Skip to main content

Advertisement

Log in

Advances in Controlled Drug Delivery for Treatment of Osteoporosis

  • Regenerative Biology and Medicine in Osteoporosis (T Webster, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Osteoporosis, which is characterized by resorption of bone exceeding formation, remains a significant human health concern, and the impact of this condition will only increase with the “graying” of the worldwide population. This review focuses on current and emerging approaches for delivering therapeutic agents to restore bone remodeling homeostasis. Well-known antiresorptive and anabolic agents, such as estrogen, estrogen analogs, bisphosphonates, calcitonin, and parathyroid hormone, along with newer modulators and antibodies, are primarily administered orally, intravenously, or subcutaneously. Although these treatments can be effective, continuing problems include patient noncompliance and adverse systemic or remote-site effects. Controlled drug delivery via polymeric, targeted, and active release systems extends drug half-life by shielding against premature degradation and improves bioavailability while also providing prolonged, sustained, or intermittent release at therapeutic doses to more effectively treat osteoporosis and associated fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;843: 1–129.

  2. National Osteoporosis Foundation. and American Academy of Orthopaedic Surgeons., Physician’s guide to prevention and treatment of osteoporosis. Washington, D.C.: National Osteoporosis Foundation. 1998;30 p.

  3. Wright NC et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29(11):2520–6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–33.

    Article  CAS  PubMed  Google Scholar 

  5. Blume SW, Curtis JR. Medical costs of osteoporosis in the elderly medicare population. Osteoporos Int. 2011;22(6):1835–44.

    Article  CAS  PubMed  Google Scholar 

  6. Burge R et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75.

    Article  PubMed  Google Scholar 

  7. Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement. 2000;17(1): 1–45.

  8. Borgstrom F et al. The societal burden of osteoporosis in Sweden. Bone. 2007;40(6):1602–9.

    Article  PubMed  Google Scholar 

  9. Kanis JA, Johnell O. Requirements for DXA for the management of osteoporosis in Europe. Osteoporos Int. 2005;16(3):229–38.

    Article  CAS  PubMed  Google Scholar 

  10. Pietschmann P et al. Osteoporosis: an age-related and gender-specific disease—a mini-review. Gerontology. 2009;55(1):3–12.

    Article  PubMed  Google Scholar 

  11. Drake MT, Clarke BL, Lewiecki EM. The pathophysiology and treatment of osteoporosis. Clin Ther. 2015;37(8):1837–50.

    Article  CAS  PubMed  Google Scholar 

  12. Lupsa BC, Insogna K. Bone health and osteoporosis. Endocrinol Metab Clin N Am. 2015;44(3):517–30.

    Article  Google Scholar 

  13. Canalis E. Wnt signalling in osteoporosis: mechanisms and novel therapeutic approaches. Nat Rev Endocrinol. 2013;9(10):575–83. This paper provides an in-depth overview of bone remodeling at the cellular level, explaining the actions of osteoclast, osteoblast, and osteocyte bone-cell types in response to each other throughout the remodeling process. Various Wnt signaling-associated bone diseases including osteoporosis, and the roles of secreted signaling proteins influencing the pathway, such as sclerostin and macrophage colony stimulating factor, are discussed. New drug therapies developed targeting the pathway to promote anabolic processes, are covered in the review.

    Article  CAS  PubMed  Google Scholar 

  14. Rivadeneira F, Makitie O. Osteoporosis and bone mass disorders: from gene pathways to treatments. Trends Endocrinol Metab. 2016;27(5):262–81. This paper explains in depth the genes encoding factors in signaling pathways crucial for mesenchymal cell differentiation, skeletal development, bone remodeling and metabolism. It focuses in several of the remaining discovered genes to expose their role in bone biology. The understanding provided by genetic studies helps in identifying of biomarkers predictive of disease, redefining disease, response to treatment, and discovery of novel drug targets for skeletal disorders.

    Article  CAS  PubMed  Google Scholar 

  15. Stefanick ML. Estrogens and progestins: background and history, trends in use, and guidelines and regimens approved by the US food and drug administration. Am J Med. 2005;118(Suppl 12B):64–73.

    Article  PubMed  Google Scholar 

  16. Gennari L, Merlotti D, Nuti R. Selective estrogen receptor modulator (SERM) for the treatment of osteoporosis in postmenopausal women: focus on lasofoxifene. Clin Interv Aging. 2010;5:19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ettinger B, Genant HK, Cann CE. Long-term estrogen replacement therapy prevents bone loss and fractures. Ann Intern Med. 1985;102(3):319–24.

    Article  CAS  PubMed  Google Scholar 

  18. Lufkin EG et al. Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann Intern Med. 1992;117(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  19. Mauck KF, Clarke BL. Diagnosis, screening, prevention, and treatment of osteoporosis. Mayo Clin Proc. 2006;81(5):662–72.

    Article  CAS  PubMed  Google Scholar 

  20. Maximov PY, Lee TM, Jordan VC. The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. Curr Clin Pharmacol. 2013;8(2):135–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Overgaard K et al. Effect of salcatonin given intranasally on early postmenopausal bone loss. BMJ. 1989;299(6697):477–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Overgaard K, Riis BJ. Nasal salmon calcitonin in osteoporosis. Calcif Tissue Int. 1994;55(2):79–81.

    Article  CAS  PubMed  Google Scholar 

  23. Carstens Jr JH, Feinblatt JD. Future horizons for calcitonin: a U.S. perspective. Calcif Tissue Int. 1991;49 Suppl 2:S2–6.

    Article  PubMed  Google Scholar 

  24. Francis MD, Valent DJ. Historical perspectives on the clinical development of bisphosphonates in the treatment of bone diseases. J Musculoskelet Neuronal Interact. 2007;7(1):2–8.

    CAS  PubMed  Google Scholar 

  25. Marini F, Brandi ML. Pharmacogenetics of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2014;28(6):783–93.

    Article  CAS  PubMed  Google Scholar 

  26. Luckman SP et al. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res. 1998;13(4):581–9.

    Article  CAS  PubMed  Google Scholar 

  27. Kennel KA, Drake MT. Adverse effects of bisphosphonates: implications for osteoporosis management. Mayo Clin Proc. 2009;84(7):632–7. quiz 638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murad MH et al. Clinical review. Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J Clin Endocrinol Metab. 2012;97(6):1871–80.

    Article  CAS  PubMed  Google Scholar 

  29. Farrier AJ et al. New anti-resorptives and antibody mediated anti-resorptive therapy. Bone Joint J. 2016;98-B(2):160–5.

    Article  CAS  PubMed  Google Scholar 

  30. Lacey DL et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.

    Article  CAS  PubMed  Google Scholar 

  31. Hammer GD, McPhee SJ. Pathophysiology of disease: an introduction to clinical medicine. McGraw Hill Professional. 2010.

  32. Mandema JW et al. Time course of bone mineral density changes with denosumab compared with other drugs in postmenopausal osteoporosis: a dose–response-based meta-analysis. J Clin Endocrinol Metab. 2014;99(10):3746–55. This paper compares lumbar spine and total hip BMD changes in postmenopausal women from current treatment dose regimens of bisphosphonates, SERMs, PTH, calcitonin and denosumab. Nonlinear least-squares random-effects meta-regression regression analysis was conducted on a culmination of data in reported randomized controlled clinical trials representative of over 113,000 study participants.

    Article  CAS  PubMed  Google Scholar 

  33. Anastasilakis AD et al. Denosumab versus zoledronic acid in patients previously treated with zoledronic acid. Osteoporos Int. 2015;26(10):2521–7.

    Article  CAS  PubMed  Google Scholar 

  34. Min H et al. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med. 2000;192(4):463–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bekker PJ et al. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res. 2001;16(2):348–60.

    Article  CAS  PubMed  Google Scholar 

  36. Brennan TC et al. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157(7):1291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cianferotti L, D’Asta F, Brandi ML. A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther Adv Musculoskelet Dis. 2013;5(3):127–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bazaldua OV, Bruder J. Teriparatide (Forteo) for osteoporosis. Am Fam Physician. 2004;69(8):1983–4.

    PubMed  Google Scholar 

  39. Ishizuya T et al. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest. 1997;99(12):2961–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang H et al. Recombinant human parathyroid hormone related protein 1–34 and 1–84 and their roles in osteoporosis treatment. PLoS One. 2014;9(2), e88237.

    Article  PubMed  PubMed Central  Google Scholar 

  41. van Bezooijen RL et al. Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP‐stimulated bone formation. J Bone Miner Res. 2007;22(1):19–28.

    Article  PubMed  Google Scholar 

  42. Pan L et al. Fluoride promotes osteoblastic differentiation through canonical Wnt/β-catenin signaling pathway. Toxicol Lett. 2014;225(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  43. Riggs BL et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med. 1990;322(12):802–9.

    Article  CAS  PubMed  Google Scholar 

  44. Tilyard MW et al. Treatment of postmenopausal osteoporosis with calcitriol or calcium. N Engl J Med. 1992;326(6):357–62.

    Article  CAS  PubMed  Google Scholar 

  45. Civitelli R et al. Bone turnover in postmenopausal osteoporosis. Effect of calcitonin treatment. J Clin Invest. 1988;82(4):1268–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Langlois JA et al. Association between insulin-like growth factor i and bone mineral density in older women and men: the Framingham heart study 1. J Clin Endocrinol Metab. 1998;83(12):4257–62.

    CAS  PubMed  Google Scholar 

  47. Saaf M et al. Growth hormone treatment of osteoporotic postmenopausal women—a one-year placebo-controlled study. Eur J Endocrinol. 1999;140(5):390–9.

    Article  CAS  PubMed  Google Scholar 

  48. Lindsay R et al. Efficacy of tissue-selective estrogen complex of bazedoxifene/conjugated estrogens for osteoporosis prevention in at-risk postmenopausal women. Fertil Steril. 2009;92(3):1045–52.

    Article  CAS  PubMed  Google Scholar 

  49. Amugongo SK et al. Effects of sequential osteoporosis treatments on trabecular bone in adult rats with low bone mass. Osteoporos Int. 2014;25(6):1735–50. This paper investigates the combination of anti-resorptive (alendronate or raloxifene) and anabolic (PTH) treatment courses as a potentially more synergistic therapy option for osteoporosis treatment compared to single drug therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leder BZ et al. Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2015;100(2):697–706.

    Article  CAS  PubMed  Google Scholar 

  51. Ponnapakkam T et al. Treating osteoporosis by targeting parathyroid hormone to bone. Drug Discov Today. 2014;19(3):204–8. This paper describes a more targeted therapy of PTH by conjugating to a collagen-binding domain with high bone affinity to enhance the effectiveness of PTH treatment.

    Article  CAS  PubMed  Google Scholar 

  52. Fujisaki J et al. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. V. Biological disposition and targeting characteristics of osteotropic estradiol. Biol Pharm Bull. 1997;20(11):1183–7.

    Article  CAS  PubMed  Google Scholar 

  53. Makras P, Delaroudis S, Anastasilakis AD. Novel therapies for osteoporosis. Metabolism. 2015;64(10):1199–214. This paper provides a thorough and updated overview of the effects of specific novel PTH and β-arrestin analogs and Src tyrosine kinase, dickkopf-1, activin A, calcium-sensing receptor antagonists on bone mineral density in clinical trials, along with the effects of established treatments. It also delves into the consideration of existing agents utilized for other therapeutic applications, being reinvented for osteoporosis therapy.

    Article  CAS  PubMed  Google Scholar 

  54. Mukherjee K, Chattopadhyay N. Pharmacological inhibition of cathepsin k: a promising novel approach for postmenopausal osteoporosis therapy. Biochem Pharmacol. 2016.

  55. Appelman-Dijkstra NM, Papapoulos SE. Sclerostin inhibition in the management of osteoporosis. Calcif Tissue Int. 2016;98(4):370–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gesty-Palmer D et al. A beta-arrestin-biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci Transl Med. 2009;1(1):1ra1.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Roskoski Jr R. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res. 2015;94:9–25.

    Article  CAS  PubMed  Google Scholar 

  58. Hannon RA et al. Effects of the Src kinase inhibitor saracatinib (AZD0530) on bone turnover in healthy men: a randomized, double-blind, placebo-controlled, multiple-ascending-dose phase I trial. J Bone Miner Res. 2010;25(3):463–71.

    Article  CAS  PubMed  Google Scholar 

  59. Glantschnig H et al. A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody. J Pharmacol Exp Ther. 2011;338(2):568–78.

    Article  CAS  PubMed  Google Scholar 

  60. Betts AM et al. The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharmacol Exp Ther. 2010;333(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  61. Iyer SP et al. A phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br J Haematol. 2014;167(3):366–75.

    Article  CAS  PubMed  Google Scholar 

  62. Ruckle J et al. Single‐dose, randomized, double‐blind, placebo‐controlled study of ACE‐011 (ActRIIA‐IgG1) in postmenopausal women. J Bone Miner Res. 2009;24(4):744–52.

    Article  CAS  PubMed  Google Scholar 

  63. Fitzpatrick LA et al. Ronacaleret, a calcium-sensing receptor antagonist, increases trabecular but not cortical bone in postmenopausal women. J Bone Miner Res. 2012;27(2):255–62.

    Article  CAS  PubMed  Google Scholar 

  64. Halse J et al. A phase 2, randomized, placebo-controlled, dose-ranging study of the calcium-sensing receptor antagonist MK-5442 in the treatment of postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2014;99(11):E2207–15.

    Article  CAS  PubMed  Google Scholar 

  65. Dai L et al. The functional mechanism of simvastatin in experimental osteoporosis. J Bone Miner Metab. 2016;34(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  66. Pena JM et al. Statin therapy and risk of fracture: results from the JUPITER randomized clinical trial. JAMA Intern Med. 2015;175(2):171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cheng L et al. Persistance and compliance with osteroporosis therapies among women in a commercially insured population in the United States. J Manag Care Specialty Pharm. 2015;21(9):824–U322.

    Article  Google Scholar 

  68. Lakatos P et al. A retrospective longitudinal database study of persistence and compliance with treatment of osteoporosis in hungary. Calcif Tissue Int. 2016;98(3):215–25.

    Article  CAS  PubMed  Google Scholar 

  69. Luhmann T et al. Bone targeting for the treatment of osteoporosis. J Control Release. 2012;161(2):198–213.

    Article  CAS  PubMed  Google Scholar 

  70. Various. Medications for Osteoporosis. 2016 Apr 2016 [cited 2016; Available from: http://www.drugs.com/condition/osteoporosis.html.

  71. Low SA et al. Biodistribution of fracture-targeted GSK3beta inhibitor-loaded micelles for improved fracture healing. Biomacromolecules. 2015;16(10):3145–53. This paper presents a method providing a fourfold increase in drug delivery to fracture sites over distribution in undamaged bone. Authors introduce a relatively facile, amino acid based method of generating micelles that carry and delivery anabolic GSKbeta inhibitors to fracture sites.

    Article  CAS  PubMed  Google Scholar 

  72. Reginster J. Strontium Ranelate in Osteoporosis. Curr Pharm Des. 8(21): p. 1907–1916.

  73. Ramachandran C, Fleisher D. Transdermal delivery of drugs for the treatment of bone diseases. Adv Drug Deliv Rev. 2000;42:197.

    Article  CAS  PubMed  Google Scholar 

  74. Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules. 2009;14(9):3754–79.

    Article  CAS  PubMed  Google Scholar 

  75. Tan J et al. A single CT-guided percutaneous intraosseous injection of thermosensitive simvastatin/poloxamer 407 hydrogel enhances vertebral bone formation in ovariectomized minipigs. Osteoporos Int. 2016;27(2):757–67.

    Article  CAS  PubMed  Google Scholar 

  76. Lee CH et al. Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Mater. 2015;7(11):e227. This paper presents a wholly biodegradable implantable triggered pulsatile release system for use in precision drug delivery without requiring surgical removal once depleted. Elaboration of biodegradable electronic systems may substantially improve post-surgical patient compliance and outcome.

    Article  CAS  PubMed  Google Scholar 

  77. Jia Z et al. Simvastatin prodrug micelles target fracture and improve healing. J Control Release. 2015;200:23–34.

    Article  CAS  PubMed  Google Scholar 

  78. Posadowska U et al. Injectable nanoparticle-loaded hydrogel system for local delivery of sodium alendronate. Int J Pharm. 2015;485(1–2):31–40.

    Article  CAS  PubMed  Google Scholar 

  79. Farra R et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci Transl Med. 2012;4(122):12.

    Article  Google Scholar 

  80. Bae J, Park JW. Preparation of an injectable depot system for long-term delivery of alendronate and evaluation of its anti-osteoporotic effect in an ovariectomized rat model. Int J Pharm. 2015;480(1–2):37–47.

    Article  CAS  PubMed  Google Scholar 

  81. Orellana BR, Hilt JZ, Puleo DA. Drug release from calcium sulfate-based composites. J Biomed Mater Res Part B. 2015;103B:135–42.

    Article  CAS  Google Scholar 

  82. Jeon OC et al. Oral delivery of zoledronic acid by non-covalent conjugation with lysine-deoxycholic acid: in vitro characterization and in vivo anti-osteoporotic efficacy in ovariectomized rats. Eur J Pharm Sci. 2016;82:1–10.

    Article  CAS  PubMed  Google Scholar 

  83. Tripathi G, Raja N, Yun HS. Effect of direct loading of phytoestrogens into the calcium phosphate scaffold on osteoporotic bone tissue regeneration. J Mater Chem B. 2015;3(44):8694–703.

    Article  CAS  Google Scholar 

  84. Hu Y et al. 17beta-estradiol-loaded PEGlyated upconversion nanoparticles as a bone-targeted drug nanocarrier. ACS Appl Mater Interfaces. 2015;7(29):15803–11.

    Article  CAS  PubMed  Google Scholar 

  85. Shi S et al. The application of nanomaterials in controlled drug delivery for bone regeneration. J Biomed Mater Res A. 2015;103(12):3978–92.

    Article  CAS  PubMed  Google Scholar 

  86. Asafo-Adjei TA, Dziubla TD, Puleo DA. Synthesis and characterization of a poly(ethylene glycol)-Poly(simvastatin) diblock copolymer. RSC Adv. 2014;4(102):58287–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Miladi K et al. Drug carriers in osteoporosis: preparation, drug encapsulation and applications. Int J Pharm. 2013;445(1–2):181–95.

    Article  CAS  PubMed  Google Scholar 

  88. Smith JR, Lamprou DA. Polymer coatings for biomedical applications: a review. Trans IMF. 2014;92(1):9–19.

    Article  CAS  Google Scholar 

  89. Ito T et al. Preparation of calcium phosphate nanocapsules including simvastatin/deoxycholic acid assembly, and their therapeutic effect in osteoporosis model mice. J Pharm Pharmacol. 2013;65(4):494–502.

    Article  CAS  PubMed  Google Scholar 

  90. Liu XL, Xiaoran, Li, Shaobing, Zhou, Xiaosong, Li, Sha, Wang, Qiangbin, Dai, Jianwu, Lai, Renfa, Xie, Li, Zhong, Mei, Zhang, Ye; Zhou, Lei. An in vitro study of a titanium surface modified by simvastatin-loaded titania nanotubes-micelles. Journal of Biomedical Nanotechnology. 2014;10(2): 11.

  91. Cunha L, Grenha A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs. 2016;14(3).

  92. Dolatabadi JEN, Hamishehkar H, Valizadeh H. Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: solid-state characterization and aerosol dispersion performance. Drug Dev Ind Pharm. 2015;41(9):1431–7. This paper describes the preparation and characterization of aerosol capable solid-lipid alendronate nanoparticles for orotracheal delivery. Although not tested in vivo, promising aerodynamic performance was observed.

    Article  Google Scholar 

  93. Jahnke W et al. A general strategy for targeting drugs to bone. Angew Chem Int Ed Engl. 2015;54(48):14575–9.

    Article  CAS  PubMed  Google Scholar 

  94. Low SA, Kopecek J. Targeting polymer therapeutics to bone. Adv Drug Deliv Rev. 2012;64(12):1189–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang D et al. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev. 2005;57(7):1049–76.

    Article  CAS  PubMed  Google Scholar 

  96. Aoki K et al. Peptide-based delivery to bone. Adv Drug Deliv Rev. 2012;64(12):1220–38.

    Article  CAS  PubMed  Google Scholar 

  97. Porter CJH et al. The polyoxyethylene/polyoxypropylene block co-polymer poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett. 1992;305(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  98. Lin K et al. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials. 2013;34(38):10028–42.

    Article  CAS  PubMed  Google Scholar 

  99. Qu H, Bhattacharyya S, Ducheyne P. Silicon oxide based materials for controlled release in orthopedic procedures. Adv Drug Deliv Rev. 2015;94:96–115.

    Article  CAS  PubMed  Google Scholar 

  100. Razavi M et al. In vivo biocompatibility of Mg implants surface modified by nanostructured merwinite/PEO. J Mater Sci Mater Med. 2015;26(5):184.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding from the National Institutes of Health (AR060964 and EB017902) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Puleo.

Ethics declarations

Conflict of Interest

T.A. Asafo-Adjei has a patent, Polymeric Prodrug, pending. D.A. Puleo reports equity interest from Regenera Materials, LLC, outside the submitted work. In addition, Dr. Puleo has a patent, Polymeric Prodrug, pending.

A.J. Chen and A. Najarzadeh declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Regenerative Biology and Medicine in Osteoporosis

T. A. Asafo-Adjei, A. J. Chen and A. Najarzadeh contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asafo-Adjei, T.A., Chen, A.J., Najarzadeh, A. et al. Advances in Controlled Drug Delivery for Treatment of Osteoporosis. Curr Osteoporos Rep 14, 226–238 (2016). https://doi.org/10.1007/s11914-016-0321-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-016-0321-4

Keywords

Navigation