Skip to main content

Advertisement

Log in

Evidence for Shared Pain Mechanisms in Osteoarthritis, Low Back Pain, and Fibromyalgia

  • Rheumatic Manifestations of Other Diseases (Roland Staud, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA), low back pain (LBP), and fibromyalgia (FM) are common chronic pain disorders that occur frequently in the general population. They are a significant cause of dysfunction and disability. Why some of these chronic pain disorders remain localized to few body areas (OA and LBP), whereas others become widespread (FM) is unclear at this time. Genetic, environmental, and psychosocial factors likely play an important role. Although patients with OA, LBP, and FM frequently demonstrate abnormalities of muscles, ligaments, or joints, the severity of such changes is only poorly correlated with clinical pain. Importantly, many patients with these chronic pain disorders show signs of central sensitization and abnormal endogenous pain modulation. Nociceptive signaling is actively regulated by the central nervous system to allow adaptive responses after tissue injuries. Thus, abnormal processing of tonic peripheral tissue impulse input likely plays an important role in the pathogenesis of OA, LBP, or FM. Tonic and/or intense afferent nociceptive barrage can result in central sensitization that depends on facilitatory input from brainstem centers via descending pain pathways to the spinal cord. Abnormal endogenous control of these descending pathways can lead to excessive excitability of dorsal horn neurons of the spinal cord and pain. Ineffective endogenous pain control and central sensitization are important features of OA, LBP, and FM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dubner R. Neuronal plasticity and pain following peripheral tissue inflammation or nerve injury. In: Bond M, Charlton E, Woolf CJ, editors. Proceedings of Vth World Congress on Pain. Pain Research and Clinical Management. Amsterdam: Elsevier; 1991. p. 263–76.

    Google Scholar 

  2. Price DD. Characterizing central mechanisms of pathological pain states by sensory testing and neurophysiological analysis. In: Casey KL, editor. Pain and central nervous system disease: mechanisms and assessment. New York: Raven; 1991. p. 103–15.

    Google Scholar 

  3. Coderre TJ, Katz J, Vaccarino AL, Melzack R. Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain. 1993;52:259–85.

    Article  PubMed  CAS  Google Scholar 

  4. O’Neill S, Manniche C, Graven-Nielsen T, Arendt-Nielsen L. Generalized deep-tissue hyperalgesia in patients with chronic low-back pain. Eur J Pain. 2007;11:415–20.

    Article  PubMed  Google Scholar 

  5. Gwilym SE, Keltner JR, Warnaby CE, Carr AJ, Chizh B, Chessell I, et al. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum. 2009;61:1226–34.

    Article  PubMed  Google Scholar 

  6. Staud R. Is it all central sensitization? Role of peripheral tissue nociception in chronic musculskeletal pain. Curr Rheumatol Rep. 2010;12:448–54.

    Article  PubMed  Google Scholar 

  7. Hoheisel U, Mense S, Simons DG, Yu XM. Appearance of new receptive fields in rat dorsal horn neurons following noxious stimulation of skeletal muscle: a model for referral of muscle pain. Neurosci Lett. 1993;153:9–12.

    Article  PubMed  CAS  Google Scholar 

  8. Staud R. Abnormal pain modulation in patients with spatially distributed chronic pain: fibromyalgia. Rheum Dis Clin North Am. 2009;35:263–74.

    Article  PubMed  Google Scholar 

  9. Simone DA, Marchettini P, Caputi G, Ochoa JL. Identification of muscle afferents subserving sensation of deep pain in humans. J Neurophysiol. 1994;72:883–9.

    PubMed  CAS  Google Scholar 

  10. Rang HP, Bevan S, Dray A. Chemical activation of nociceptive peripheral neurones. Br Med Bull. 1991;47:534–48.

    PubMed  CAS  Google Scholar 

  11. Treede RD, Meyer RA, Raja SN, Campbell JN. Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol. 1992;38:397–421.

    Article  PubMed  CAS  Google Scholar 

  12. Liang YF, Haake B, Reeh PW. Sustained sensitization and recruitment of rat cutaneous nociceptors by bradykinin and a novel theory of its excitatory action. J Physiol. 2001;532:229–39.

    Article  PubMed  CAS  Google Scholar 

  13. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288:1765–9.

    Article  PubMed  CAS  Google Scholar 

  14. Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991;44:293–9.

    Article  PubMed  CAS  Google Scholar 

  15. Dickenson AH, Sullivan AF. Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology. 1987;26:1235–8.

    Article  PubMed  CAS  Google Scholar 

  16. Brennan LK, Harte BH, Fitzgerald DJ, McCrory CR. Surgery induces cyclooxygenase-2 expression in the rat cervical spinal cord. Reg Anesth Pain Med. 2009;34:549–52.

    Article  PubMed  CAS  Google Scholar 

  17. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, et al. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410:471–5.

    Article  PubMed  CAS  Google Scholar 

  18. Li CY, Song YH, Higuera ES, Luo ZD. Spinal dorsal horn calcium channel alpha2delta-1 subunit upregulation contributes to peripheral nerve injury-induced tactile allodynia. J Neurosci. 2004;24:8494–9.

    Article  PubMed  CAS  Google Scholar 

  19. Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353:1959–64.

    Article  PubMed  CAS  Google Scholar 

  20. Fields HL, Basbaum AI. Central nervous system mechanisms of pain modulation. In: Wall PD, Melzack R, editors. Textbook of pain. 4th ed. Edinburgh: Churchill Livingstone; 1999. p. 309–29.

    Google Scholar 

  21. Mason P. Central mechanisms of pain modulation. Curr Opin Neurobiol. 1999;9:436–41.

    Article  PubMed  CAS  Google Scholar 

  22. Urban MO, Jiang MC, Gebhart GF. Participation of central descending nociceptive facilitatory systems in secondary hyperalgesia produced by mustard oil. Brain Res. 1996;737:83–91.

    Article  PubMed  CAS  Google Scholar 

  23. Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev. 2004;27:729–37.

    Article  PubMed  CAS  Google Scholar 

  24. Benarroch EE. Descending monoaminergic pain modulation—bidirectional control and clinical relevance. Neurology. 2008;71:217–21.

    Article  PubMed  Google Scholar 

  25. Suzuki R, Rygh LJ, Dickenson AH. Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci. 2004;25:613–7.

    Article  PubMed  CAS  Google Scholar 

  26. Rakic P. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci. 2002;3:65–71.

    Article  PubMed  CAS  Google Scholar 

  27. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10:895–926.

    Article  PubMed  Google Scholar 

  28. Mendell LM. Physiological properties of unmyelinated fiber projection to the spinal cord. Exp Neurol. 1966;16:316–32.

    Article  PubMed  CAS  Google Scholar 

  29. Price DD, Hu JW, Dubner R, Gracely RH. Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses. Pain. 1977;3:57–68.

    Article  PubMed  CAS  Google Scholar 

  30. Woolf CJ. Windup and central sensitization are not equivalent. Pain. 1996;66:105–8.

    Article  PubMed  CAS  Google Scholar 

  31. Urban MO, Gebhart GF. Central mechanisms in pain. Med Clin North Am. 1999;83:585–96.

    Article  PubMed  CAS  Google Scholar 

  32. Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26:696–705.

    Article  PubMed  CAS  Google Scholar 

  33. Eide PK. Wind-up and the NMDA receptor complex from a clinical perspective. Eur J Pain. 2000;4:5–15.

    Article  PubMed  CAS  Google Scholar 

  34. Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev. 2009;60:214–25.

    Article  PubMed  CAS  Google Scholar 

  35. Tracey I, Dunckley P. Importance of anti- and pro-nociceptive mechanisms in human disease. Gut. 2004;53:1553–5.

    Article  PubMed  CAS  Google Scholar 

  36. Mayer DJ, Wolfle TL, Akil H, Carder B, Liebeskind JC. Analgesia from electrical stimulation in the brainstem of the rat. Science. 1971;174:1351–4.

    Article  PubMed  CAS  Google Scholar 

  37. Hannan MT, Felson DT, Pincus T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol. 2000;27:1513–7.

    PubMed  CAS  Google Scholar 

  38. Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet. 2005;365:965–73.

    Article  PubMed  CAS  Google Scholar 

  39. Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 1998;41:778–99.

    Article  PubMed  CAS  Google Scholar 

  40. Levine JD, Dardick SJ, Basbaum AI, Scipio E. Reflex neurogenic inflammation. I. Contribution of the peripheral nervous system to spatially remote inflammatory responses that follow injury. J Neurosci. 1985;5:1380–6.

    PubMed  CAS  Google Scholar 

  41. Chahl LA, Ladd RJ. Local oedema and general excitation of cutaneous sensory receptors produced by electrical stimulation of the saphenous nerve in the rat. Pain. 1976;2:25–34.

    Article  PubMed  CAS  Google Scholar 

  42. Schaible HG, Schmidt RF, Willis WD. Convergent inputs from articular, cutaneous and muscle receptors onto ascending tract cells in the cat spinal cord. Exp Brain Res. 1987;66:479–88.

    Article  PubMed  CAS  Google Scholar 

  43. Yu XM, Mense S. Response properties and descending control of rat dorsal horn neurons with deep receptive fields. Neuroscience. 1990;39:823–31.

    Article  PubMed  CAS  Google Scholar 

  44. Szebenyi B, Hollander AP, Dieppe P, Quilty B, Duddy J, Clarke S, et al. Associations between pain, function, and radiographic features in osteoarthritis of the knee. Arthritis Rheum. 2006;54:230–5.

    Article  PubMed  Google Scholar 

  45. Creamer P, Lethbridge-Cejku M, Hochberg MC. Determinants of pain severity in knee osteoarthritis: effect of demographic and psychosocial variables using 3 pain measures. J Rheumatol. 1999;26:1785–92.

    PubMed  CAS  Google Scholar 

  46. •• Arendt-Nielsen L, Nie HL, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, et al. Sensitization in patients with painful knee osteoarthritis. Pain. 2010;149:573–81. OA patients showed facilitation of temporal summation from both the knee and tibialis anterior muscle and had significantly less pain inhibition compared with controls. No correlations were found between standard radiological findings and clinical/experimental pain parameters.

    Article  PubMed  Google Scholar 

  47. Bingham III CO, Buckland-Wright JC, Garnero P, Cohen SB, Dougados M, Adami S, et al. Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study. Arthritis Rheum. 2006;54:3494–507.

    Article  PubMed  CAS  Google Scholar 

  48. Felson DT, Chaisson CE, Hill CL, Totterman SM, Gale ME, Skinner KM, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134:541–9.

    PubMed  CAS  Google Scholar 

  49. Sowers MF, Hayes C, Jamadar D, Capul D, Lachance L, Jannausch M, et al. Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthr Cartil. 2003;11:387–93.

    Article  PubMed  CAS  Google Scholar 

  50. Hunter DJ, March L, Sambrook PN. The association of cartilage volume with knee pain. Osteoarthr Cartil. 2003;11:725–9.

    Article  PubMed  CAS  Google Scholar 

  51. Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Beaudoin G, Choquette D, Haraoui B, et al. Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients: correlation with clinical symptoms and radiographic changes. Arthritis Res Ther. 2006;8:R21.

    Article  PubMed  Google Scholar 

  52. Kornaat PR, Bloem JL, Ceulemans RY, Riyazi N, Rosendaal FR, Nelissen RG, et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology. 2006;239:811–7.

    Article  PubMed  Google Scholar 

  53. Garnero P. Use of biochemical markers to study and follow patients with osteoarthritis. Curr Rheumatol Rep. 2006;8:37–44.

    Article  PubMed  Google Scholar 

  54. Felson DT. The sources of pain in knee osteoarthritis. Curr Opin Rheumatol. 2005;17:624–8.

    Article  PubMed  Google Scholar 

  55. O’Driscoll SL, Jayson MI. Pain threshold analysis in patients with osteoarthrosis of hip. Br Med J. 1974;3:714–5.

    Article  PubMed  Google Scholar 

  56. •• Gwilym SE, Fillipini N, Douaud G, Carr AJ, Tracey I. Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: a longitudinal voxel-based-morphometric study. Arthritis Rheum. 2010;62:2930–40. This work shows that thalamic atrophy of OA patients reverses after hip arthroplasty and is associated with decreased pain and increased function.

    Article  PubMed  Google Scholar 

  57. Kosek E, Ordeberg G. Abnormalities of somatosensory perception in patients with painful osteoarthritis normalize following successful treatment. Eur J Pain. 2000;4:229–38.

    Article  PubMed  CAS  Google Scholar 

  58. Andersson GB. Epidemiological features of chronic low-back pain. Lancet. 1999;354:581–5.

    Article  PubMed  CAS  Google Scholar 

  59. Hestbaek L, Leboeuf-Yde C, Engberg M, Lauritzen T, Bruun NH, Manniche C. The course of low back pain in a general population. Results from a 5-year prospective study. J Manip Physiol Ther. 2003;26:213–9.

    Article  Google Scholar 

  60. Hestbaek L, Leboeuf-Yde C, Manniche C. Low back pain: what is the long-term course? A review of studies of general patient populations. Eur Spine J. 2003;12:149–65.

    PubMed  Google Scholar 

  61. Wilder-Smith OHG, Tassonyi E, Arendt-Nielsen L. Preoperative back pain is associated with diverse manifestations of central neuroplasticity. Pain. 2002;97:189–94.

    Article  PubMed  Google Scholar 

  62. Giesecke T, Gracely RH, Grant MAB, Nachemson A, Petzke F, Williams DA, et al. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum. 2004;50:613–23.

    Article  PubMed  Google Scholar 

  63. Peters M. Disturbances in pain perception in chronic back pain. In: Lautenbacher S, Fillingim RB, editors. Pathophysiology of pain perception. New York: Kluwer Academic/Plenum; 2004. p. 59–76.

    Chapter  Google Scholar 

  64. Arendt-Nielsen L, Graven-Nielsen T, Svensson P. Disturbances of pain perception in myofascial pain syndrome and other musculoskeletal pains. In: Lautenbacher S, Fillingim RB, editors. Pathophysiology of pain perception. New York: Kluwer Academic/Plenum; 2004. p. 93–106.

    Chapter  Google Scholar 

  65. • Staud R, Robinson ME, Weyl EE, Price DD. Pain variability in fibromyalgia is related to activity and rest: role of peripheral tissue impulse input. J Pain. 2010;11:1376–83. Alternating strenuous exercise with brief rest periods not only decreased overall clinical pain in FM patients but also their mechanical hyperalgesia. No prolonged worsening of overall FM pain and hyperalgesia occurred despite vigorous muscle activity. These findings contribute further evidence that FM pain and hyperalgesia are at least partially maintained by muscle impulse input, and that some types of exercises may be beneficial for FM.

    Article  PubMed  Google Scholar 

  66. Bajaj P, Bajaj P, Graven-Nielsen T, Arendt-Nielsen L. Osteoarthritis and its association with muscle hyperalgesia: an experimental controlled study. Pain. 2001;93:107–14.

    Article  PubMed  CAS  Google Scholar 

  67. Desmeules JA, Cedraschi C, Rapiti E, Baumgartner E, Finckh A, Cohen P, et al. Neurophysiologic evidence for a central sensitization in patients with fibromyalgia. Arthritis Rheum. 2003;48:1420–9.

    Article  PubMed  CAS  Google Scholar 

  68. Flor H, Diers M, Birbaumer N. Peripheral and electrocortical responses to painful and non-painful stimulation in chronic pain patients, tension headache patients and healthy controls. Neurosci Lett. 2004;361:147–50.

    Article  PubMed  CAS  Google Scholar 

  69. Kleinbohl D, Holzl R, Moltner A, Rommel C, Weber C, Osswald PM. Psychophysical measures of sensitization to tonic heat discriminate chronic pain patients. Pain. 1999;81:35–43.

    Article  PubMed  CAS  Google Scholar 

  70. Clauw DJ, Williams D, Lauerman W, Dahlman M, Aslami A, Nachemson AL, et al. Pain sensitivity as a correlate of clinical status in individuals with chronic low back pain. Spine. 1999;24:2035–41.

    Article  PubMed  CAS  Google Scholar 

  71. Flor H, Braun C, Elbert T, Birbaumer N. Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett. 1997;224:5–8.

    Article  PubMed  CAS  Google Scholar 

  72. Coderre TJ. Spinal cord mechanisms of hyperalgesia and allodynia. In: Bushnell MC, Basbaum AI, editors. Pain. San Diego: Academic; 2008. p. 339–80.

    Google Scholar 

  73. Severeijns R, Vlaeyen JW, Van den Hout MA, Weber WE. Pain catastrophizing predicts pain intensity, disability, and psychological distress independent of the level of physical impairment. Clin J Pain. 2001;17:165–72.

    Article  PubMed  CAS  Google Scholar 

  74. Macfarlane GJ, Morris S, Hunt IM, Benjamin S, McBeth J, Papageorgiou AC, et al. Chronic widespread pain in the community: the influence of psychological symptoms and mental disorder on healthcare seeking behavior. J Rheumatol. 1999;26:413–9.

    PubMed  CAS  Google Scholar 

  75. Papageorgiou AC, Macfarlane GJ, Thomas E, Croft PR, Jayson MI, Silman AJ. Psychosocial factors in the workplace—do they predict new episodes of low back pain? Evidence from the South Manchester Back Pain Study. Spine. 1997;22:1137–42.

    Article  PubMed  CAS  Google Scholar 

  76. Mannion AF, Dolan P, Adams MA. Psychological questionnaires: do “abnormal” scores precede or follow first-time low back pain? Spine. 1996;21:2603–11.

    Article  PubMed  CAS  Google Scholar 

  77. Burckhardt CS, Clark SR, Campbell SM, O’Reilly CA, Bennett RM. Events and co-morbidities associated with the onset of fibromyalgia. J Musuculoskel Pain. 1995;3:71.

    Google Scholar 

  78. Staud R, Robinson ME, Price DD. Temporal summation of second pain and its maintenance are useful for characterizing widespread central sensitization of fibromyalgia patients. J Pain. 2007;8:893–901.

    Article  PubMed  Google Scholar 

  79. Gibson SJ, Littlejohn GO, Gorman MM, Helme RD, Granges G. Altered heat pain thresholds and cerebral event-related potentials following painful CO2 laser stimulation in subjects with fibromyalgia syndrome. Pain. 1994;58:185–93.

    Article  PubMed  CAS  Google Scholar 

  80. Lautenbacher S, Rollman GB, McCain GA. Multi-method assessment of experimental and clinical pain in patients with fibromyalgia. Pain. 1994;59:45–53.

    Article  PubMed  CAS  Google Scholar 

  81. Kosek E, Ekholm J, Hansson P. Sensory dysfunction in fibromyalgia patients with implications for pathogenic mechanisms. Pain. 1996;68:375–83.

    Article  PubMed  CAS  Google Scholar 

  82. Perrot S, Dickenson AH, Bennett RM. Fibromyalgia: harmonizing science with clinical practice considerations. Pain Pract. 2008;8:177–89.

    Article  PubMed  Google Scholar 

  83. Giovengo SL, Russell IJ, Larson AA. Increased concentrations of nerve growth factor in cerebrospinal fluid of patients with fibromyalgia. J Rheumatol. 1999;26:1564–9.

    PubMed  CAS  Google Scholar 

  84. Staud R, Craggs JG, Perlstein WM, Robinson ME, Price DD. Brain activity associated with slow temporal summation of C-fiber evoked pain in fibromyalgia patients and healthy controls. Eur J Pain. 2008;12:1078–89.

    Article  PubMed  Google Scholar 

  85. Staud R, Price DD, Robinson ME, Mauderli AP, Vierck CJ. Maintenance of windup of second pain requires less frequent stimulation in fibromyalgia patients compared to normal controls. Pain. 2004;110:689–96.

    Article  PubMed  Google Scholar 

  86. Russell IJ, Bieber CS. Myofascial pain and fibromyalgia syndrome. In: McMahon SB, Koltzenburg M, editors. Wall and Melzack’s textbook of pain. 5th ed. Phildelphia: Elsevier Churchill Livingstone; 2006. p. 669–81.

    Google Scholar 

  87. Larson AA, Giovengo SL, Russell IJ, Michalek JE. Changes in the concentrations of amino acids in the cerebrospinal fluid that correlate with pain in patients with fibromyalgia: implications for nitric oxide pathways. Pain. 2000;87:201–11.

    Article  PubMed  CAS  Google Scholar 

  88. Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. J Clin Invest. 2010;120:3779–87.

    Article  PubMed  CAS  Google Scholar 

  89. Porreca F, Ossipov MH, Gebhart GF. Chronic pain and medullary descending facilitation. Trends Neurosci. 2002;25:319–25.

    Article  PubMed  CAS  Google Scholar 

  90. Vanegas H, Schaible HG. Descending control of persistent pain: inhibitory or facilitatory? Brain Res Brain Res Rev. 2004;46:295–309.

    Article  PubMed  Google Scholar 

  91. Ren K, Dubner R. Descending control mechanisms. In: Bushnell MC, Basbaum AI, editors. Pain. San Diego: Academic; 2008. p. 723–62.

    Google Scholar 

  92. Ren K, Dubner R. Descending modulation in persistent pain: an update. Pain. 2002;100:1–6.

    Article  PubMed  Google Scholar 

  93. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44:5–21.

    Article  PubMed  CAS  Google Scholar 

  94. Russell IJ, Vaeroy H, Javors M, Nyberg F. Cerebrospinal fluid biogenic amine metabolites in fibromyalgia/fibrositis syndrome and rheumatoid arthritis. Arthritis Rheum. 1992;35:550–6.

    Article  PubMed  CAS  Google Scholar 

  95. Staud R, Robinson ME, Vierck CJ, Price DD. Diffuse noxious inhibitory controls (DNIC) attenuate temporal summation of second pain in normal males but not in normal females or fibromyalgia patients. Pain. 2003;101:167–74.

    Article  PubMed  Google Scholar 

  96. Kosek E, Hansson P. Modulatory influence on somatosensory perception from vibration and heterotopic noxious conditioning stimulation (HNCS) in fibromyalgia patients and healthy subjects. Pain. 1997;70:41–51.

    Article  PubMed  CAS  Google Scholar 

  97. Lautenbacher S, Rollman GB. Possible deficiencies of pain modulation in fibromyalgia. Clin J Pain. 1997;13:189–96.

    Article  PubMed  CAS  Google Scholar 

  98. Melzack R, Coderre TJ, Katz J, Vaccarino AL. Central neuroplasticity and pathological pain. Ann N Y Acad Sci. 2001;933:157–74.

    Article  PubMed  CAS  Google Scholar 

  99. Vierck Jr CJ. Mechanisms underlying development of spatially distributed chronic pain (fibromyalgia). Pain. 2006;124:242–63.

    Article  PubMed  Google Scholar 

  100. Arendt-Nielsen L, Henriksson KG. Pathophysiological mechanisms in chronic musculoskeletal pain (fibromyalgia): the role of central and peripheral sensitization and pain disinhibition. Best Pract Res Clin Rheumatol. 2007;21:465–80.

    Article  Google Scholar 

  101. Diatchenko L, Nackley AG, Slade GD, Fillingim RB, Maixner W. Idiopathic pain disorders—pathways of vulnerability. Pain. 2006;123:226–30.

    Article  PubMed  Google Scholar 

  102. Yunus MB. Central sensitivity syndromes: an overview. J Musculoskelet Pain. 2009;17:400–8.

    Article  Google Scholar 

  103. Plesh O, Wolfe F, Lane N. The relationship between fibromyalgia and temporomandibular disorders: prevalence and symptom severity. J Rheumatol. 1996;23:1948–52.

    PubMed  CAS  Google Scholar 

  104. Sperber AD, Atzmon Y, Neumann L, Weisberg I, Shalit Y, Abu-Shakrah M, et al. Fibromyalgia in the irritable bowel syndrome: studies of prevalence and clinical implications. Am J Gastroenterol. 1999;94:3541–6.

    Article  PubMed  CAS  Google Scholar 

  105. Campbell SM, Clark S, Tindall EA, Forehand ME, Bennett RM. Clinical characteristics of fibrositis. I. A “blinded,” controlled study of symptoms and tender points. Arthritis Rheum. 1983;26:817–24.

    Article  PubMed  CAS  Google Scholar 

  106. Okifuji A, Turk DC, Marcus DA. Comparison of generalized and localized hyperalgesia in patients with recurrent headache and fibromyalgia. Psychosom Med. 1999;61:771–80.

    PubMed  CAS  Google Scholar 

  107. Marcus DA. Duloxetine use in painful conditions. Expert Opinion on Pharmacotherapy. 2011;12:1333–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Dr. Staud has received grant support from Forest Laboratories and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Staud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staud, R. Evidence for Shared Pain Mechanisms in Osteoarthritis, Low Back Pain, and Fibromyalgia. Curr Rheumatol Rep 13, 513–520 (2011). https://doi.org/10.1007/s11926-011-0206-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-011-0206-6

Keywords

Navigation