Skip to main content

Advertisement

Log in

Racial/Ethnic Differences in Bone Mineral Density for Osteoporosis

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We primarily aim to review differences in bone mineral density (BMD) for osteoporosis among different racial/ethnic groups and to highlight the magnitude of racial/ethnic differences in obesity and diabetes. We also explore the factors contributing to the BMD differences among various subgroups. In addition, we investigate the existing disparities in research, educational initiatives, screening practices, and treatment options for osteoporosis and discuss these findings’ clinical and public health implications.

Recent Findings

Racial/ethnic differences in BMD for osteoporosis exist in the USA and other countries. There are disparities regarding osteoporosis screening and treatment. Understanding the factors contributing to these differences can help develop targeted interventions and policies to reduce their impact. Clinicians should consider the racial/ethnic differences in BMD when making treatment decisions and providing preventive care. Future research could contribute to developing effective strategies for preventing osteoporosis among different racial/ethnic groups.

Summary

This review offered a comprehensive examination of differences in BMD across various racial and ethnic groups, elucidating the influence of genetic, lifestyle, and cultural factors on these differences. This review also highlighted the disparities in osteoporosis screening, treatment options, research on medical effectiveness, and educational outreach tailored to each subgroup. Recognizing the importance of addressing these inequalities, we present this review to advocate for targeted interventions to reduce disparities in osteoporosis and improve bone health for all populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29:2520–6.

    Article  PubMed  Google Scholar 

  2. Sözen T, Özışık L, Başaran NÇ. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4:46–56.

    Article  PubMed  Google Scholar 

  3. Salari N, Ghasemi H, Mohammadi L, Behzadi M hasan, Rabieenia E, Shohaimi S, et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg. 2021;16:609.

  4. LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ, et al. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2022;33:2049–102.

    Article  CAS  Google Scholar 

  5. Williams SA, Daigle SG, Weiss R, Wang Y, Arora T, Curtis JR. Economic burden of osteoporosis-related fractures in the US Medicare population. Ann Pharmacother. 2021;55:821–9.

    Article  PubMed  Google Scholar 

  6. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res Off J Am Soc Bone Miner Res. 2007;22:465–75.

    Article  Google Scholar 

  7. Rashki Kemmak A, Rezapour A, Jahangiri R, Nikjoo S, Farabi H, Soleimanpour S. Economic burden of osteoporosis in the world: a systematic review. Med J Islam Repub Iran. 2020;34:154.

    PubMed  PubMed Central  Google Scholar 

  8. Haseltine KN, Chukir T, Smith PJ, Jacob JT, Bilezikian JP, Farooki A. Bone mineral density: clinical relevance and quantitative assessment. J Nucl Med. 2021;62:446–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watts NB, Adler RA, Bilezikian JP, Drake MT, Eastell R, Orwoll ES, et al. Osteoporosis in men: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2012;97:1802–22.

    Article  CAS  PubMed  Google Scholar 

  10. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 1994;4:368–81.

  11. Looker AC, Orwoll ES, Johnston CC, Lindsay RL, Wahner HW, Dunn WL, et al. Prevalence of low femoral bone density in older US adults from NHANES III. J Bone Miner Res Off J Am Soc Bone Miner Res. 1997;12:1761–8.

    Article  CAS  Google Scholar 

  12. Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, et al. Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA. 2001;286:2815–22.

    Article  CAS  PubMed  Google Scholar 

  13. Cauley JA, Lui L-Y, Ensrud KE, Zmuda JM, Stone KL, Hochberg MC, et al. Bone mineral density and the risk of incident nonspinal fractures in black and white women. JAMA. 2005;293:2102–8.

    Article  CAS  PubMed  Google Scholar 

  14. Barrett-Connor E, Siris ES, Wehren LE, Miller PD, Abbott TA, Berger ML, et al. Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res. 2005;20:185–94.

    Article  PubMed  Google Scholar 

  15. Nam H-S, Kweon S-S, Choi J-S, Zmuda JM, Leung PC, Lui L-Y, et al. Racial/ethnic differences in bone mineral density among older women. J Bone Miner Metab. 2013;31:190–8.

    Article  PubMed  Google Scholar 

  16. • Xu Y, Wu Q. Decreasing trend of bone mineral density in US multiethnic population: analysis of continuous NHANES 2005–2014. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2018;29:2437–46. An important study examined the trend and disparity in femur neck BMD in four NHANES cycles from 2005-2014.

  17. • Lewiecki EM, Wright NC, Singer AJ. Racial disparities, FRAX, and the care of patients with osteoporosis. Osteoporos Int. 2020;31:2069–71. An important study examined the racial disparities in the FRAX tool and the care of patients among various races.

  18. Curtis JR, McClure LA, Delzell E, Howard VJ, Orwoll E, Saag KG, et al. Population-based fracture risk assessment and osteoporosis treatment disparities by race and gender. J Gen Intern Med. 2009;24:956–62.

    Article  PubMed  PubMed Central  Google Scholar 

  19. • Noel SE, Santos MP, Wright NC. Racial and ethnic disparities in bone health and outcomes in the United States. J Bone Miner Res. 2021;36:1881–905. An important survey paper summarized the previous findings on BMD, fracture, and osteoporosis prevalence disparities among different races.

  20. • Looker AC, Sarafrazi Isfahani N, Fan B, Shepherd JA. Trends in osteoporosis and low bone mass in older US adults, 2005–2006 through 2013–2014. Osteoporos Int. 2017;28:1979–88. An important study examined the trend and disparity on the proximal femur and lumbar spine BMD and osteoporosis prevalence in adults 50 years of age and older in four NHANES cycles from 2005-2014.

  21. •• Johannesdottir F, Putman MS, Burnett-Bowie S-AM, Finkelstein JS, Yu EW, Bouxsein ML. Age-related changes in bone density, microarchitecture, and strength in postmenopausal Black and White women: the SWAN longitudinal HR-pQCT study. J Bone Miner Res. 2022;37:41–51. An important longitudinal study examined the trends and BMD disparities in White and Black Postmenopausal women in the US.

  22. •• Durdin R, Parsons C, Dennison EM, Williams S, Tillin T, Chaturvedi N, et al. Inflammatory status, body composition and ethnic differences in bone mineral density: the Southall and Brent Revisited study. Bone. 2022;155:116286. An important tri-ethnic research examined BMD disparities in men and women from various ethnic backgrounds in the UK.

  23. Ahmad I, Jafar T, Mahdi F, Arshad Md, Das SK, Waliullah S, et al. Association of vitamin D receptor (FokI and BsmI) gene polymorphism with bone mineral density and their effect on 25-hydroxyvitamin D level in North Indian postmenopausal women with osteoporosis. Indian J Clin Biochem. 2018;33:429–37.

  24. Nelson DA, Vord PJV, Wooley PH. Polymorphism in the vitamin D receptor gene and bone mass in African-American and white mothers and children: a preliminary report. Ann Rheum Dis. 2000;59:626–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harris SS, Eccleshall TR, Gross C, Dawson-Hughes B, Feldman D. The vitamin D receptor start codon polymorphism (FokI) and bone mineral density in premenopausal American black and white women. J Bone Miner Res Off J Am Soc Bone Miner Res. 1997;12:1043–8.

    Article  CAS  Google Scholar 

  26. Na T, Zhang W, Jiang Y, Liang Y, Ma H-P, Warnock DG, et al. The A563T variation of the renal epithelial calcium channel TRPV5 among African Americans enhances calcium influx. Am J Physiol-Ren Physiol. 2009;296:F1042–51.

    Article  CAS  Google Scholar 

  27. Peng J-B. TRPV5 and TRPV6 in transcellular Ca2+ transport: regulation, gene duplication, and polymorphisms in African populations. In: Islam MdS, editor. Transient Recept Potential Channels [Internet]. Dordrecht: Springer Netherlands. 2011;239–75. Available from: https://doi.org/10.1007/978-94-007-0265-3_14.

  28. Nguyen-Grozavu FT, Pierce JP, Sakuma K-LK, Leas EC, McMenamin S, Kealey S, et al. Widening disparities in cigarette smoking by race/ethnicity across education level in the United States. Prev Med. 2020;139:106220.

  29. Laird E, O’Halloran AM, Carey D, Healy M, O’Connor D, Moore P, et al. The prevalence of vitamin D deficiency and the determinants of 25(OH)D concentration in older Irish adults: data from the Irish longitudinal study on ageing (TILDA). J Gerontol A Biol Sci Med Sci. 2018;73:519–25.

    Article  PubMed  Google Scholar 

  30. Sadler C, Huff M. African-American women: health beliefs, lifestyle, and osteoporosis. Orthop Nurs. 2007;26:96.

    Article  PubMed  Google Scholar 

  31. Kessenich CR. Osteoporosis and African-American women. Womens Health Issues Off Publ Jacobs Inst Womens Health. 2000;10:300–4.

    Article  CAS  Google Scholar 

  32. National Center for Health Statistics (US). Health, United State, with chartbook on trends in the health of Americans. Hyattsville (MD): National Center for Health Statistics (US). 2005. Available from: https://www.cdc.gov/nchs/data/hus/hus05.pdf. Accessed26 Nov 2023

  33. Briot K, Roux C. Glucocorticoid-induced osteoporosis. RMD Open. 2015;1:e000014.

  34. Walker MD, Babbar R, Opotowsky AR, Rohira A, Nabizadeh F, Badia MD, et al. A referent bone mineral density database for Chinese American women. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2006;17:878–87.

    Article  Google Scholar 

  35. Danielson ME, Beck TJ, Lian Y, Karlamangla AS, Greendale GA, Ruppert K, et al. Ethnic variability in bone geometry as assessed by hip structure analysis: findings from the hip strength across the menopausal transition study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28:771–9.

    Article  Google Scholar 

  36. Walker MD, McMahon DJ, Udesky J, Liu G, Bilezikian JP. Application of high-resolution skeletal imaging to measurements of volumetric BMD and skeletal microarchitecture in Chinese-American and White women: explanation of a paradox. J Bone Miner Res. 2009;24:1953–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morton DJ, Barrett-Connor E, Kritz-Silverstein D, Wingard DL, Schneider DL. Bone mineral density in postmenopausal Caucasian, Filipina, and Hispanic women. Int J Epidemiol. 2003;32(1):150–156. https://doi.org/10.1093/ije/dyg024.

  38. •• Lo JC, Chandra M, Lee C, Darbinian JA, Ramaswamy M, Ettinger B. Bone mineral density in older U.S. Filipino, Chinese, Japanese, and White women. J Am Geriatr Soc. 2020;68:2656–61. An important large-scale study examined the femur neck BMD disparities among Asian women.

  39. •• Cauley JA, Karlamangla AS, Ruppert K, Lian Y, Huang M, Harlow S, et al. Race/ethnic difference in trabecular bone score in midlife women: the Study of Women’s Health Across the Nation (SWAN). Arch Osteoporos. 2021;16:91. An important longitudinal study examined racial and ethnic disparities in trabecular bone scores in midlife women from various ethnic backgrounds in the US.

  40. Kepley AL, Nishiyama KK, Zhou B, Wang J, Zhang C, McMahon DJ, et al. Differences in bone quality and strength between Asian and Caucasian young men. Osteoporos Int. 2017;28:549–58.

    Article  CAS  PubMed  Google Scholar 

  41. •• Morin SN, Berger C, Liu W, Prior JC, Cheung AM, Hanley DA, et al. Differences in fracture prevalence and in bone mineral density between Chinese and White Canadians: the Canadian Multicentre Osteoporosis Study (CaMos). Arch Osteoporos. 2020;15:147. An important study examined disparities in BMD and fracture prevalence between East Asian (Chinese) and White Canadians.

  42. •• Morin SN, Berger C, Papaioannou A, Cheung AM, Rahme E, Leslie WD, et al. Race/ethnic differences in the prevalence of osteoporosis, falls and fractures: a cross-sectional analysis of the Canadian Longitudinal Study on Aging. Osteoporos Int. 2022;33:2637–48. An important longitudinal large-scale study consisting of both men and women examined disparities in BMD patterns and fracture prevalence in Canadians of various racial and ethnic backgrounds.

  43. Arai H, Miyamoto K, Taketani Y, Yamamoto H, Iemori Y, Morita K, et al. A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res Off J Am Soc Bone Miner Res. 1997;12:915–21.

    Article  CAS  Google Scholar 

  44. Zengin A, Pye SR, Cook MJ, Adams JE, Wu FCW, O’Neill TW, et al. Ethnic differences in bone geometry between White, Black and South Asian men in the UK. Bone. 2016;91:180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zengin A, Prentice A, Ward KA. Ethnic differences in bone health. Front Endocrinol. 2015;6:24.

    Article  Google Scholar 

  46. Finkelstein JS, Lee M-LT, Sowers M, Ettinger B, Neer RM, Kelsey JL, et al. Ethnic variation in bone density in premenopausal and early perimenopausal women: effects of anthropometric and lifestyle factors. J Clin Endocrinol Metab. 2002;87:3057–67.

  47. Roy D, Swarbrick C, King Y, Pye S, Adams J, Berry J, et al. Differences in peak bone mass in women of European and South Asian origin can be explained by differences in body size. Osteoporos Int. 2005;16:1254–62.

    Article  PubMed  Google Scholar 

  48. Davis JW, Novotny R, Ross PD, Wasnich RD. The peak bone mass of Hawaiian, Filipino, Japanese, and white women living in Hawaii. Calcif Tissue Int. 1994;55:249–52.

    Article  CAS  PubMed  Google Scholar 

  49. Anal AK. Pandemics and innovative food systems. CRC Press; 2023. https://doi.org/10.1201/9781003191223.

  50. Hodges JK, Cao S, Cladis DP, Weaver CM. Lactose intolerance and bone health: the challenge of ensuring adequate calcium intake. Nutrients. 2019;11:718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan S, Ji L, Tsai J, Eng J, Ko H-J, Yau A, et al. Greater osteoporosis educational outreach is desirable among Chinese immigrants in Chinatown, Chicago. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2009;20:1517–22.

    Article  CAS  Google Scholar 

  52. Huang H, Han G-Y, Jing L-P, Chen Z-Y, Chen Y-M, Xiao S-M. Tea consumption is associated with increased bone strength in middle-aged and elderly Chinese women. J Nutr Health Aging. 2018;22:216–21.

    Article  CAS  PubMed  Google Scholar 

  53. Li X, Qiao Y, Yu C, Guo Y, Bian Z, Yang L, et al. Tea consumption and bone health in Chinese adults: a population-based study. Osteoporos Int. 2019;30:333–41.

    Article  CAS  PubMed  Google Scholar 

  54. Osteoporosis Among Asian American Women - Wei-Chen Tung. 2012. Available from: https://doi.org/10.1177/1084822312441702.

  55. Looker AC, Melton LJ, Harris TB, Borrud LG, Shepherd JA. Prevalence and trends in low femur bone density among older US adults: NHANES 2005–2006 compared with NHANES III. J Bone Miner Res. 2010;25:64–71.

    Article  PubMed  Google Scholar 

  56. • Noel SE, Mangano KM, Griffith JL, Wright NC, Dawson-Hughes B, Tucker KL. Prevalence of osteoporosis and low bone mass among Puerto Rican older adults. J Bone Miner Res Off J Am Soc Bone Miner Res. 2018;33:396–403. An important study examined osteoporosis and low bone mass among Puerto Rican older adults.

  57. Gross C, Eccleshall TR, Malloy PJ, Villa ML, Marcus R, Feldman D. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J Bone Miner Res. 1996;11:1850–5.

    Article  CAS  PubMed  Google Scholar 

  58. Tayie F, Wu C. Large bone not necessarily high bone mineral density: evidence from a national survey. Calcif Tissue Int. 2018;104:145–51.

    Article  PubMed  Google Scholar 

  59. Denova-Gutiérrez E, Clark P, Tucker KL, Muñoz-Aguirre P, Salmerón J. Dietary patterns are associated with bone mineral density in an urban Mexican adult population. Osteoporos Int. 2016;27:3033–40.

    Article  PubMed  Google Scholar 

  60. Nordin BE, Need AG, Morris HA, Horowitz M. The nature and significance of the relationship between urinary sodium and urinary calcium in women. J Nutr. 1993;123:1615–22.

    Article  CAS  PubMed  Google Scholar 

  61. Jones G, Beard T, Parameswaran V, Greenaway T, von Witt R. A population-based study of the relationship between salt intake, bone resorption and bone mass. Eur J Clin Nutr. 1997;51:561–5.

    Article  CAS  PubMed  Google Scholar 

  62. Heaney RP. Role of dietary sodium in osteoporosis. J Am Coll Nutr. 2006;25:271S-276S.

    Article  CAS  PubMed  Google Scholar 

  63. • Denova-Gutiérrez E, Méndez-Sánchez L, Muñoz-Aguirre P, Tucker KL, Clark P. Dietary patterns, bone mineral density, and risk of fractures: a systematic review and meta-analysis. Nutrients. 2018;10:1922. An important systematic review study of dietary patterns on BMD and fracture risks.

  64. Valerio G, Gallè F, Mancusi C, Di Onofrio V, Guida P, Tramontano A, et al. Prevalence of overweight in children with bone fractures: a case control study. BMC Pediatr. 2012;12:166.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dimitri P. The impact of childhood obesity on skeletal health and development. J Obes Metab Syndr. 2019;28:4.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fritz J, Cöster ME, Nilsson J-Å, Rosengren BE, Dencker M, Karlsson MK. The associations of physical activity with fracture risk—a 7-year prospective controlled intervention study in 3534 children. Osteoporos Int. 2016;27:915–22.

    Article  CAS  PubMed  Google Scholar 

  67. • Campoverde Reyes KJ, Cody Stanford F, Singhal V, Animashaun AO, Bose A, Gleeson EL, et al. Bone density, microarchitecture and strength estimates in White versus African American youth with obesity. Bone. 2020;138:115514. An interesting study examined the BMD and bone microarchitecture between White and African-American youth with obesity.

  68. Popp KL, Hughes JM, Martinez-Betancourt A, Scott M, Turkington V, Caksa S, et al. Bone mass, microarchitecture and strength are influenced by race/ethnicity in young adult men and women. Bone. 2017;103:200–8.

    Article  PubMed  Google Scholar 

  69. Misra M, Ackerman KE, Bredella MA, Stanford FC, Faje AT, Nordberg A, et al. Racial differences in bone microarchitecture and estimated strength at the distal radius and distal tibia in older adolescent girls: a cross-sectional study. J Racial Ethn Health Disparities. 2017;4:587–98.

    Article  PubMed  Google Scholar 

  70. • Bredella MA, Singhal V, Hazhir Karzar N, Animashaun A, Bose A, Stanford FC, et al. Racial differences in lumbar marrow adipose tissue and volumetric bone mineral density in adolescents and young adults with obesity. Bone Rep. 2020;13:100726. An interesting study analyzed the disparities in volumetric BMD and lumbar marrow adipose tissue among Black and White young adults with obesity.

  71. de Liefde II, van der Klift M, de Laet CEDH, van Daele PLA, Hofman A, Pols H a. P. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam study. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2005;16:1713–20.

  72. Thrailkill KM, Lumpkin CK, Bunn RC, Kemp SF, Fowlkes JL. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab. 2005;289:E735–45.

    Article  CAS  PubMed  Google Scholar 

  73. Dennison EM, Syddall HE, Aihie Sayer A, Craighead S, Phillips DIW, Cooper C. Type 2 diabetes mellitus is associated with increased axial bone density in men and women from the Hertfordshire cohort study: evidence for an indirect effect of insulin resistance? Diabetologia. 2004;47:1963–8.

    Article  CAS  PubMed  Google Scholar 

  74. Shin D, Kim S, Kim KH, Lee K, Park SM. Association between insulin resistance and bone mass in men. J Clin Endocrinol Metab. 2014;99:988–95.

    Article  CAS  PubMed  Google Scholar 

  75. Ohn JH, Kwak SH, Cho YM, Lim S, Jang HC, Park KS, et al. 10-year trajectory of β-cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes Endocrinol. 2016;4:27–34.

    Article  CAS  PubMed  Google Scholar 

  76. • Xu Y, Wu Q. Trends in osteoporosis and mean bone density among type 2 diabetes patients in the US from 2005 to 2014. Sci Rep. 2021;11(1):3693. Available from: https://www.nature.com/articles/s41598-021-83263-4. An important study analyzed the BMD and osteoporosis prevalence trends among type 2 diabetes patients.

  77. Ma L, Oei L, Jiang L, Estrada K, Chen H, Wang Z, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol. 2012;27:319–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhu Q, Xu J, Zhou M, Lian X, Xu J, Shi J. Association between type 1 diabetes mellitus and reduced bone mineral density in children: a meta-analysis. Osteoporos Int. 2021;32:1143–52.

    Article  CAS  PubMed  Google Scholar 

  79. Jang M, Kim H, Lea S, Oh S, Kim JS, Oh B. Effect of duration of diabetes on bone mineral density: a population study on East Asian males. BMC Endocr Disord. 2018;18:61.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shan P-F, Wu X-P, Zhang H, Cao X-Z, Gu W, Deng X-G, et al. Bone mineral density and its relationship with body mass index in postmenopausal women with type 2 diabetes mellitus in mainland China. J Bone Miner Metab. 2009;27:190–7.

    Article  PubMed  Google Scholar 

  81. Shaw C-K. An epidemiologic study of osteoporosis in Taiwan. Ann Epidemiol. 1993;3:264–71.

    Article  CAS  PubMed  Google Scholar 

  82. Shilbayeh S. Prevalence of osteoporosis and its reproductive risk factors among Jordanian women: a cross-sectional study. Osteoporos Int. 2003;14:929–40.

    Article  PubMed  Google Scholar 

  83. Torréns JI, Skurnick J, Davidow AL, Korenman SG, Santoro N, Soto-Greene M, et al. Ethnic differences in insulin sensitivity and beta-cell function in premenopausal or early perimenopausal women without diabetes: the Study of Women’s Health Across the Nation (SWAN). Diabetes Care. 2004;27:354–61.

    Article  PubMed  Google Scholar 

  84. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287:356–9.

    Article  PubMed  Google Scholar 

  85. McKay HA, Petit MA, Khan KM, Schutz RW. Lifestyle determinants of bone mineral: a comparison between prepubertal Asian- and Caucasian-Canadian boys and girls. Calcif Tissue Int. 2000;66:320–4.

    Article  CAS  PubMed  Google Scholar 

  86. Boot AM, de Ridder MA, Pols HA, Krenning EP, de Muinck Keizer-Schrama SM. Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab. 1997;82:57–62.

    CAS  PubMed  Google Scholar 

  87. Choksi P, Jepsen KJ, Clines GA. The challenges of diagnosing osteoporosis and the limitations of currently available tools. Clin Diabetes Endocrinol. 2018;4:12.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yang Y, Hu X, Zhang Q, Zou R. Diabetes mellitus and risk of falls in older adults: a systematic review and meta-analysis. Age Ageing. 2016;45:761–7.

    Article  PubMed  Google Scholar 

  89. Kim JH, Choi HJ, Ku EJ, Kim KM, Kim SW, Cho NH, et al. Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab. 2015;100:475–82.

    Article  CAS  PubMed  Google Scholar 

  90. Schwartz AV, Hillier TA, Sellmeyer DE, Resnick HE, Gregg E, Ensrud KE, et al. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care. 2002;25:1749–54.

    Article  PubMed  Google Scholar 

  91. Wilkins CH, Goldfeder JS. Osteoporosis screening is unjustifiably low in older African-American women. J Natl Med Assoc. 2004;96:461–7.

    PubMed  PubMed Central  Google Scholar 

  92. Miller RG, Ashar BH, Cohen J, Camp M, Coombs C, Johnson E, et al. Disparities in osteoporosis screening between at-risk African-American and white women. J Gen Intern Med. 2005;20:847–51.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hamrick I, Steinweg KK, Cummings DM, Whetstone LM. Health care disparities in postmenopausal women referred for DXA screening. Fam Med. 2006;38:265–9.

    PubMed  Google Scholar 

  94. Hamrick I, Cao Q, Agbafe-Mosley D, Cummings DM. Osteoporosis healthcare disparities in postmenopausal women. J Womens Health. 2012;21:1232–6.

    Article  Google Scholar 

  95. Amarnath ALD, Franks P, Robbins JA, Xing G, Fenton JJ. Underuse and overuse of osteoporosis screening in a regional health system: a retrospective cohort study. J Gen Intern Med. 2015;30:1733–40.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gillespie CW, Morin PE. Trends and disparities in osteoporosis screening among women in the United States, 2008–2014. Am J Med. 2017;130:306–16.

    Article  PubMed  Google Scholar 

  97. Nelson A. Unequal treatment: confronting racial and ethnic disparities in health care. J Natl Med Assoc. 2002;94:666–8.

    PubMed  PubMed Central  Google Scholar 

  98. Nesby-O’Dell S, Scanlon KS, Cogswell ME, Gillespie C, Hollis BW, Looker AC, et al. Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr. 2002;76:187–92.

  99. Fiscella K, Franks P, Gold MR, Clancy CM. Inequality in quality: addressing socioeconomic, racial, and ethnic disparities in health care. JAMA. 2000;283:2579–84.

    Article  CAS  PubMed  Google Scholar 

  100. Schrager S, Kausch T, Bobula JA. Osteoporosis risk assessment by family practice faculty and residents: a chart review. WMJ Off Publ State Med Soc Wis. 1999;98:34–6.

    CAS  Google Scholar 

  101. Neuner JM, Zhang X, Sparapani R, Laud PW, Nattinger AB. Racial and socioeconomic disparities in bone density testing before and after hip fracture. J Gen Intern Med. 2007;22:1239–45.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Neuner JM, Binkley N, Sparapani RA, Laud PW, Nattinger AB. Bone density testing in older women and its association with patient age. J Am Geriatr Soc. 2006;54:485–9.

    Article  PubMed  Google Scholar 

  103. Navarro RA, Greene DF, Burchette R, Funahashi T, Dell R. Minimizing disparities in osteoporosis care of minorities with an electronic medical record care plan. Clin Orthop. 2011;469:1931–5.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rangel Gómez MG, López Jaramillo AM, Svarch A, Tonda J, Lara J, Anderson EJ, et al. Together for health: an initiative to access health services for the Hispanic/Mexican population living in the United States. Front Public Health [Internet]. 2019 [cited 2023 Feb 5];7. Available from: https://doi.org/10.3389/fpubh.2019.00273.

  105. Alcalá HE, Chen J, Langellier BA, Roby DH, Ortega AN. Impact of the affordable care act on health care access and utilization among Latinos. J Am Board Fam Med. 2017;30:52–62.

    Article  PubMed  Google Scholar 

  106. Oh H, Trinh MP, Vang C, Becerra D. Addressing barriers to primary care access for Latinos in the US: an agent-based model. J Soc Soc Work Res. 2020;11:165–84.

    Article  Google Scholar 

  107. Vyas DA, Eisenstein LG, Jones DS. Hidden in plain sight—reconsidering the use of race correction in clinical algorithms. N Engl J Med. 2020;383:874–82.

    Article  PubMed  Google Scholar 

  108. Liu SK, Munson JC, Bell J-E, Zaha RL, Mecchella JN, Tosteson ANA, et al. Quality of osteoporosis care of older Medicare recipients with fragility fractures: 2006 to 2010. J Am Geriatr Soc. 2013;61:1855–62.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Cunningham TD, Di Pace BS, Ullal J. Osteoporosis treatment disparities: a 6-year aggregate analysis from national survey data. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2014;25:2199–208.

    Article  CAS  Google Scholar 

  110. Jennings LA, Auerbach AD, Maselli J, Pekow PS, Lindenauer PK, Lee SJ. Missed opportunities for osteoporosis treatment in patients hospitalized for hip fracture. J Am Geriatr Soc. 2010;58:650–7.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Liu Z, Weaver J, de Papp A, Li Z, Martin J, Allen K, et al. Disparities in osteoporosis treatments. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2016;27:509–19.

    Article  CAS  Google Scholar 

  112. Orces CH, Casas C, Lee S, Garci-Cavazos R, White W. Determinants of osteoporosis prevention in low-income Mexican-American women. South Med J. 2003;96:458–64.

    Article  PubMed  Google Scholar 

  113. Bell NH, Bilezikian JP, Bone HG, Kaur A, Maragoto A, Santora AC, et al. Alendronate increases bone mass and reduces bone markers in postmenopausal African-American women. J Clin Endocrinol Metab. 2002;87:2792–7.

    Article  CAS  PubMed  Google Scholar 

  114. Wei GS, Jackson JL, O’Malley PG. Postmenopausal osteoporosis risk management in primary care: how well does it adhere to national practice guidelines? J Am Med Womens Assoc. 1972;2003(58):99–104.

    Google Scholar 

  115. Kung AWC, Yeung SSC, Chu LW. The efficacy and tolerability of alendronate in postmenopausal osteoporotic Chinese women: a randomized placebo-controlled study. Calcif Tissue Int. 2000;67:286–90.

    Article  CAS  PubMed  Google Scholar 

  116. Wasnich RD, Ross PD, Thompson DE, Cizza G, Yates AJ. Skeletal benefits of two years of alendronate treatment are similar for early postmenopausal Asian and Caucasian women. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 1999;9:455–60.

    Article  CAS  Google Scholar 

  117. Orimo H, Shiraki M, Hayashi Y, Hoshino T, Onaya T, Miyazaki S, et al. Effects of 1 alpha-hydroxyvitamin D3 on lumbar bone mineral density and vertebral fractures in patients with postmenopausal osteoporosis. Calcif Tissue Int. 1994;54:370–6.

    Article  CAS  PubMed  Google Scholar 

  118. Shikari M, Kushida K, Yamazaki K, Nagai T, Inoue T, Orimo H. Effects of 2 years’ treatment of osteoporosis with 1 alpha-hydroxy vitamin D3 on bone mineral density and incidence of fracture: a placebo-controlled, double-blind prospective study. Endocr J. 1996;43:211–20.

    Article  CAS  PubMed  Google Scholar 

  119. Carter MI, Hinton PS. Physical activity and bone health. Mo Med. 2014;111:59–64.

    PubMed  PubMed Central  Google Scholar 

  120. Zhu J, March L. Treating osteoporosis: risks and management. Aust Prescr. 2022;45:150–7.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kling JM, Clarke BL, Sandhu NP. Osteoporosis prevention, screening, and treatment: a review. J Womens Health. 2014;23:563–72.

    Article  Google Scholar 

  122. Bliuc D, Tran T, van Geel T, Adachi JD, Berger C, van den Bergh J, et al. Reduced bone loss is associated with reduced mortality risk in subjects exposed to nitrogen bisphosphonates: a mediation analysis. J Bone Miner Res. 2019;34:2001–11.

    Article  CAS  PubMed  Google Scholar 

  123. Newcomb PA, Trentham-Dietz A, Hampton JM. Bisphosphonates for osteoporosis treatment are associated with reduced breast cancer risk. Br J Cancer. 2010;102:799–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mattei J, Sotres-Alvarez D, Daviglus ML, Gallo LC, Gellman M, Hu FB, et al. Diet quality and its association with cardiometabolic risk factors vary by Hispanic and Latino ethnic background in the Hispanic community health study/study of Latinos. J Nutr. 2016;146:2035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Siega-Riz AM, Sotres-Alvarez D, Ayala GX, Ginsberg M, Himes JH, Liu K, et al. Food-group and nutrient-density intakes by Hispanic and Latino backgrounds in the Hispanic community health study/study of Latinos. Am J Clin Nutr. 2014;99:1487–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Morales LS, Lara M, Kington RS, Valdez RO, Escarce JJ. Socioeconomic, cultural, and behavioral factors affecting Hispanic health outcomes. J Health Care Poor Underserved. 2002;13:477–503.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Parola R, Neal WH, Konda SR, Ganta A, Egol KA. No differences between White and non-White patients in terms of care quality metrics, complications, and death after hip fracture surgery when standardized care pathways are used. Clin Orthop Relat Res. 2023;481:324.

    Article  PubMed  Google Scholar 

  128. Comprehensive Care for Joint Replacement Model|CMS Innovation Center. 2021. Available from: https://innovation.cms.gov/innovation-models/cjr.  Accessed 26 Nov 2023.

  129. Bundled Payments for Care Improvement (BPCI) Initiative: General Information | CMS Innovation Center. 2021. Available from: https://innovation.cms.gov/innovation-models/bundled-payments. Accessed 26 Nov 2023.

  130. Ho-Pham LT, T Nguyen UD, Pham HN, Nguyen ND, Nguyen TV. Reference ranges for bone mineral density and prevalence of osteoporosis in Vietnamese men and women. BMC Musculoskelet Disord. 2011;12:182.

  131. Lo JC, Kim S, Chandra M, Ettinger B. Applying ethnic-specific bone mineral density T-scores to Chinese women in the USA. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2016;27:3477–84.

    Article  CAS  Google Scholar 

  132. Chen KK, Wee S-L, Pang BWJ, Lau LK, Jabbar KA, Seah WT, et al. Bone mineral density reference values in Singaporean adults and comparisons for osteoporosis establishment–the Yishun Study. BMC Musculoskelet Disord. 2020;21:633.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wu XP, Liao EY, Huang G, Dai RC, Zhang H. A comparison study of the reference curves of bone mineral density at different skeletal sites in native Chinese, Japanese, and American Caucasian women. Calcif Tissue Int. 2003;73:122–32.

    Article  CAS  PubMed  Google Scholar 

  134. Leslie WD. Ethnic differences in bone mass—clinical implications. J Clin Endocrinol Metab. 2012;97:4329–40.

    Article  CAS  PubMed  Google Scholar 

  135. Wilkin LD, Jackson MC, Sims TD, Haddock BL. Racial/ethnic differences in bone mineral density of young adults. Int J Exerc Sci. 2010;3:197–205.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research and analysis described in the current publication were supported by a grant (R21MD013681) from the National Institute on Minority Health and Health Disparities and a grant (R01AG080017) from the National Institute on Aging. The funding sponsors were not involved in the analysis design, genotype imputation, data analysis, interpretation of the analysis results, or the preparation, review, or approval of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights

All reported data from human studies performed and published by the authors previously complied with all applicable ethical standards and have been approved by the institutional review boards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Dai, J. Racial/Ethnic Differences in Bone Mineral Density for Osteoporosis. Curr Osteoporos Rep 21, 670–684 (2023). https://doi.org/10.1007/s11914-023-00838-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-023-00838-y

Keywords

Navigation