Skip to main content

Advertisement

Log in

Bone Marrow Stroma and Vascular Contributions to Myeloma Bone Homing

  • Cancer-induced Musculoskeletal Diseases (M Reagan and E Keller, section editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Herein we dissect mechanisms behind the dissemination of cancer cells from primary tumor site to the bone marrow, which are necessary for metastasis development, with a specific focus on multiple myeloma.

Recent Findings

The ability of tumor cells to invade vessels and reach the systemic circulation is a fundamental process for metastasis development; however, the interaction between clonal cells and the surrounding microenvironment is equally important for supporting colonization, survival, and growth in the secondary sites of dissemination. The intrinsic propensity of tumor cells to recognize a favorable milieu where to establish secondary growth is the basis of the “seed and soil” theory. This theory assumes that certain tumor cells (the “seeds”) have a specific affinity for the milieu of certain organs (the “soil”). Recent literature has highlighted the important contributions of the vascular niche to the hospitable “soil” within the bone marrow.

Summary

In this review, we discuss the crucial role of stromal cells and endothelial cells in supporting primary growth, homing, and metastasis to the bone marrow, in the context of multiple myeloma, a plasma cell malignancy with the unique propensity to primarily grow and metastasize to the bone marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer. 2016;16(6):373–86. Comprehensive and detailed review describing pathophysiology of bone marrow metastasis with particular focus on the roles played by the cells of bone marrow microenvironment.

    Article  CAS  PubMed  Google Scholar 

  2. McDonald MM, et al. Adipose, bone, and myeloma: contributions from the microenvironment. Calcif Tissue Int. 2017;100(5):433–48.

    Article  CAS  PubMed  Google Scholar 

  3. Lawson MA, et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun. 2015;6:8983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11(6):411–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. • Azab AK, et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood. 2012;119(24):5782–94. First demonstration that multiple myeloma cells can behave as cancer epithelial cells in hypoxic conditions by undertaking the epithelial-to-mesenchymal transition leading to bone marrow-to-bone marrow metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kingsley LA, et al. Molecular biology of bone metastasis. Mol Cancer Ther. 2007;6(10):2609–17.

    Article  CAS  PubMed  Google Scholar 

  7. •• Ghobrial IM. Myeloma as a model for the process of metastasis: implications for therapy. Blood. 2012;120(1):20–30. Here, multiple myeloma is described in details and for the first time as an ideal model of bone marrow-to-bone marrow metastasis which could be useful to study pathophysiology and biological mechanisms of bone metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawano Y, et al. Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev. 2015;263(1):160–72.

    Article  PubMed  Google Scholar 

  9. Krebsbach PH, et al. Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med. 1999;10(2):165–81.

    Article  CAS  PubMed  Google Scholar 

  10. Reagan MR, Ghobrial IM. Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects. Clin Cancer Res. 2012;18(2):342–9.

    Article  CAS  PubMed  Google Scholar 

  11. Glavey, S.V., et al. Proteomic characterization of human multiple myeloma bone marrow extracellular matrix. Leukemia. 2017 https://doi.org/10.1038/leu.2017.102.

  12. Zdzisinska B, et al. Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells. Arch Immunol Ther Exp. 2008;56(3):207–21.

    Article  CAS  Google Scholar 

  13. Hideshima T, et al. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007;7(8):585–98.

    Article  CAS  PubMed  Google Scholar 

  14. Mitsiades CS, et al. The role of the bone microenvironment in the pathophysiology and therapeutic management of multiple myeloma: interplay of growth factors, their receptors and stromal interactions. Eur J Cancer. 2006;42(11):1564–73.

    Article  CAS  PubMed  Google Scholar 

  15. Kawano M, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature. 1988;332(6159):83–5.

    Article  CAS  PubMed  Google Scholar 

  16. Podar K, Chauhan D, Anderson KC. Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia. 2009;23(1):10–24.

    Article  CAS  PubMed  Google Scholar 

  17. Le Gouill S, et al. Mcl-1 regulation and its role in multiple myeloma. Cell Cycle. 2004;3(10):1259–62.

    Article  PubMed  Google Scholar 

  18. Tai YT, et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006;66(13):6675–82.

    Article  CAS  PubMed  Google Scholar 

  19. Giuliani N, et al. Angiogenesis and multiple myeloma. Cancer Microenviron. 2011;4(3):325–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Corre J, et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia. 2007;21(5):1079–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Corre J, et al. Bioactivity and prognostic significance of growth differentiation factor GDF15 secreted by bone marrow mesenchymal stem cells in multiple myeloma. Cancer Res. 2012;72(6):1395–406.

    Article  CAS  PubMed  Google Scholar 

  22. Tanno T, et al. Growth differentiating factor 15 enhances the tumor-initiating and self-renewal potential of multiple myeloma cells. Blood. 2014;123(5):725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roccaro AM, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 2013;123(4):1542–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • Azab AK, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009;113(18):4341–51. First preclinical evidence that targeting the SDF1alpha/CXCR4 pathway can mobilize multiple myeloma cells in the circulation and render them sensitive to anti-myeloma treatment, implying that bone marrow homing supports drug resistance in multiple myeloma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weinstock M, Ghobrial IM. Extramedullary multiple myeloma. Leuk Lymphoma. 2013;54(6):1135–41.

    Article  PubMed  Google Scholar 

  26. •• Roccaro AM, et al. CXCR4 regulates extra-medullary myeloma through epithelial-mesenchymal-transition-like transcriptional activation. Cell Rep. 2015;12(4):622–35. Here for the first time, the SDF1 alpha/CXCR4 axis and the epithelial to mesenchymal transition process are described to be involved in the promotion of metastasis to solid organs (extramedullary disease) in multiple myeloma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keller S, et al. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006;107(2):102–8.

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, et al. Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood. 2014;124(4):555–66.

    Article  CAS  PubMed  Google Scholar 

  29. Kusumbe AP. Vascular niches for disseminated tumour cells in bone. J Bone Oncol. 2016;5(3):112–6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Silberstein LE, Lin CP. A new image of the hematopoietic stem cell vascular niche. Cell Stem Cell. 2013;13(5):514–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood. 2015;125(17):2621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bussard KM, Gay CV, Mastro AM. The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev. 2008;27(1):41–55.

    Article  PubMed  Google Scholar 

  33. Ghajar CM. Metastasis prevention by targeting the dormant niche. Nat Rev Cancer. 2015;15(4):238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghajar CM, et al. The perivascular niche regulates breast tumor dormancy. Nat Cell Biol. 2013;15(7):807–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shiozawa Y, Pienta KJ, Taichman RS. Hematopoietic stem cell niche is a potential therapeutic target for bone metastatic tumors. Clin Cancer Res. 2011;17(17):5553–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Winkler IG, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18(11):1651–7.

    Article  CAS  PubMed  Google Scholar 

  37. Glavey SV, et al. The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma. Blood. 2014;124(11):1765–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Glavey SV, et al. The cancer glycome: carbohydrates as mediators of metastasis. Blood Rev. 2015;29(4):269–79.

    Article  CAS  PubMed  Google Scholar 

  39. Folkman J, et al. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989;339(6219):58–61.

    Article  CAS  PubMed  Google Scholar 

  40. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6.

    Article  CAS  PubMed  Google Scholar 

  41. Vacca A, Ribatti D. Angiogenesis and vasculogenesis in multiple myeloma: role of inflammatory cells. Recent Results Cancer Res. 2011;183:87–95.

    Article  PubMed  Google Scholar 

  42. •• Vacca A, et al. Bone marrow of patients with active multiple myeloma: angiogenesis and plasma cell adhesion molecules LFA-1, VLA-4, LAM-1, and CD44. Am J Hematol. 1995;50(1):9–14. These studies for the first time identified the phenomenon of neo-angiogenesis within the bone marrow of patients with MM: specifically, the authors demonstrated an increased bone marrow microvascular density in active MM patients compared to those with inactive MM and MGUS.

    Article  CAS  PubMed  Google Scholar 

  43. Ribatti D, et al. Angiogenesis spectrum in the stroma of B-cell non-Hodgkin's lymphomas. An immunohistochemical and ultrastructural study. Eur J Haematol. 1996;56(1–2):45–53.

    CAS  PubMed  Google Scholar 

  44. Rajkumar SV, et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res. 2002;8(7):2210–6.

    PubMed  Google Scholar 

  45. Kumar S, et al. Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood. 2004;104(4):1159–65.

    Article  CAS  PubMed  Google Scholar 

  46. Hose D, et al. Induction of angiogenesis by normal and malignant plasma cells. Blood. 2009;114(1):128–43.

    Article  CAS  PubMed  Google Scholar 

  47. Jakob C, et al. Angiogenesis in multiple myeloma. Eur J Cancer. 2006;42(11):1581–90.

    Article  CAS  PubMed  Google Scholar 

  48. Kumar S, et al. Prognostic value of bone marrow angiogenesis in patients with multiple myeloma undergoing high-dose therapy. Bone Marrow Transplant. 2004;34(3):235–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kumar S, et al. Prognostic value of angiogenesis in solitary bone plasmacytoma. Blood. 2003;101(5):1715–7.

    Article  CAS  PubMed  Google Scholar 

  50. Kumar S, et al. Bone marrow angiogenesis in multiple myeloma: effect of therapy. Br J Haematol. 2002;119(3):665–71.

    Article  CAS  PubMed  Google Scholar 

  51. Kumar S, et al. Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma. Leukemia. 2004;18(3):624–7.

    Article  CAS  PubMed  Google Scholar 

  52. Vacca A, et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol. 1994;87(3):503–8.

    Article  CAS  PubMed  Google Scholar 

  53. Xu JL, et al. Proliferation, apoptosis, and intratumoral vascularity in multiple myeloma: correlation with the clinical stage and cytological grade. J Clin Pathol. 2002;55(7):530–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kumar S, et al. Bone marrow angiogenesis and circulating plasma cells in multiple myeloma. Br J Haematol. 2003;122(2):272–4.

    Article  PubMed  Google Scholar 

  55. Nowakowski GS, et al. Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma. Blood. 2005;106(7):2276–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kumar S, et al. Cell proliferation of myeloma plasma cells: comparison of the blood and marrow compartments. Am J Hematol. 2004;77(1):7–11.

    Article  PubMed  Google Scholar 

  57. Ribatti D, Mangialardi G, Vacca A. Antiangiogenic therapeutic approaches in multiple myeloma. Curr Cancer Drug Targets. 2012;12(7):768–75.

    Article  CAS  PubMed  Google Scholar 

  58. Schmidt T, Carmeliet P. Angiogenesis: a target in solid tumors, also in leukemia? Hematology Am Soc Hematol Educ Program. 2011;2011:1–8.

    PubMed  Google Scholar 

  59. Holash J, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284(5422):1994–8.

    Article  CAS  PubMed  Google Scholar 

  60. Chang YS, et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci U S A. 2000;97(26):14608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hendrix MJ, et al. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 2003;3(6):411–21.

    Article  CAS  PubMed  Google Scholar 

  62. Asahara T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  CAS  PubMed  Google Scholar 

  63. de Bont ES, et al. Mobilized human CD34+ hematopoietic stem cells enhance tumor growth in a nonobese diabetic/severe combined immunodeficient mouse model of human non-Hodgkin’s lymphoma. Cancer Res. 2001;61(20):7654–9.

    PubMed  Google Scholar 

  64. Pelosi E, et al. Identification of the hemangioblast in postnatal life. Blood. 2002;100(9):3203–8.

    Article  CAS  PubMed  Google Scholar 

  65. Dome B, et al. Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. Am J Pathol. 2007;170(1):1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358(19):2039–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.

    Article  CAS  PubMed  Google Scholar 

  69. Ribatti D, et al. The structure of the vascular network of tumors. Cancer Lett. 2007;248(1):18–23.

    Article  CAS  PubMed  Google Scholar 

  70. Moehler TM, et al. Angiogenesis in hematologic malignancies. Crit Rev Oncol Hematol. 2003;45(3):227–44.

    Article  CAS  PubMed  Google Scholar 

  71. Yang R, Han ZC. Angiogenesis in hematologic malignancies and its clinical implications. Int J Hematol. 2002;75(3):246–56.

    Article  PubMed  Google Scholar 

  72. Rajkumar SV, Mesa RA, Tefferi A. A review of angiogenesis and anti-angiogenic therapy in hematologic malignancies. J Hematother Stem Cell Res. 2002;11(1):33–47.

    Article  CAS  PubMed  Google Scholar 

  73. Ribatti D, et al. The history of the angiogenic switch concept. Leukemia. 2007;21(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  74. Dome B, et al. Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. J Pathol. 2002;197(3):355–62.

    Article  PubMed  Google Scholar 

  75. Pezzella F, et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol. 1997;151(5):1417–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Maniotis AJ, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155(3):739–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Streubel B, et al. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med. 2004;351(3):250–9.

    Article  CAS  PubMed  Google Scholar 

  78. Rigolin GM, et al. Neoplastic circulating endothelial cells in multiple myeloma with 13q14 deletion. Blood. 2006;107(6):2531–5.

    Article  CAS  PubMed  Google Scholar 

  79. Gunsilius E, et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet. 2000;355(9216):1688–91.

    Article  CAS  PubMed  Google Scholar 

  80. Scavelli C, et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene. 2008;27(5):663–74.

    Article  CAS  PubMed  Google Scholar 

  81. Vacca A, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood. 1999;93(9):3064–73.

    CAS  PubMed  Google Scholar 

  82. Di Raimondo F, et al. Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica. 2000;85(8):800–5.

    PubMed  Google Scholar 

  83. Nico B, et al. Mast cells contribute to vasculogenic mimicry in multiple myeloma. Stem Cells Dev. 2008;17(1):19–22.

    Article  CAS  PubMed  Google Scholar 

  84. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995;11:73–91.

    Article  CAS  PubMed  Google Scholar 

  85. Moschetta M, et al. Role of endothelial progenitor cells in cancer progression. Biochim Biophys Acta. 2014;1846(1):26–39.

    CAS  PubMed  Google Scholar 

  86. • Moschetta M, et al. Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia. 2016;30(5):1103–15. Here a new mouse model to study bone marrow to bone marrow metastasis in multiple myeloma is described; this model is used to demonstrate the recruitment of bone marrow-derived cells in other sites of bone marrow where multiple myeloma cells are localized.

    Article  CAS  PubMed  Google Scholar 

  87. Scavelli C, et al. Zoledronic acid affects over-angiogenic phenotype of endothelial cells in patients with multiple myeloma. Mol Cancer Ther. 2007;6(12 Pt 1):3256–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Associazione Italiana per la Ricerca sul Cancro (AIRC), Associazione Italiana contro le Leucemie, Linfomi e Mieloma (AIL)—Brescia, and European Hematology Association (EHA). Support was also provided by MMCRI Start-up funds, a pilot project grant from NIH/NIGMS (P30GM106391), and the NIH/NIDDK (R24DK092759-01) (for MRR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo M. Roccaro.

Ethics declarations

Conflict of Interest

Michele Moschetta, Yawara Kawano, Antonio Sacco, Angelo Belotti, Rossella Ribolla, Marco Chiarini, Viviana Giustini, Diego Bertoli, Alessandra Sottini, Monica Valotti, Claudia Ghidini, Federico Serana, Michele Malagola, Luisa Imberti, Domenico Russo, Alessandro Montanelli, Giuseppe Rossi, Michaela R. Reagan, Patricia Maiso, Bruno Paiva, Irene M. Ghobrial, and Aldo M. Roccaro declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cancer-induced Musculoskeletal Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moschetta, M., Kawano, Y., Sacco, A. et al. Bone Marrow Stroma and Vascular Contributions to Myeloma Bone Homing. Curr Osteoporos Rep 15, 499–506 (2017). https://doi.org/10.1007/s11914-017-0399-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0399-3

Keywords

Navigation