Skip to main content

Advertisement

Log in

Biological Regulation of Bone Quality

  • Bone Quality in Osteoporosis (MD Grynpas and JS Nyman, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hernandez CJ, Keaveny TM. A biomechanical perspective on bone quality. Bone. 2006;39:1173–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Currey JD. The design of mineralised hard tissues for their mechanical functions. J Exp Biol. 1999;202:3285–94.

    CAS  PubMed  Google Scholar 

  3. Chang JL, Brauer DS, Johnson J, Chen CG, Akil O, Balooch G, et al. Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-beta and Runx2 in bone is required for hearing. EMBO Rep. 2010;11:765–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kawashima Y, Fritton JC, Yakar S, Epstein S, Schaffler MB, Jepsen KJ, et al. Type 2 diabetic mice demonstrate slender long bones with increased fragility secondary to increased osteoclastogenesis. Bone. 2009;44:648–55.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Tommasini SM, Nasser P, Jepsen KJ. Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties. Bone. 2007;40:498–505.

    Article  PubMed  Google Scholar 

  6. Bouxsein ML, Karasik D. Bone geometry and skeletal fragility. Curr Osteoporos Rep. 2006;4:49–56.

    Article  PubMed  Google Scholar 

  7. Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969;2:1–11.

    Article  CAS  PubMed  Google Scholar 

  8. Golub EE. Biomineralization and matrix vesicles in biology and pathology. Semin Immunopath. 2011;33:409–17.

    Article  Google Scholar 

  9. Murshed M, McKee MD. Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr Opin Nephrol Hypertens. 2010;19:359–65.

    Article  CAS  PubMed  Google Scholar 

  10. Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, et al. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res. 1999;14:2015–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A. 2002;99:9445–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ho AM, Johnson MD, Kingsley DM. Role of the mouse ank gene in control of tissue calcification and arthritis. Science. 2000;289:265–70.

    Article  CAS  PubMed  Google Scholar 

  13. Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122:1803–15. This study demonstrates the regulation of ANK by vitamin D and its role in mineralization.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MCH. Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tiss Intl. 2010;87:450–60.

    Article  CAS  Google Scholar 

  15. Busse B, Bale HA, Zimmermann EA, Panganiban B, Barth HD, Carriero A, et al. Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. ci Transl Med. 2013;5:193ra88. This study demonstrates the effect of vitamin D deficiency on bone quality at multiple length scales.

    Google Scholar 

  16. Sroga GE, Vashishth D. Effects of bone matrix proteins on fracture and fragility in osteoporosis. Curr Osteoporos Rep. 2012;10:141–50. This is an excellent review on the role of bone matrix proteins and collagen crosslinking in bone quality.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Yoshitake H, Rittling SR, Denhardt DT, Noda M. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci U S A. 1999;96:8156–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Duvall CL, Taylor WR, Weiss D, Wojtowicz AM, Guldberg RE. Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res. 2007;22:286–97.

    Article  CAS  PubMed  Google Scholar 

  19. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–52.

    Article  CAS  PubMed  Google Scholar 

  20. Rittling SR, Matsumoto HN, McKee MD, Nanci A, An XR, Novick KE, et al. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res. 1998;13:1101–11.

    Article  CAS  PubMed  Google Scholar 

  21. Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J. 1996;317(Pt 1):59–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Qiu SR, Wierzbicki A, Orme CA, Cody AM, Hoyer JR, Nancollas GH, et al. Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci U S A. 2004;101:1811–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zappone B, Thurner PJ, Adams J, Fantner GE, Hansma PK. Effect of Ca2+ ions on the adhesion and mechanical properties of adsorbed layers of human osteopontin. Biophys J. 2008;95:2939–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, et al. Dilatational band formation in bone. Proc Natl Acad Sci U S A. 2012;109:19178–83. This study demonstrates the role of osteocalcin and osteopontin in dilatational bands and the importance of these bands in bone toughness.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Thurner PJ, Chen CG, Ionova-Martin S, Sun L, Harman A, Porter A, et al. Osteopontin deficiency increases bone fragility but preserves bone mass. Bone. 2010;46:1564–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wallace JM, Rajachar RM, Chen X-D, Shi S, Allen MR, Bloomfield SA, et al. The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific. Bone. 2006;39:106–16.

    Article  CAS  PubMed  Google Scholar 

  27. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38:1310–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Karunaratne A, Esapa CR, Hiller J, Boyde A, Head R, Bassett JH, et al. Significant deterioration in nanomechanical quality occurs through incomplete extrafibrillar mineralization in rachitic bone: evidence from in-situ synchrotron X-ray scattering and backscattered electron imaging. J Bone Miner Res. 2012;27:876–90. This study implicates Phex in the regulation of bone quality.

    Article  PubMed  Google Scholar 

  29. Arteaga-Solis E, Sui-Arteaga L, Kim M, Schaffler MB, Jepsen KJ, Pleshko N, et al. Material and mechanical properties of bones deficient for fibrillin-1 or fibrillin-2 microfibrils. Matrix Biol. 2011;30:188–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Noda M, Yoon K, Prince CW, Butler WT, Rodan GA. Transcriptional regulation of osteopontin production in rat osteosarcoma cells by type beta transforming growth factor. J Biol Chem. 1988;263:13916–21.

    CAS  PubMed  Google Scholar 

  31. Noda M, Rodan GA. Transcriptional regulation of osteopontin production in rat osteoblast-like cells by parathyroid hormone. J Cell Biol. 1989;108:713–8.

    Article  CAS  PubMed  Google Scholar 

  32. Leboy PS, Beresford JN, Devlin C, Owen ME. Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J Cell Physiol. 1991;146:370–8.

    Article  CAS  PubMed  Google Scholar 

  33. Sodek J, Chen J, Nagata T, Kasugai S, Todescan R, Li IW, et al. Regulation of osteopontin expression in osteoblasts. Ann N Y Acad Sci. 1995;760:223–41.

    Article  CAS  PubMed  Google Scholar 

  34. Balooch G, Balooch M, Nalla RK, Schilling S, Filvaroff EH, Marshall GW, et al. TGF-beta regulates the mechanical properties and composition of bone matrix. Proc Natl Acad Sci U S A. 2005;102:18813–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Brennan TC, Rizzoli R, Ammann P. Selective modification of bone quality by PTH, pamidronate, or raloxifene. J Bone Miner Res. 2009;24:800–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lane NE, Yao W, Kinney JH, Modin G, Balooch M, Wronski TJ. Both hPTH(1-34) and bFGF increase trabecular bone mass in osteopenic rats but they have different effects on trabecular bone architecture. J Bone Miner Res. 2003;18:2105–15.

    Article  CAS  PubMed  Google Scholar 

  37. Lane NE, Yao W, Balooch M, Nalla RK, Balooch G, Habelitz S, et al. Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J Bone Miner Res. 2006;21:466–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Carriero A, Doube M, Vogt M, Busse B, Zustin J, Levchuk A, et al. Altered lacunar and vascular porosity in osteogenesis imperfecta mouse bone as revealed by synchrotron tomography contributes to bone fragility. Bone. 2014;61:116–24. This study provides high-resolution imaging analysis of bone porosity in ostogenesis imprerfecta.

    Article  CAS  PubMed  Google Scholar 

  39. Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, et al. How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res. 2014. This study examines bone quality in osteogenesis imperfecta at multiple length scales.

  40. Sinder BP, Eddy MM, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Sclerostin antibody improves skeletal parameters in a Brtl/+mouse model of osteogenesis imperfecta. J Bone Miner Res. 2013;28:73–80. This study shows the ability of Sclerostin inhibition to improve bone quality in a mouse model of osteogenesis imperfecta.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Uveges TE, Kozloff KM, Ty JM, Ledgard F, Raggio CL, Gronowicz G, et al. Alendronate treatment of the brtl osteogenesis imperfecta mouse improves femoral geometry and load response before fracture but decreases predicted material properties and has detrimental effects on osteoblasts and bone formation. J Bone Miner Res. 2009;24:849–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Marini JC. Osteogenesis imperfecta: comprehensive management. Adv Pediatr. 1988;35:391–426.

    CAS  PubMed  Google Scholar 

  43. Kozloff KM, Carden A, Bergwitz C, Forlino A, Uveges TE, Morris MD, et al. Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptations to improve whole bone strength. J Bone Miner Res. 2004;19:614–22.

    Article  PubMed  Google Scholar 

  44. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214.

    Article  CAS  PubMed  Google Scholar 

  45. Burr DB. Bone material properties and mineral matrix contributions to fracture risk or age in women and men. J Musculoskel Neur Inter. 2002;2:201–4.

    CAS  Google Scholar 

  46. Tang SY, Allen MR, Phipps R, Burr DB, Vashishth D. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int. 2009;20:887–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Nyman JS, Roy A, Tyler JH, Acuna RL, Gayle HJ, Wang X. Age-related factors affecting the postyield energy dissipation of human cortical bone. J Orthop Res. 2007;25:646–55.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Burr DB. Why bones bend but don't break. J Musculoskel Neur Inter. 2011;11:270–85.

    CAS  Google Scholar 

  49. Diab T, Condon KW, Burr DB, Vashishth D. Age-related change in the damage morphology of human cortical bone and its role in bone fragility. Bone. 2006;38:427–31.

    Article  PubMed  Google Scholar 

  50. Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO. Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone. 2004;35:1240–6.

    Article  CAS  PubMed  Google Scholar 

  51. Nyman JS, Even JL, Jo C-H, Herbert EG, Murry MR, Cockrell GE, et al. Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone. 2011;48:733–40.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Gourion-Arsiquaud S, Burket JC, Havill LM, DiCarlo E, Doty SB, Mendelsohn R, et al. Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res. 2009;24:1271–81.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Burket J, Gourion-Arsiquaud S, Havill LM, Baker SP, Boskey AL, van der Meulen MCH. Microstructure and nanomechanical properties in osteons relate to tissue and animal age. J Biomech. 2011;44:277–84.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Tjhia CK, Stover SM, Rao DS, Odvina CV, Fyhrie DP. Relating micromechanical properties and mineral densities in severely suppressed bone turnover patients, osteoporotic patients, and normal subjects. Bone. 2012;51:114–22. This study examines the impact of bisphosphonate treatment and the inhibition of osteoclast-mediated bone remodeling on bone quality.

    Article  PubMed  Google Scholar 

  55. Seitz S, Koehne T, Ries C, De Novo Oliveira A, Barvencik F, Busse B, et al. Impaired bone mineralization accompanied by low vitamin D and secondary hyperparathyroidism in patients with femoral neck fracture. Osteoporosis Intl. 2013;24:641–9. This study examines the role of signaling pathways that regulate bone remodeling in the regulation of bone quality.

    Article  CAS  Google Scholar 

  56. Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010;46:666–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone. 2013;55:495–500. This article discusses the mechanisms by which altered bone quality may contribute to atypical femoral fractures following bisphosphonate use.

    Article  CAS  PubMed  Google Scholar 

  58. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26:229–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Belanger LF. Osteocytic osteolysis. Calcif Tissue Res. 1969;4:1–12.

    Article  CAS  PubMed  Google Scholar 

  60. Qing H, Bonewald LF. Osteocyte remodeling of the perilacunar and pericanalicular matrix. Int J Oral Sci. 2009;1:59–65.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Tang SY, Herber RP, Ho S, Alliston T. Maintenance of Bone Fracture Resistance Requires Perilacunar Remodeling by Matrix Metalloproteinase-13. J Bone Min Res. 2012;27:1936–1950. This article demonstrates the requirement of perilacunar remodeling by osteocytes for the maintenance of bone quality.

  62. Qing H, Ardeshirpour L, Pajevic PD, Dusevich V, Jahn K, Kato S, et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012;27:1018–29. This article demonstrates the requirement of perilacunar remodeling by osteocytes for the maintenance of mineral homeostasis.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Fuller K, Chambers TJ. Localisation of mRNA for collagenase in osteocytic, bone surface, and chondrocytic cells but not osteoclasts. J Cell Sci. 1995;108(Pt 6):2221–30.

    CAS  PubMed  Google Scholar 

  64. Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, et al. A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J Biol Chem. 2006;281:33814–24.

    Article  CAS  PubMed  Google Scholar 

  65. Holmbeck K, Bianco P, Pidoux I, Inoue S, Billinghurst RC, Wu W, et al. The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci. 2005;118:147–56.

    Article  CAS  PubMed  Google Scholar 

  66. Mosig RA, Dowling O, DiFeo A, Ramirez MCM, Parker IC, Abe E, et al. Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet. 2007;16:1113–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone. 2009;44:11–6.

    Article  CAS  PubMed  Google Scholar 

  68. Kerschnitzki M, Wagermaier W, Roschger P, Seto J, Shahar R, Duda GN, et al. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol. 2011;173:303–11.

    Article  CAS  PubMed  Google Scholar 

  69. Kerschnitzki M, Kollmannsberger P, Burghammer M, Duda GN, Weinkamer R, Wagermaier W, et al. Architecture of the osteocyte network correlates with bone material quality. J Bone Miner Res. 2013;28:1837–45. This article elegantly shows the relationship between the osteocyte canalicular network and the organization of bone ECM.

    Article  CAS  PubMed  Google Scholar 

  70. Nyman JS, Lynch CC, Perrien DS, Thiolloy S, O'Quinn EC, Patil CA, et al. Differential effects between the loss of MMP-2 and MMP-9 on structural and tissue-level properties of bone. J Bone Miner Res. 2011;26:1252–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Li CY, Jepsen KJ, Majeska RJ, Zhang J, Ni R, Gelb BD, et al. Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass. J Bone Miner Res. 2006;21:865–75.

    Article  CAS  PubMed  Google Scholar 

  72. Kühnisch J, Seto J, Lange C, Schrof S, Stumpp S, Kobus K, et al. Multiscale, converging defects of macro-porosity, microstructure and matrix mineralization impact long bone fragility in NF1. PLoS One. 2014;9:e86115. This article demonstrates the critical role of a signaling intermediate, NF1, in the control of bone quality.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Weinstein RS. Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol Metab Clin North Am. 2012;41:595–611. This article reviews the role of glucocorticoids in osteoporosis and osteonecrosis.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Moutsatsou P, Kassi E, Papavassiliou AG. Glucocorticoid receptor signaling in bone cells. Trends Mol Med. 2012;18:348–59. This review dissects the role of glucocorticoids in osteoblasts, osteocytes, and osteoclasts.

    Article  CAS  PubMed  Google Scholar 

  75. Tang SY, Alliston T. Regulation of postnatal bone homeostasis by TGFbeta. Bonekey Rep. 2013;2:255. This review describes the mechanisms by which TGF β maintains the biological and mechanical homeostasis of bone.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Alliston T, Piek E, Derynck R. In: Derynck R, Miyazono K, editors. The TGF-β Family. Woodbury: Cold Spring Harbor Press; 2008. p. 667–723.

    Google Scholar 

  77. Dallas SL, Alliston T, Bonewald LF. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of Bone Biology. San Diego: Academic Press; 2008. p. 1145–66.

    Chapter  Google Scholar 

  78. Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai J, et al. A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and SMAD interaction in cleidocranial dysplasia. Proc Natl Acad Sci U S A. 2000;97:10549–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Alliston T, Choy L, Ducy P, Karsenty G, Derynck R. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J. 2001;20:2254–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, et al. Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS ONE. 2009;4:e5275.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Edwards JR, Nyman JS, Lwin ST, Moore MM, Esparza J, O'Quinn EC, et al. Inhibition of TGF-β signaling by 1D11 antibody treatment increases bone mass and quality in vivo. J Bone Miner Res. 2010;25:2419–26.

    Article  CAS  PubMed  Google Scholar 

  82. Ammann P, Brennan TC, Mekraldi S, Aubert ML, Rizzoli R. Administration of growth hormone in selectively protein-deprived rats decreases BMD and bone strength. Bone. 2010;46:1574–81.

    Article  CAS  PubMed  Google Scholar 

  83. Tseng KF, Bonadio JF, Stewart TA, Baker AR, Goldstein SA. Local expression of human growth hormone in bone results in impaired mechanical integrity in the skeletal tissue of transgenic mice. J Orthop Res. 1996;14:598–604.

    Article  CAS  PubMed  Google Scholar 

  84. Williams GA, Callon KE, Watson M, Costa JL, Ding Y, Dickinson M, et al. Skeletal phenotype of the leptin receptor-deficient db/db mouse. J Bone Miner Res. 2011;26:1698–709.

    Article  CAS  PubMed  Google Scholar 

  85. Schroeder TM, Kahler RA, Li X, Westendorf JJ. Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J Biol Chem. 2004;279:41998–2007.

    Article  CAS  PubMed  Google Scholar 

  86. McGee-Lawrence ME, Bradley EW, Dudakovic A, Carlson SW, Ryan ZC, Kumar R, et al. Histone deacetylase 3 is required for maintenance of bone mass during aging. Bone. 2013;52:296–307. This article describes the role of a histone deacetylase in the control of bone ECM quality.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology: implication for Coffin-Lowry Syndrome. Cell. 2004;117:387–98.

    Article  CAS  PubMed  Google Scholar 

  88. Makowski AJ, Uppuganti S, Wadeer SA. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness. Bone. 2014;62:1–9. This article describes the role of a transcription factor, ATF4, in control of bone quality.

    Article  CAS  PubMed  Google Scholar 

  89. Selvamurugan N, Kwok S, Alliston T, Reiss M, Partridge NC. Transforming growth factor-beta 1 regulation of collagenase-3 expression in osteoblastic cells by cross-talk between the SMAD and MAPK signaling pathways and their components, SMAD2 and Runx2. J Biol Chem. 2004;279:19327–34.

    Article  CAS  PubMed  Google Scholar 

  90. Jepsen KJ, Courtland H-W, Nadeau JH. Genetically determined phenotype covariation networks control bone strength. J Bone Miner Res. 2010;25:1581–93.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Havill LM, Allen MR, Bredbenner TL, Burr DB, Nicolella DP, Turner CH, et al. Heritability of lumbar trabecular bone mechanical properties in baboons. Bone. 2010;46:835–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9:108–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Mullen CA, Haugh MG, Schaffler MB, Majeska RJ, McNamara LM. Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation. J Mech Behav Biomed Mater. 2013;28:183–94. This article demonstrates the importance of cellular tension in osteocyte differentiation.

    Article  CAS  PubMed  Google Scholar 

  94. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

  95. Choi JS, Harley BA. The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials. 2012;33:4460–8. This article demonstrates the importance of cellular tension in HSC differentiation.

    Article  CAS  PubMed  Google Scholar 

  96. Kavukcuoglu NB, Denhardt DT, Guzelsu N, Mann AB. Osteopontin deficiency and aging on nanomechanics of mouse bone. J Biomed Mater Res A. 2007;83:136–44.

    Article  PubMed  Google Scholar 

  97. Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int. 2002;71:145–54.

    Article  CAS  PubMed  Google Scholar 

  98. Kacena MA, Gundberg CM, Kacena WJ, Landis WJ, Boskey AL, Bouxsein ML, et al. The effects of GATA-1 and NF-E2 deficiency on bone biomechanical, biochemical, and mineral properties. J Cell Physiol. 2013;228:1594–600. This article describes the role of megakaryocyte transcription factors in bone quality.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH R01 DE019284. I would like to acknowledge the many colleagues, collaborators, and trainees who have welcomed and joined me in the gap between the biomechanics and the molecular biology of bone to study these important questions.

Compliance with Ethics Guidelines

Conflict of Interest

T. Alliston declares that she has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Alliston.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alliston, T. Biological Regulation of Bone Quality. Curr Osteoporos Rep 12, 366–375 (2014). https://doi.org/10.1007/s11914-014-0213-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0213-4

Keywords

Navigation