Skip to main content
Log in

Update on the Acute Effects of Glucose, Insulin, and Incretins on Bone Turnover In Vivo

  • Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To provide an update on the acute effects of glucose, insulin, and incretins on markers of bone turnover in those with and without diabetes.

Recent Findings

Bone resorption is suppressed acutely in response to glucose and insulin challenges in both healthy subjects and patients with diabetes. The suppression is stronger with oral glucose compared with intravenous delivery. Stronger responses with oral glucose may be related to incretin effects on insulin secretion or from a direct effect on bone turnover. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) infusion acutely suppresses bone resorption without much effect on bone formation. The bone turnover response to a metabolic challenge may be attenuated in type 2 diabetes, but this is an understudied area. A knowledge gap exists regarding bone turnover responses to a metabolic challenge in type 1 diabetes.

Summary

The gut-pancreas-bone link is potentially an endocrine axis. This linkage is disrupted in diabetes, but the mechanism and progression of this disruption are not understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Iki M, Tamaki J, Fujita Y, Kouda K, Yura A, Kadowaki E, et al. Serum undercarboxylated osteocalcin levels are inversely associated with glycemic status and insulin resistance in an elderly Japanese male population: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporos Int. 2012;23(2):761–70.

    Article  CAS  PubMed  Google Scholar 

  2. Moayeri A, Mohamadpour M, Mousavi S, Shirzadpour E, Mohamadpour S, Amraei M. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Ther Clin Risk Manag. 2017;13:455–68.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shah VN, Carpenter RD, Ferguson VL, Schwartz AV. Bone health in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2018;25(4):231–6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Iki M, Fujita Y, Kouda K, Yura A, Tachiki T, Tamaki J, et al. Hyperglycemic status is associated with an elevated risk of osteoporotic fracture in community-dwelling elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) cohort study. Bone. 2019;121:100–6.

    Article  CAS  PubMed  Google Scholar 

  5. Hygum K, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL. MECHANISMS IN ENDOCRINOLOGY: diabetes mellitus, a state of low bone turnover - a systematic review and meta-analysis. Eur J Endocrinol. 2017;176(3):R137–57.

    Article  CAS  PubMed  Google Scholar 

  6. Napoli N, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. 2017;13(4):208–19.

    Article  CAS  PubMed  Google Scholar 

  7. • Shah VN, et al. Type 1 diabetes onset at young age is associated with compromised bone quality. Bone. 2019;123:260–4 Timing of T1D onset and bone.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Starup-Linde J, Lykkeboe S, Gregersen S, Hauge EM, Langdahl BL, Handberg A, et al. Differences in biochemical bone markers by diabetes type and the impact of glucose. Bone. 2016;83:149–55.

    Article  CAS  PubMed  Google Scholar 

  9. Starup-Linde J, Vestergaard P. Biochemical bone turnover markers in diabetes mellitus - a systematic review. Bone. 2016;82:69–78.

    Article  CAS  PubMed  Google Scholar 

  10. Napoli N, Pannacciulli N, Vittinghoff E, Crittenden D, Yun J, Wang A, et al. Effect of denosumab on fasting glucose in women with diabetes or prediabetes from the FREEDOM trial. Diabetes Metab Res Rev. 2018;34(4):e2991.

    Article  PubMed  CAS  Google Scholar 

  11. Karimi Fard M, Aminorroaya A, Kachuei A, Salamat MR, Hadi Alijanvand M, Aminorroaya Yamini S, et al. Alendronate improves fasting plasma glucose and insulin sensitivity, and decreases insulin resistance in prediabetic osteopenic postmenopausal women: a randomized triple-blind clinical trial. J Diabetes Investig. 2019;10(3):731–7.

    Article  CAS  PubMed  Google Scholar 

  12. Toulis KA, Nirantharakumar K, Ryan R, Marshall T, Hemming K. Bisphosphonates and glucose homeostasis: a population-based, retrospective cohort study. J Clin Endocrinol Metab. 2015;100(5):1933–40.

    Article  CAS  PubMed  Google Scholar 

  13. Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2012;50(2):568–75.

    Article  CAS  PubMed  Google Scholar 

  14. Riquelme-Gallego B, García-Molina L, Cano-Ibáñez N, Sánchez-Delgado G, Andújar-Vera F, García-Fontana C, et al. Circulating undercarboxylated osteocalcin as estimator of cardiovascular and type 2 diabetes risk in metabolic syndrome patients. Sci Rep. 2020;10(1):1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim SP, Frey JL, Li Z, Kushwaha P, Zoch ML, Tomlinson RE, et al. Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proc Natl Acad Sci U S A. 2017;114(52):E11238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. • Maagensen H, et al. Bone turnover markers in patients with nonalcoholic fatty liver disease and/or type 2 diabetes during oral glucose and isoglycemic intravenous glucose. J Clin Endocrinol Metab. 2018;103(5):2042–9 Compared the BTM response to different routes of glucose administration between T2D and healthy controls.

    Article  PubMed  Google Scholar 

  17. Ivaska KK, et al. The effects of acute hyperinsulinemia on bone metabolism. Endocr Connect. 2015;4(3):155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiang SK, Wan JB, Jiang XH, Zhu YH, Ma JH, Hua F. Effect of intravenous glucose tolerance test on bone turnover markers in adults with normal glucose tolerance. Med Sci Monit. 2016;22:2602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paldanius PM, et al. The effect of oral glucose tolerance test on serum osteocalcin and bone turnover markers in young adults. Calcif Tissue Int. 2012;90(2):90–5.

    Article  CAS  PubMed  Google Scholar 

  20. • Westberg-Rasmussen S, et al. Differential impact of glucose administered intravenously or orally on bone turnover markers in healthy male subjects. Bone. 2017;97:261–6 Delineates the role of glucose recovery route on bone turnover.

    Article  CAS  PubMed  Google Scholar 

  21. Fuglsang-Nielsen R, Rakvaag E, Vestergaard P, Hartmann B, Holst JJ, Hermansen K, et al. Consumption of nutrients and insulin resistance suppress markers of bone turnover in subjects with abdominal obesity. Bone. 2020;133:115230.

    Article  CAS  PubMed  Google Scholar 

  22. Lopes LS, et al. The role of enteric hormone GLP-2 in the response of bone markers to a mixed meal in postmenopausal women with type 2 diabetes mellitus. Diabetol Metab Syndr. 2015;7:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. • Tonks KT, et al. Bone turnover is suppressed in insulin resistance, independent of adiposity. J Clin Endocrinol Metab. 2017;102(4):1112–21 Separates the effect of obesity from insulin resistance on the BTM response to a hyperinsulinemic-euglycemic clamp.

    Article  PubMed  Google Scholar 

  24. Fuusager GB, Christesen HT, Milandt N, Schou AJ. Glycemic control and bone mineral density in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2019;20(5):629–36.

    CAS  PubMed  Google Scholar 

  25. Chen SC, Shepherd S, McMillan M, McNeilly J, Foster J, Wong SC, et al. Skeletal fragility and its clinical determinants in children with type 1 diabetes. J Clin Endocrinol Metab. 2019;104(8):3585–94.

    Article  PubMed  Google Scholar 

  26. Carvalho AL, Massaro B, Silva LTP, Salmon CEG, Fukada SY, Nogueira-Barbosa MH, et al. Emerging aspects of the body composition, bone marrow adipose tissue and skeletal phenotypes in type 1 diabetes mellitus. J Clin Densitom. 2019;22(3):420–8.

    Article  PubMed  Google Scholar 

  27. Carvalho FR, Calado SM, Silva GA, Diogo GS, Moreira da Silva J, Reis RL, et al. Altered bone microarchitecture in a type 1 diabetes mouse model Ins2(Akita). J Cell Physiol. 2019;234(6):9338–50.

    Article  CAS  PubMed  Google Scholar 

  28. Weber DR, Gordon RJ, Kelley JC, Leonard MB, Willi SM, Hatch-Stein J, et al. Poor glycemic control is associated with impaired bone accrual in the year following a diagnosis of type 1 diabetes. J Clin Endocrinol Metab. 2019;104(10):4511–20.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moore B. On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane. Biochem J. 1906;1(1):28–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rehfeld JF. The origin and understanding of the incretin concept. Front Endocrinol (Lausanne). 2018;9:387.

    Article  Google Scholar 

  31. Nauck MA, Meier JJ. Incretin hormones: their role in health and disease. Diabetes Obes Metab. 2018;20(Suppl 1):5–21.

    Article  CAS  PubMed  Google Scholar 

  32. Mabilleau G, Mieczkowska A, Irwin N, Simon Y, Audran M, Flatt PR, et al. Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties. Bone. 2014;63:61–8.

    Article  CAS  PubMed  Google Scholar 

  33. Nissen A, Christensen M, Knop FK, Vilsbøll T, Holst JJ, Hartmann B. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J Clin Endocrinol Metab. 2014;99(11):E2325–9.

    Article  CAS  PubMed  Google Scholar 

  34. • Skov-Jeppesen K, et al. GLP-2 and GIP exert separate effects on bone turnover: a randomized, placebo-controlled, crossover study in healthy young men. Bone. 2019;125:178–85 Testing direct effect of gut hormones on bone.

    Article  CAS  PubMed  Google Scholar 

  35. •• Christensen MB, et al. Glucose-dependent insulinotropic polypeptide (GIP) inhibits bone resorption independently of insulin and glycemia. J Clin Endocrinol Metab. 2018;103(1):288–94 Demonstrates GIP affects bone turnover independent of glucose and insulin in T1D.

    Article  PubMed  Google Scholar 

  36. Christensen MB, Gasbjerg LS, Heimbürger SM, Stensen S, Vilsbøll T, Knop FK. GIP’s involvement in the pathophysiology of type 2 diabetes. Peptides. 2020;125:170178.

    Article  CAS  PubMed  Google Scholar 

  37. Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJM, Fraser WD. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 2011;11:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jeppesen PB, Hartmann B, Thulesen J, Graff J, Lohmann J, Hansen BS, et al. Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology. 2001;120(4):806–15.

    Article  CAS  PubMed  Google Scholar 

  39. Gottschalck IB, Jeppesen PB, Hartmann B, Holst JJ, Henriksen DB. Effects of treatment with glucagon-like peptide-2 on bone resorption in colectomized patients with distal ileostomy or jejunostomy and short-bowel syndrome. Scand J Gastroenterol. 2008;43(11):1304–10.

    Article  CAS  PubMed  Google Scholar 

  40. Gottschalck IB, Jeppesen PB, Holst JJ, Henriksen DB. Reduction in bone resorption by exogenous glucagon-like peptide-2 administration requires an intact gastrointestinal tract. Scand J Gastroenterol. 2008;43(8):929–37.

    Article  CAS  PubMed  Google Scholar 

  41. Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, et al. Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. Bone. 2007;40(3):723–9.

    Article  CAS  PubMed  Google Scholar 

  42. Henriksen DB, Alexandersen P, Byrjalsen I, Hartmann B, Bone HG, Christiansen C, et al. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone. 2004;34(1):140–7.

    Article  CAS  PubMed  Google Scholar 

  43. Pereira M, Jeyabalan J, Jørgensen CS, Hopkinson M, al-Jazzar A, Roux JP, et al. Chronic administration of glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone. 2015;81:459–67.

    Article  CAS  PubMed  Google Scholar 

  44. Mansur SA, Mieczkowska A, Bouvard B, Flatt PR, Chappard D, Irwin N, et al. Stable incretin mimetics counter rapid deterioration of bone quality in type 1 diabetes mellitus. J Cell Physiol. 2015;230(12):3009–18.

    Article  CAS  PubMed  Google Scholar 

  45. Hidayat K, Du X, Shi BM. Risk of fracture with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in real-world use: systematic review and meta-analysis of observational studies. Osteoporos Int. 2019;30(10):1923–40.

    Article  CAS  PubMed  Google Scholar 

  46. Yang J, Huang C, Wu S, Xu Y, Cai T, Chai S, et al. The effects of dipeptidyl peptidase-4 inhibitors on bone fracture among patients with type 2 diabetes mellitus: a network meta-analysis of randomized controlled trials. PLoS One. 2017;12(12):e0187537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Driessen JH, et al. Use of glucagon-like-peptide 1 receptor agonists and risk of fracture as compared to use of other anti-hyperglycemic drugs. Calcif Tissue Int. 2015;97(5):506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. • Nissen A, et al. A pilot study showing acute inhibitory effect of GLP-1 on the bone resorption marker CTX in humans. JBMR Plus. 2019;3(10):e10209 Shows the BTM response to GIP and GLP-1 infusion.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bergmann NC, Lund A, Gasbjerg LS, Jørgensen NR, Jessen L, Hartmann B, et al. Separate and combined effects of GIP and GLP-1 infusions on bone metabolism in overweight men without diabetes. J Clin Endocrinol Metab. 2019;104(7):2953–60.

    Article  PubMed  Google Scholar 

  50. Johnell O, Kanis JA. An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int. 2004;15(11):897–902.

    Article  CAS  PubMed  Google Scholar 

  51. Kanis JA, et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012;23(9):2239–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nordstrom A, et al. Higher prevalence of type 2 diabetes in men than in women is associated with differences in visceral fat mass. J Clin Endocrinol Metab. 2016;101(10):3740–6.

    Article  PubMed  CAS  Google Scholar 

  53. Oei L, Zillikens MC, Dehghan A, Buitendijk GHS, Castano-Betancourt MC, Estrada K, et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam study. Diabetes Care. 2013;36(6):1619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Starup-Linde J, Frost M, Vestergaard P, Abrahamsen B. Epidemiology of fractures in diabetes. Calcif Tissue Int. 2017;100(2):109–21.

    Article  CAS  PubMed  Google Scholar 

  55. Conway BN, Long DM, Figaro MK, May ME. Glycemic control and fracture risk in elderly patients with diabetes. Diabetes Res Clin Pract. 2016;115:47–53.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Samelson EJ, Demissie S, Cupples LA, Zhang X, Xu H, Liu CT, et al. Diabetes and deficits in cortical bone density, microarchitecture, and bone size: Framingham HR-pQCT study. J Bone Miner Res. 2018;33(1):54–62.

    Article  PubMed  Google Scholar 

  57. Wang H, Ba Y, Xing Q, du JL. Diabetes mellitus and the risk of fractures at specific sites: a meta-analysis. BMJ Open. 2019;9(1):e024067.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Halper-Stromberg E, et al. Bone mineral density across the lifespan in patients with type 1 diabetes. J Clin Endocrinol Metab. 2020;105(3):746–53.

    Article  Google Scholar 

  59. Alhuzaim ON, Lewis EJH, Lovblom LE, Cardinez M, Scarr D, Boulet G, et al. Bone mineral density in patients with longstanding type 1 diabetes: results from the Canadian study of longevity in type 1 diabetes. J Diabetes Complicat. 2019;33(11):107324.

    Article  Google Scholar 

  60. Hothersall EJ, Livingstone SJ, Looker HC, Ahmed SF, Cleland S, Leese GP, et al. Contemporary risk of hip fracture in type 1 and type 2 diabetes: a national registry study from Scotland. J Bone Miner Res. 2014;29(5):1054–60.

    Article  PubMed  Google Scholar 

  61. Shah VN, Shah CS, Snell-Bergeon JK. Type 1 diabetes and risk of fracture: meta-analysis and review of the literature. Diabet Med. 2015;32(9):1134–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Torekov SS, Harsløf T, Rejnmark L, Eiken P, Jensen JB, Herman AP, et al. A functional amino acid substitution in the glucose-dependent insulinotropic polypeptide receptor (GIPR) gene is associated with lower bone mineral density and increased fracture risk. J Clin Endocrinol Metab. 2014;99(4):E729–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa D. Sherk.

Ethics declarations

Conflict of Interest

Viral Shah reports grants from T1D Exchange and Jaeb Center for Health Research, vTv Therapeutics, Sanofi US, Dexcom Inc., NovoNordisk, NIAMS (K23AR075099), NIDDK (1 R01 DK122554-01), Mylan GmBH, and the Juvenile Diabetes Research Foundation, outside the submitted work.

Dr. Shah is on the advisory board for Sanofi US and Dexcom Inc.

Vanessa Sherk reports grants from ASBMR (Rising Star Award) and NIH (KL2 TR002534), outside the submitted work.

Irene Schauer declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Bone and Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherk, V.D., Schauer, I. & Shah, V.N. Update on the Acute Effects of Glucose, Insulin, and Incretins on Bone Turnover In Vivo. Curr Osteoporos Rep 18, 371–377 (2020). https://doi.org/10.1007/s11914-020-00598-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00598-z

Keywords

Navigation