Skip to main content

Advertisement

Log in

Advances in the Classification and Treatment of Osteogenesis Imperfecta

  • Rare Bone Disease (CB Langman and E Shore, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Osteogenesis imperfecta (OI) is a rare disorder of type 1 collagen with 13 currently identified types attributable to inherited abnormalities in type 1 collagen amount, structure, or processing. The disease is characterized by an increased susceptibility to bony fracture. In addition to the skeletal phenotype, common additional extraskeletal manifestations include blue sclerae, dentinogenesis imperfecta, vascular fragility, and hearing loss. Medical management is focused on minimizing the morbidity of fractures, pain, and bone deformities by maximizing bone health. Along with optimizing Vitamin D status and calcium intake and physical/occupational therapy, individualized surgical treatment may be indicated. Pharmacological therapy with bisphosphonate medications is now routinely utilized for moderate to severe forms and appears to have a good safety profile and bone health benefits. New therapies with other anti-resorptives as well as anabolic agents and transforming growth factor (TGF)β antibodies are in development. Other potential treatment modalities could include gene therapy or mesenchymal cell transplant. In the future, treatment choices will be further individualized in order to reduce disease morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stevenson DA, Carey JC, Byrne JL, Srisukhumbowornchai S, Feldkamp ML. Analysis of skeletal dysplasias in the Utah population. Am J Med Genet A. 2012;158A(5):1046–54. doi:10.1002/ajmg.a.35327.

    Article  PubMed  Google Scholar 

  2. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16(2):101–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164(6):1470–81. doi:10.1002/ajmg.a.36545. The Sillence classification labeled four different types of OI based on phenotype. As more types of OI have been identified, additional categories were created based on the genetic mutation. With this reclassification, the different OI syndromes will now be classified again by overarching categories which will compliment the genetic mutation and provide phenotype information.

    Article  PubMed Central  Google Scholar 

  4. Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A. 2011;155a(5):943–68. doi:10.1002/ajmg.a.33909.

    Article  PubMed  Google Scholar 

  5. Bodian DL, Chan T-F, Poon A, Schwarze U, Yang K, Byers PH, et al. Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype–phenotype relationships. Hum Mol Genet. 2009;18(3):463–71. doi:10.1093/hmg/ddn374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harrington J, Sochett E, Howard A. Update on the evaluation and treatment of osteogenesis imperfecta. Pediatr Clin North Am. 2014;61(6):1243–57. doi:10.1016/j.pcl.2014.08.010.

    Article  PubMed  Google Scholar 

  7. Shapiro JR, Lietman C, Grover M, Lu JT, Nagamani SCS, Dawson BC, et al. Phenotypic variability of osteogenesis imperfecta type V caused by an IFITM5 mutation. J Bone Miner Res. 2013;28(7):1523–30. doi:10.1002/jbmr.1891. Further information about the phenotype and its variability about this rare type of OI is presented.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marini JC, Blissett AR. New genes in bone development: what’s new in osteogenesis imperfecta. J Clin Endocrinol Metab. 2013;98(8):3095–103. doi:10.1210/jc.2013-1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Semler O, Cheung MS, Glorieux FH, Rauch F. Wormian bones in osteogenesis imperfecta: correlation to clinical findings and genotype. Am J Med Genet A. 2010;152A(7):1681–7. doi:10.1002/ajmg.a.33448.

    Article  PubMed  Google Scholar 

  10. Ben Amor IM, Glorieux FH, Rauch F. Genotype-phenotype correlations in autosomal dominant osteogenesis imperfecta. J Osteoporos. 2011;2011:540178. doi:10.4061/2011/540178.

    PubMed  PubMed Central  Google Scholar 

  11. Evereklioglu C, Madenci E, Bayazıt YA, Yılmaz K, Balat A, Bekir NA. Central corneal thickness is lower in osteogenesis imperfecta and negatively correlates with the presence of blue sclera. Ophthalmic Physiol Opt. 2002;22(6):511–5. doi:10.1046/j.1475-1313.2002.00062.x.

    Article  PubMed  Google Scholar 

  12. Dimasi D, Chen J, Hewitt A, Klebe S, Davey R, Stirling J, et al. Novel quantitative trait loci for central corneal thickness identified by candidate gene analysis of osteogenesis imperfecta genes. Hum Genet. 2010;127(1):33–44. doi:10.1007/s00439-009-0729-3.

    Article  PubMed  Google Scholar 

  13. Chau FY, Wallace D, Vajaranant T, Herndon L, Lee P, Challa P, et al. Chapter 31—osteogenesis imperfecta and the eye. In: Sponseller JRSHBHGD, editor. Osteogenesis Imperfecta. San Diego: Academic; 2014. p. 289–303.

    Chapter  Google Scholar 

  14. O’Connell AC, Marini JC. Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg, Oral Med, Oral Pathol, Oral Radiol Endod. 1999;87(2):189–96. doi:10.1016/S1079-2104(99)70272-6.

    Article  Google Scholar 

  15. Santos F, McCall AA, Chien W, Merchant S. Otopathology in osteogenesis imperfecta. Otol Neurotol. 2012;33(9):1562–6. doi:10.1097/MAO.0b013e31826bf19b.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Paterson CR, Monk EA, McAllion SJ. How common is hearing impairment in osteogenesis imperfecta? J Laryngol Otol. 2001;115(4):280–2.

    Article  CAS  PubMed  Google Scholar 

  17. Bonita RE, Cohen IS, Berko BA. Valvular heart disease in osteogenesis imperfecta: presentation of a case and review of the literature. Echocardiography. 2010;27(1):69–73. doi:10.1111/j.1540-8175.2009.00973.x.

    Article  PubMed  Google Scholar 

  18. Hansen B, Jemec GB. The mechanical properties of skin in osteogenesis imperfecta. Arch Dermatol. 2002;138(7):909–11.

    PubMed  Google Scholar 

  19. Marini J. Osteogenesis imperfecta. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth: MDText.com, Inc.; 2000.

    Google Scholar 

  20. LoMauro A, Pochintesta S, Romei M, D’Angelo MG, Pedotti A, Turconi AC, et al. Rib cage deformities alter respiratory muscle action and chest wall function in patients with severe osteogenesis imperfecta. PLoS ONE. 2012;7(4), e35965. doi:10.1371/journal.pone.0035965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sillence DO. Craniocervical abnormalities in osteogenesis imperfecta: genetic and molecular correlation. Pediatr Radiol. 1994;24(6):427–30.

    Article  CAS  PubMed  Google Scholar 

  22. Ibrahim AG, Crockard HA. Basilar impression and osteogenesis imperfecta: a 21-year retrospective review of outcomes in 20 patients. J Neurosurg Spine. 2007;7(6):594–600. doi:10.3171/spi-07/12/594.

    Article  PubMed  Google Scholar 

  23. Vetter U, Pontz B, Zauner E, Brenner RE, Spranger J. Osteogenesis imperfecta: a clinical study of the first ten years of life. Calcif Tissue Int. 1992;50:36–41.

    Article  CAS  PubMed  Google Scholar 

  24. Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D, et al. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86(4):551–9. doi:10.1016/j.ajhg.2010.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Puig-Hervás MT, Temtamy S, Aglan M, Valencia M, Martínez-Glez V, Ballesta-Martínez MJ, et al. Mutations in PLOD2 cause autosomal-recessive connective tissue disorders within the Bruck syndrome—osteogenesis imperfecta phenotypic spectrum. Hum Mutat. 2012;33(10):1444–9. doi:10.1002/humu.22133.

    Article  PubMed  Google Scholar 

  26. Rauch F, Fahiminiya S, Majewski J, Carrot-Zhang J, Boudko S, Glorieux F, et al. Cole-Carpenter syndrome is caused by a heterozygous missense mutation in P4HB. Am J Hum Genet. 2015;96(3):425–31. doi:10.1016/j.ajhg.2014.12.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garbes L, Kim K, Riess A, Hoyer-Kuhn H, Beleggia F, Bevot A, et al. Mutations in SEC24D, encoding a component of the COPII machinery, cause a syndromic form of osteogenesis imperfecta. Am J Hum Genet. 2015;96(3):432–9. doi:10.1016/j.ajhg.2015.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bianchi ML. Hypophosphatasia: an overview of the disease and its treatment. Osteoporos Int: J Established Result Coop Between Eur Foundation Osteoporos Natl Osteoporos Foundation USA. 2015. doi:10.1007/s00198-015-3272-1.

    Google Scholar 

  29. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.

    Article  CAS  PubMed  Google Scholar 

  30. Okajima T, Fukumoto S, Furukawa K, Urano T, Furukawa K. Molecular basis for the progeroid variant of Ehlers-Danlos Syndrome: identification and characterization of two mutations in galactosyltransferase I gene. J Biol Chem. 1999;274(41):28841–4. doi:10.1074/jbc.274.41.28841.

    Article  CAS  PubMed  Google Scholar 

  31. Greeley CS, Donaruma-Kwoh M, Vettimattam M, Lobo C, Williard C, Mazur L. Fractures at diagnosis in infants and children with osteogenesis imperfecta. J Pediatr Orthop. 2013;33(1):32–6. doi:10.1097/BPO.0b013e318279c55d.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, et al. Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med. 2002;347(3):175–84. doi:10.1056/NEJMoa013096.

    Article  CAS  PubMed  Google Scholar 

  33. Osteogenesis Imperfecta Foundation. OI Issues: Dental Care for Persons with OI. . http://www.oif.org/site/PageServer?pagename=Dental. Accessed 23 Sept 2015.

  34. Dwan K, Phillipi Carrie A, Steiner Robert D, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev. 2014. doi:10.1002/14651858.CD005088.pub3.

    Google Scholar 

  35. Bishop N, Adami S, Ahmed SF, Anton J, Arundel P, Burren CP, et al. Risedronate in children with osteogenesis imperfecta: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382(9902):1424–32. doi:10.1016/S0140-6736(13)61091-0. This paper demonstrating benefits of oral risedronate therapy on bone mineral density and fracture rates re-opened the door to use of oral bisphosphonate for children with milder OI.

    Article  CAS  PubMed  Google Scholar 

  36. Munns CF, Rajab MH, Hong J, Briody J, Hogler W, McQuade M, et al. Acute phase response and mineral status following low dose intravenous zoledronic acid in children. Bone. 2007;41(3):366–70. doi:10.1016/j.bone.2007.05.002.

    Article  CAS  PubMed  Google Scholar 

  37. Munns CF, Rauch F, Mier RJ, Glorieux FH. Respiratory distress with pamidronate treatment in infants with severe osteogenesis imperfecta. Bone. 2004;35(1):231–4.

    Article  CAS  PubMed  Google Scholar 

  38. Munns CF, Rauch F, Zeitlin L, Fassier F, Glorieux FH. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res. 2004;19(11):1779–86.

    Article  CAS  PubMed  Google Scholar 

  39. Rauch F, Munns C, Land C, Glorieux FH. Pamidronate in children and adolescents with osteogenesis imperfecta: effect of treatment discontinuation. J Clin Endocrinol Metab. 2006;91(4):1268–74. doi:10.1210/jc.2005-2413.

    Article  CAS  PubMed  Google Scholar 

  40. Shapiro JR, Thompson CB, Wu Y, Nunes M, Gillen C. Bone mineral density and fracture rate in response to intravenous and oral bisphosphonates in adult osteogenesis imperfecta. Calcif Tissue Int. 2010;87(2):120–9. doi:10.1007/s00223-010-9383-y.

    Article  CAS  PubMed  Google Scholar 

  41. Bargman R, Posham R, Boskey AL, DiCarlo E, Raggio C, Pleshko N. Comparable outcomes in fracture reduction and bone properties with RANKL inhibition and alendronate treatment in a mouse model of osteogenesis imperfecta. Osteoporos Int. 2012;23(3):1141–50. doi:10.1007/s00198-011-1742-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12(3):183–8.

    CAS  PubMed  Google Scholar 

  43. Antoniazzi F, Bertoldo F, Mottes M, Valli M, Sirpresi S, Zamboni G, et al. Growth hormone treatment in osteogenesis imperfecta with quantitative defect of type I collagen synthesis. J Pediatr. 1996;129(3):432–9.

    Article  CAS  PubMed  Google Scholar 

  44. Antoniazzi F, Monti E, Venturi G, Franceschi R, Doro F, Gatti D, et al. GH in combination with bisphosphonate treatment in osteogenesis imperfecta. Eur J Endocrinol. 2010;163(3):479–87. doi:10.1530/eje-10-0208.

    Article  CAS  PubMed  Google Scholar 

  45. Orwoll ES, Shapiro J, Veith S, Wang Y, Lapidus J, Vanek C, et al. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest. 2014;124(2):491–8. doi:10.1172/jci71101. This paper demonstrating bone density and fracture benefits of oral risedronate re-opened the door to use of oral bisphosphonate for children with milder OI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grafe I, Yang T, Alexander S, Homan EP, Lietman C, Jiang MM, et al. Excessive transforming growth factor-beta signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014;20(6):670–5. doi:10.1038/nm.3544. This paper offers a novel mechanistic explanation for how the collagen and collagen-related mutations in the OI types result in brittle bones and opens the door to a new, personalized therapeutic approach to therapy for the disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Otsuru S, Gordon PL, Shimono K, Jethva R, Marino R, Phillips CL, et al. Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood. 2012;120(9):1933–41. doi:10.1182/blood-2011-12-400085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inas H. Thomas.

Ethics declarations

Conflict of Interest

Inas H. Thomas declares no conflict of interest. Linda A. DiMeglio reports other payments from AMGEN, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Rare Bone Disease

iThenticate: 8 %

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, I.H., DiMeglio, L.A. Advances in the Classification and Treatment of Osteogenesis Imperfecta. Curr Osteoporos Rep 14, 1–9 (2016). https://doi.org/10.1007/s11914-016-0299-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-016-0299-y

Keywords

Navigation