCg. Science. 1997;278:279–83.

    Article  PubMed  CAS  Google Scholar 

  58. Ma W, Eisenach JC. Chronic constriction injury of sciatic nerve induces the up-regulation of descending inhibitory noradrenergic innervation to the lumbar dorsal horn of mice. Brain Res. 2003;970:110–8.

    Article  PubMed  CAS  Google Scholar 

  59. Peters ML, Schmidt AJ, Van den Hout MA, et al. Chronic back pain, acute postoperative pain and the activation of diffuse noxious inhibitory controls (DNIC). Pain. 1992;50:177–87.

    Article  PubMed  CAS  Google Scholar 

  60. Leffler AS, Hansson P, Kosek E. Somatosensory perception in patients suffering from long-term trapezius myalgia at the site overlying the most painful part of the muscle and in an area of pain referral. Eur J Pain. 2003;7:267–76.

    Article  PubMed  Google Scholar 

  61. Witting N, Svensson P, Arendt-Nielsen L, et al. Differential effect of painful heterotopic stimulation on capsaicin-induced pain and allodynia. Brain Res. 1998;801:206–10.

    Article  PubMed  CAS  Google Scholar 

  62. Pud D, Granovsky Y, Yarnitsky D. The methodology of experimentally induced diffuse noxious inhibitory control (DNIC)-like effect in humans. Pain. 2009;144:16–9.

    Article  PubMed  Google Scholar 

  63. De Broucker T, Cesaro P, Willer JC, et al. Diffuse noxious inhibitory controls in man. Involvement of the spinoreticular tract. Brain. 1990;113:1223–34.

    Article  PubMed  Google Scholar 

  64. Perrotta A, Serpino C, Cormio C, et al. Abnormal spinal cord pain processing in Huntington's disease. The role of the diffuse noxious inhibitory control. Clin Neurophysiol. 2012;123:1624–30.

    Article  PubMed  Google Scholar 

  65. Mylius V, Engau I, Teepker M, et al. Pain sensitivity and descending inhibition of pain in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2009;80:24–8.

    Article  PubMed  CAS  Google Scholar 

  66. Granovsky Y, Schlesinger I, Fadel S, et al. Asymmetric pain processing in Parkinson's disease. Eur J Neurol. 2013 May 24 [Epub ahead of print].

  67. Granot M. Can we predict persistent postoperative pain by testing preoperative experimental pain? Curr Opin Anaesthesiol. 2009;22:425–30.

    Article  PubMed  Google Scholar 

  68. Bisgaard T, Klarskov B, Rosenberg J. Characteristics and prediction of early pain after laparoscopic cholecystectomy. Pain. 2001;90:261–9.

    Article  PubMed  CAS  Google Scholar 

  69. Granot M, Lowenstein L, Yarnitsky D, et al. Postcesarean section pain prediction by preoperative experimental pain assessment. Anesthesiology. 2003;98:1422–6.

    Article  PubMed  Google Scholar 

  70. Pan PH, Coghill R, Houle TT, et al. Multifactorial preoperative predictors for postcesarean section pain and analgesic requirement. Anesthesiology. 2006;104:417–25.

    Article  PubMed  Google Scholar 

  71. Weissman-Fogel I, Granovsky Y, Crispel Y, et al. Enhanced presurgical pain temporal summation response predicts post-thoracotomy pain intensity during the acute postoperative phase. J Pain. 2009;10:628–36.

    Article  PubMed  Google Scholar 

  72. Abrishami A, Chan J, Chung F, et al. Preoperative pain sensitivity and its correlation with postoperative pain and analgesic consumption: a qualitative systematic review. Anesthesiology. 2011;114:445–57.

    Article  PubMed  Google Scholar 

  73. Brandsborg B, Dueholm M, Kehlet H, et al. Mechanosensitivity before and after hysterectomy: a prospective study on the prediction of acute and chronic postoperative pain. Br J Anaesth. 2011;107:940–7.

    Article  PubMed  CAS  Google Scholar 

  74. Yarnitsky D, Crispel Y, Eisenberg E, et al. Prediction of chronic post-operative pain: pre-operative DNIC testing identifies patients at risk. Pain. 2008;138:22–8.

    Article  PubMed  Google Scholar 

  75. •• Wilder-Smith OH, Schreyer T, Scheffer GJ, et al. Patients with chronic pain after abdominal surgery show less preoperative endogenous pain inhibition and more postoperative hyperalgesia: a pilot study. J Pain Palliat Care Pharmacother. 2010;24:119–28. Chronic post-opertive pain relates to poorer pre-operative inhibitory pain modulation (DNIC), and to greater post-operative degree, persistence, and spread of hyperalgesia.

    Article  PubMed  Google Scholar 

  76. Landau R, Kraft JC, Flint LY, et al. An experimental paradigm for the prediction of Post-Operative Pain (PPOP). J Vis Exp. 2010;35. doi:10.3791/1671.

  77. Chitour D, Dickenson AH, Le Bars D. Pharmacological evidence for the involvement of serotonergic mechanisms in diffuse noxious inhibitory controls (DNIC). Brain Res. 1982;236:329–37.

    Article  PubMed  CAS  Google Scholar 

  78. Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol. 2006;80:53–83.

    Article  PubMed  CAS  Google Scholar 

  79. Lu Y, Perl ER. Selective action of noradrenaline and serotonin on neurones of the spinal superficial dorsal horn in the rat. J Physiol. 2007;582:127–36.

    Article  PubMed  CAS  Google Scholar 

  80. Jasmin L, Boudah A, Ohara PT. Long-term effects of decreased noradrenergic central nervous system innervation on pain behavior and opioid antinociception. J Comp Neurol. 2003;460:38–55.

    Article  PubMed  CAS  Google Scholar 

  81. Vogel C, Mössner R, Gerlach M, et al. Absence of thermal hyperalgesia in serotonin transporter-deficient mice. J Neurosci. 2003;23:708–15.

    PubMed  CAS  Google Scholar 

  82. Smith T, Nicholson RA. Review of duloxetine in the management of diabetic peripheral neuropathic pain. Vasc Health Risk Manag. 2007;3:833–44.

    PubMed  CAS  Google Scholar 

  83. Iyengar S, Webster AA, Hemrick-Luecke SK, et al. Efficacy of duloxetine, a potent and balanced serotonin-norepinephrine reuptake inhibitor in persistent pain models in rats. J Pharmacol Exp Ther. 2004;311:576–84.

    Article  PubMed  CAS  Google Scholar 

  84. •• Yarnitsky D, Granot M, Nahman-Averbuch H, et al. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain. 2012;153:1193–8. Patients with less efficient CPM gain more analgesia from SNRIs, e.g. duloxetine.

    Article  PubMed  CAS  Google Scholar 

  85. Olson VG, Heusner CL, Bland RJ, et al. Role of noradrenergic signaling by the nucleus tractus solitarius in mediating opiate reward. Science. 2006;311:1017–20.

    Article  PubMed  CAS  Google Scholar 

  86. Bohn LM, Xu F, Gainetdinov RR, et al. Potentiated opioid analgesia in norepinephrine transporter knock-out mice. J Neurosci. 2000;20:9040–5.

    PubMed  CAS  Google Scholar 

  87. Reimann W, Schlütz H, Selve N. The antinociceptive effects of morphine, desipramine, and serotonin and their combinations after intrathecal injection in the rat. Anesth Analg. 1999;88:141–5.

    PubMed  CAS  Google Scholar 

  88. Pettersen VL, Zapata-Sudo G, Raimundo JM, et al. The synergistic interaction between morphine and maprotiline after intrathecal injection in rats. Anesth Analg. 2009;109:1312–7.

    Article  PubMed  CAS  Google Scholar 

  89. Suzuki R, Dickenson AH. Differential pharmacological modulation of the spontaneous stimulus-independent activity in the rat spinal cord following peripheral nerve injury. Exp Neurol. 2006;198:72–80.

    Article  PubMed  CAS  Google Scholar 

  90. Lavand'homme P, Roelants F. Effect of a low dose of ketamine on postoperative pain after elective Cesarean delivery according to the presence of a preoperative temporal summation. SOAP abstract A-258, 2009.

  91. • Eisenberg E, Midbari A, Haddad M, et al. Predicting the analgesic effect to oxycodone by 'static' and 'dynamic' quantitative sensory testing in healthy subjects. Pain. 2010;151:104–9. Healthy patients with enhanced TS gain more pain relief on cold pressor by oxycodone.

    Article  PubMed  CAS  Google Scholar 

  92. •• Olesen SS, Graversen C, Bouwense SA, et al. Quantitative sensory testing predicts pregabalin efficacy in painful chronic pancreatitis. PLoS One. 2013;8:e57963. Quantitative sensory testing predicts analgesic effect of pregabalin in patients with painful chronic pancreatitis.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr Yelena Granovsky is a paid consultant of Medoc Ltd. Dr Granovsky reports receiving a grant from the Israeli Scientific Foundation (ISF #147/08) and an IIT grant from Eli Lilly Inc.

Human and Animal Rights and Informed Consent

With regard to the author’s research cited in this paper, all institutional and national guidelines for the care and use of humans and laboratory animals were followed. In addition, all procedures were followed in accordance with the ethical standards of the responsible local committee of Rambam Health Care Campus, Haifa, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yelena Granovsky.

Additional information

This article is part of the Topical Collection on Neuropathic Pain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granovsky, Y. Conditioned Pain Modulation: A Predictor for Development and Treatment of Neuropathic Pain. Curr Pain Headache Rep 17, 361 (2013). https://doi.org/10.1007/s11916-013-0361-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-013-0361-8

Keywords

Navigation