Skip to main content

Genes and Proteins of Myeloma Endothelial Cells to Search Specific Targets of the Tumor Vasculature

  • Chapter
  • First Online:
Advances in Biology and Therapy of Multiple Myeloma

Abstract

Multiple myeloma (MM) mainly progresses in the bone marrow (BM). Therefore signals from BM microenvironment are thought to play a critical role in maintaining plasma cell growth, migration, and survival. Reciprocal positive and negative interactions between plasma cells and BM stromal cells, namely endothelial cells (ECs), ECs progenitor cells, hematopoietic stem cells, osteoblasts/osteoclasts, chondroclasts, fibroblasts, macrophages, and mast cells, are mediated by an array of cytokines, receptors, and adhesion molecules. BM neovascularization is a constant hallmark of MM, and goes hand in hand with progression until leukemic phase. MM neovessels form through angiogenesis and vasculogenesis, and are endowed with the overangiogenic phenotype of ECs (MMECs). Induction of the vascular phase in MM is sustained by angiogenic cytokines, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), platelet derived growth factor (PDGF) and metalloproteinases, secreted by the BM plasma cells, and overexpressed in MMECs. BM microenvironmental factors induce MMECs to become functionally different from MGUS ECs (MGECs), i.e., to be characterized by an overangiogenic phenotype, and be similar to transformed cells. In fact, MMECs down- or up-regulate some genes like tumor cells. The induced phenotypic and genotypic modifications of MMECs entail at least 22 different genes that are ivolved in specific pathways which control apoptosis, extracellular matrix formation and bone remodeling, cell adhesion, angiogenesis, and cell proliferation. These alterations play an important role in MM progression and may represent new molecular markers for prognostic stratification of patients and prediction of the response to antiangiogenic drugs as well as new potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vermeulen PB, Verhoeven D, Hubens G, Van Marck E, Goovaerts G, Huyghe M, De Bruijn EA, Van Oosterom AT, Dirix LY (1995) Microvessels density, endothelial cell proliferation and tumor cell proliferation in human colorectal adenocarcinomas. Ann Oncol 6:59–64

    PubMed  CAS  Google Scholar 

  2. Daldrup H, Shames DM, Wendland M, Okuhata Y, Link TM, Rosenau W, Lu Y, Brasch RC (1998) Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. Am J Roentgenol 171:941–949

    CAS  Google Scholar 

  3. Mc Donald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725

    Article  CAS  Google Scholar 

  4. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessel of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109

    PubMed  CAS  Google Scholar 

  5. Magnussen A, Kasman IM, Norberg S, Baluk P, Murray R, McDonald DM (2005) Rapid access of antibodies to α5β1 integrin overexpressed on the luminal surface of tumor blood vessels. Cancer Res 65:2712–2721

    Article  PubMed  CAS  Google Scholar 

  6. Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  PubMed  CAS  Google Scholar 

  7. Kolonin MG, Pasqualini R, Arap W (2001) Molecular addressed in blood vessel as targets for therapy. Curr Opin Chem Biol 5:308–313

    Article  PubMed  CAS  Google Scholar 

  8. Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE (2004) Substractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue specific therapy. Nature 429:629–635

    Article  PubMed  CAS  Google Scholar 

  9. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  PubMed  CAS  Google Scholar 

  10. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St Croix B (2001) Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 61:6649–6665

    PubMed  CAS  Google Scholar 

  11. Christian S, Ahorn H, Novatchkova M, Garin-Chesa P, Park JE, Weber G, Eisenhaber F, Rettig WJ, Lenter MC (2001) Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. J Biol Chem 276:7408–7414

    Article  PubMed  CAS  Google Scholar 

  12. Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Jaffe EA, Old LJ (1992) Idemtification of ­endosialin, a cell syrface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci USA 89:10832–10836

    Article  PubMed  CAS  Google Scholar 

  13. Rupp C, Dolznig H, Puri C, Sommergruber W, Kerjaschki D, Rettig WJ, Garin-Chesa P (2006) Mouse endosialin, a C-type lectin-like cell surface receptor: expression during embryonic development and induction in experimental cancer neoangiogenesis. Cancer Immunol 6:10

    Google Scholar 

  14. Brady J, Neal J, Sadakar N, Gasque P (2004) Human endosialin (tumor endothelial marker 1) is abundantly expressed in highly malignant and invasive brian tumors. J Neuropathol Exp Neurol 63:1274–1283

    PubMed  CAS  Google Scholar 

  15. Nanda A, Buckhaults P, Seaman S, Agrawal N, Boutin P, Shankara S, Nacht M, Teicher B, Stampfl J, Singh S, Vogelstein B, Kinzler KW, St Croix B (2004) Identification of a ­binding-patner for the endothelial cell surface proteins TEM7 and TEM7R. Cancer Res 64:8507–8511

    Article  PubMed  CAS  Google Scholar 

  16. Beaty RM, Edwards JB, Boon K, Siu IM, Conway JE, Riggins GJ (2007) PLXDC1 (TEM 7) is identified in the genome-wide expression screen of the glioblastoma endothelium. J Neurooncol 81:241–248

    Article  PubMed  CAS  Google Scholar 

  17. Duesbery NS, Resau J, Webb CP, Koochekpour S, Koo HM, Leppla SH, Vande Woude GF (2001) Suppression of ras-mediated transformation and inhibition of tumor growth and ­angiogenesis by anthrax lethal factor, a proteolytic inhibitor of multiple MEK pathways. Proc Natl Acad Sci USA 98:4089–4094

    Article  PubMed  CAS  Google Scholar 

  18. Nanda A, Carson-Walter EB, Seaman S, Barber TD, Stampfl J, Singh S, Vogelstein B, Kinzler KW, St Croix B (2004) TEM8 interacts with the cleaved C5 domain of collagen alpha3 (VI). Cancer Res 64:817–820

    Article  PubMed  CAS  Google Scholar 

  19. Van Baijnun JR, van der Linden E, Zwaans BM, Ramaekers FC, Mayo KH, Griffioen AW (2006) Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 108:2339–2348

    Article  Google Scholar 

  20. Madden SL, Cook BP, Nacht M, Weber WD, Callahan MR, Jiang Y, Dufault MR, Zhang X, Zhang W, Walter-Yohrling J, Rouleau C, Akmaev VR, Wang CJ, Cao X, St Martin TB, Roberts BL, Teicher BA, Klinger KW, Stan RV, Lucey B, Carson-Walter EB, Laterra J, Walter KA (2004) Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol 165:601–608

    Article  PubMed  CAS  Google Scholar 

  21. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32

    Article  PubMed  CAS  Google Scholar 

  22. Parker BS, Argani P, Cook BP, Liangfeng H, Chartrand SD, Zhang M, Saha S, Bardelli A, Jiang Y, St Martin TB, Nacht M, Teicher BA, Klinger KW, Sukumar S, Madden SL (2004) Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res 64:8757–7866

    Article  Google Scholar 

  23. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M, Davies FE, Drach J, Greipp PR, Kirsch IR, Kuehl WM, Hernandez JM, Minvielle S, Pilarski LM, Shaughnessy JD Jr, Stewart AK, Avet-Loiseau H (2004) Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 64:1546–1558

    Article  PubMed  CAS  Google Scholar 

  24. Mattioli M, Agnelli L, Fabris S, Baldini L, Morabito F, Bicciato S, Verdelli D, Intini D, Nobili L, Cro L, Pruneri G, Callea V, Stelitano C, Maiolo AT, Lombardi L, Neri A (2005) Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with ­distinct IGH translocations in multiple myeloma. Oncogene 24:2461–2473

    Article  PubMed  CAS  Google Scholar 

  25. Agnelli L, Bicciato S, Mattioli M, Fabris S, Intini D, Verdelli D, Baldini L, Morabito F, Callea V, Lombardi L, Neri A (2005) Molecular classification of multiple myeloma: a distinct ­transcriptional profile characterizes patients expressing CCND1 and negative for 14q32 ­translocations. J Clin Oncol 23:7296–7306

    Article  PubMed  CAS  Google Scholar 

  26. Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E, Sanderson R, Yang Y, Wilson C, Zangari M, Anaissie E, Morris C, Muwalla F, van Rhee F, Fassas A, Crowley J, Tricot G, Barlogie B, Shaughnessy J Jr (2002) Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99:1745–1757

    Article  PubMed  CAS  Google Scholar 

  27. Zhan F, Tian E, Bumm K, Smith R, Barlogie B, Shaughnessy J Jr (2003) Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage-B-cell development. Blood 101:1128–1140

    Article  PubMed  CAS  Google Scholar 

  28. Davies FE, Dring AM, Li C, Rawstron AC, Shammas MA, O’Connor SM, Fenton JA, Hideshima T, Chauhan D, Tai IT, Robinson E, Auclair D, Rees K, Gonzalez D, Ashcroft AJ, Dasgupta R, Mitsiades C, Mitsiades N, Chen LB, Wong WH, Munshi NC, Morgan GJ, Anderson KC (2003) Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood 102:4504–4511

    Article  PubMed  CAS  Google Scholar 

  29. Magrangeas F, Nasser V, Avet-Loiseau H, Loriod B, Decaux O, Granjeaud S, Bertucci F, Birnbaum D, Nguyen C, Harousseau JL, Bataille R, Houlgatte R, Minvielle S (2003) Gene expression profiling of multiple myeloma reveals molecular portraits in relation to the pathogenesis of the disease. Blood 101:4998–5006

    Article  PubMed  CAS  Google Scholar 

  30. Roccaro AM, Sacco A, Thompson B, Leleu X, Azab AK, Azab F, Runnels J, Jia X, Ngo HT, Melhem MR, Lin CP, Ribatti D, Rollins BJ, Witzig TE, Anderson KC, Ghobrial IM (2009) MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood 113:6669–6680

    Article  PubMed  CAS  Google Scholar 

  31. Ribatti D, Nico B, Crivellato E, Roccaro AM, Vacca A (2007) The history of the angiogenic switch concept. Leukemia 21:44–52

    Article  PubMed  CAS  Google Scholar 

  32. Ribatti D, Vacca A, Dammacco F (1999) The role of the vascular phase in solid tumor growth: a historical review. Neoplasia 1:293–302

    Article  PubMed  CAS  Google Scholar 

  33. Vacca A, Ribatti D (2006) Bone marrow angiogenesis in multiple myeloma. Leukemia 20:193–199

    Article  PubMed  CAS  Google Scholar 

  34. Ribatti D, Nico B, Vacca A (2006) Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25:4257–4266

    Article  PubMed  CAS  Google Scholar 

  35. Ribatti D, Vacca A (2009) The role of monocytes-macrophages in vasculogenesis in multiple myeloma. Leukemia 23:1535–1536

    Article  PubMed  CAS  Google Scholar 

  36. Vacca A, Semeraro F, Merchionne F, Coluccia M, Boccarelli A, Scavelli C, Nico B, Gernone A, Battelli F, Tabilio A, Guidolin D, Petrucci MT, Ribatti D, Dammacco F (2003) Endothelial cells in the bone marrow of patients with multiple myeloma. Blood 102:3340–3348

    Article  PubMed  CAS  Google Scholar 

  37. Pellegrino A, Ria R, Di Pietro G, Cirulli T, Surico G, Pennisi A, Morabito F, Ribatti D, Vacca A (2005) Bone marrow endothelial cells in multiple myeloma secrete CXC-chemokines that mediate interactions with plasma cells. Br J Haematol 129:248–256

    Article  PubMed  CAS  Google Scholar 

  38. Ria R, Piccoli C, Cirulli T, Falzetti F, Mangialardi G, Guidolin D, Tabilio A, Di Renzo N, Guarini A, Ribatti D, Dammacco F, Vacca A (2008) Endothelial diferentiation of hematopoietic stem and progenitor cells from patients with multiple myeloma. Clin Cancer Res 14: 1678–1685

    Article  PubMed  CAS  Google Scholar 

  39. Coluccia AM, Cirulli T, Neri T, Mangieri D, Colanardi MC, Gnoni A, Di Renzo N, Dammacco F, Tassone P, Ribatti D, Gambacorti-Passerini C, Vacca A (2008) Validation of PDGFRβ and C-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inihibitor dasatinib. Blood 112:1346–1356

    Article  PubMed  CAS  Google Scholar 

  40. Hedvat CV, Comenzo RL, Teruya-Feldstein J, Olshen AB, Ely SA, Osman K, Zhang Y, Kalakonda N, Nimer SD (2003) Insights into extranedullary tumour cell growth revealed by expressing profiling of human plasmacytomas and multiple myeloma. Br J Haematol 122:728–744

    Article  PubMed  CAS  Google Scholar 

  41. Munshi NC, Hideshima T, Carasco D, Shammas M, Auclair D, Davies F, Mitsiades N, Mitsiades C, Kim RS, Li C, Rajkumar SV, Fonseca R, Bergsagel L, Chauhan D, Anderson KC (2004) Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood 103:1799–1806

    Article  PubMed  CAS  Google Scholar 

  42. Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M, Bicciato S, Nico B, Ribatti D, Dammacco F, Corradini P (2005) Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 23:5534–5546

    Article  Google Scholar 

  43. Hose D, Moreaux J, Meissner T, Seckinger A, Goldschmidt H, Benner A, Mahtouk K, Hillengass J, Rème T, De Vos J, Hundemer M, Condomines M, Bertsch U, Rossi JF, Jauch A, Klein B, Möhler T (2009) Induction of angiogenesis by normal and malignant plasma cells. Blood 114:128–143

    Article  PubMed  CAS  Google Scholar 

  44. Ria R, Todoerti K, Berardi S, Coluccia AM, De Luisi A, Mattioli M, Ronchetti D, Morabito F, Guarini A, Petrucci MT, Dammacco F, Ribatti D, Neri A, Vacca A (2009) Gene expression profiling of bone marrow endothelial cells in patients with multiple myeloma. Clin Cancer Res 15:5369–5378

    Article  PubMed  CAS  Google Scholar 

  45. Mizukami Y, Fujiki K, Duerr EM, Fujiki K, Duerr EM, Gala M, Jo WS, Zhang X, Chung DC (2006) Hypoxic regulation of vascular endothelial growth factor through the induction of phosphatidylinositol3-kinase/Rho/ROCK and c-Myc. J Biol Chem 281:13957–13963

    Article  PubMed  CAS  Google Scholar 

  46. Wu MX, Ao Z, Prasad KV, Wu R, Schlossman SF (1998) IEX-1 L, an apoptosis inhibitor involved in NF-kB-mediated cell survival. Science 281:998–1001

    Article  PubMed  CAS  Google Scholar 

  47. De Vos J, Thykjaer T, Tarte K, Ensslen M, Raynaud P, Requirand G, Pellet F, Pantesco V, Rème T, Jourdan M, Rossi JF, Ørntoft T, Klein B (2002) Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene 21:6848–6857

    Article  PubMed  Google Scholar 

  48. Ren JG, Jie C, Talbot C (2005) How PEDF prevents angiogenesis: a hypothesized pathway. Med Hypothesis 64:74–78

    Article  Google Scholar 

  49. Volpert OV, Zaichuk T, Zhow W, Reiher F, Ferguson TA, Stuart PM, Amin M, Bouck NP (2002) Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 8:349–357

    Article  PubMed  CAS  Google Scholar 

  50. Loflin J, Lopez N, Whanger PD, Kioussi C (2006) Selenoprotein W during development and oxidative stress. J Inorg Biochem 100:1679–1884

    Article  PubMed  CAS  Google Scholar 

  51. Wang L, Hoque A, Luo RZ, Yuan J, Lu Z, Nishimoto A, Liu J, Sahin AA, Lippman SM, Bast RC Jr, Yu Y (2003) Loss of the expression of the tumor suppressor gene ARHI is associated with progression of breast cancer. Clin Cancer Res 9:3660–3666

    PubMed  CAS  Google Scholar 

  52. Thorpe PE (2004) Vascular targeting agents as cancer therapeutics. Clin Cancer Res 10:415–427

    Article  PubMed  Google Scholar 

  53. Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 19:10–14

    Google Scholar 

  54. Pastorino F, Di Paolo D, Loi M, Becherini P, Caffa I, Zorzoli A, Marimpietri D, Carosio R, Perri P, Montaldo PG, Brignole C, Pagnan G, Ribatti D, Allen TM, Ponzoni M (2009) Recent advances in targeted anti-vasculature therapy: the neuroblastoma model. Curr Drug Targets 10:1021–1027

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Associazione Italiana per la Ricerca sul Cancro AIRC (National and Regional Funds) Milan, Fondazione Italiana per la Lotta al Neuroblastoma, Genoa, MIUR – FIRB 2001, PRIN 2005, and PRIN 2007, Rome, and Fondazione Cassa di Risparmio di Puglia, Bari, Italy. European Union Seventh Framework Programme (FPT7/2007–2013) under grant agreement n° 278570 to DR and n° 278706 to AV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Vacca M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ribatti, D., Vacca, A. (2013). Genes and Proteins of Myeloma Endothelial Cells to Search Specific Targets of the Tumor Vasculature. In: Munshi, N., Anderson, K. (eds) Advances in Biology and Therapy of Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4666-8_13

Download citation

Publish with us

Policies and ethics