Skip to main content
Log in

Osteogenesis imperfecta: pathophysiology and treatment

Osteogenesis imperfecta: Update zu Pathophysiology und Therapie

  • main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Osteogenesis imperfecta is a rare hereditary disease mostly caused by mutations impairing collagen synthesis and modification. Recently recessive forms have been described influencing differentiation and activity of osteoblasts and osteoclasts. Most prominent signs are fractures due to low traumata and deformities of long bones and vertebrae. Additional patients can be affected by dwarfism, scoliosis Dentinogenesis imperfecta, deafness and a blueish discoloration of the sclera. During childhood state of the art medical treatment are i.v. bisphosphonates to increase bone mass and to reduce fracture rate. Surgical interventions are needed to treat fractures, to correct deformities and should always be accompanied by physiotherapeutic and rehabilitative interventions.

Zusammenfassung

Die Osteogenesis imperfecta ist eine seltene angeborene Erkrankung, welche in ~ 85% der Fälle auf Mutationen in den Kollagengenen COL1A1/A2 beruht. Folglich kommt es in den Osteoblasten zu einer veränderten Kollagensynthese und -modifikation. In den letzten Jahren ist es gelungen, die genetische Ursache für seltene rezessive Formen, welche nicht nur die Osteoblastenfunktion, sondern auch die Osteoklastenfunktion verändern, zu identifizieren. Das führende klinische Symptom ist die erhöhte Knochenfragilität im Rahmen niedrig-traumatischer Ereignisse und die Deformierung der langen Röhrenknochen. Zusätzlich können eine Dentinogenesis imperfecta, ein Kleinwuchs, eine Schwerhörigkeit und eine „Blau- bzw Grauverfärbung" der Skleren auftreten. Die Therapie basiert auf 3 Ansätzen: Während Kindheit und Jugend ist die intravenöse Gabe von Bisphosphonaten die medikamentöse Therapie der Wahl mit der best verfügbaren Evidenz. Chirurgische / orthopädische Interventionen sind notwendig zur Versorgung komplizierter Frakturen und der elektiven osteosynthetischen Begradigung im Falle schwerer Deformierungen der Extremitäten. Sowohl die medikamentöse Therapie als auch orthopädische Eingriffe sollten kontinuierlich von physiotherapeutischen Maßnahmen begleitet werden, um eine Kräftigung der Muskulatur als wichtigstem osteoanabolen Stimulus und eine langfristige Selbständigkeit der Betroffenen zu gewährleisten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363(9418):1377–85.

    Article  CAS  PubMed  Google Scholar 

  2. Schramm T, et al. Prenatal sonographic diagnosis of skeletal dysplasias. Ultrasound Obstet Gynecol. 2009;34(2):160–70.

    Article  CAS  PubMed  Google Scholar 

  3. Pontz BF, Stoss H, Spranger J. Heterogeneity in osteogenesis imperfecta: clinical and morphological findings. Ann N Y Acad Sci. 1988;543:30–9.

    Article  CAS  PubMed  Google Scholar 

  4. Anissipour AK, et al. Behavior of scoliosis during growth in children with osteogenesis imperfecta. J Bone Joint Surg Am. 2014;96(3):237–43.

    Article  PubMed  Google Scholar 

  5. Karbowski A, Schwitalle M, Eckardt A. [Scoliosis in patients with osteogenesis imperfecta: a federal nation-wide cross-sectional study]. Z Orthop Ihre Grenzgeb. 1999;137(3):219–22.

    Article  CAS  PubMed  Google Scholar 

  6. Kaiser-Kupfer MI, et al. Correlation of ocular rigidity and blue sclerae in osteogenesis imperfecta. Trans Ophthalmol Soc U K. 1985;104(Pt. 2):191–5.

    PubMed  Google Scholar 

  7. Devaraju D, et al. Dentinogenesis imperfecta type I: a case report with literature review on nomenclature system. J Oral Maxillofac Pathol. 2014;18(Suppl. 1):131–4.

    Article  Google Scholar 

  8. Marini JC, Blissett AR. New genes in bone development: whatʼs new in osteogenesis imperfecta. J Clin Endocrinol Metab. 2013;98:3095–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Semler O, et al. A mutation in the 5ʹ-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet. 2012;91(2):349–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cho TJ, et al. A single recurrent mutation in the 5ʹ-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet. 2012;91(2):343–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Glorieux FH, et al. Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res. 2000;15(9):1650–8.

    Article  CAS  PubMed  Google Scholar 

  12. Farber CR, et al. A novel IFITM5 mutation in severe atypical osteogenesis imperfecta type VI impairs osteoblast production of pigment epithelium-derived factor. J Bone Miner Res. 2014;29:1402–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Becker J, et al. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2011;88(3):362–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Rauch F, et al. Lack of circulating pigment epithelium-derived factor is a marker of osteogenesis imperfecta type VI. J Clin Endocrinol Metab. 2012;97(8):E1550–6.

    Article  CAS  PubMed  Google Scholar 

  15. Land C, et al. Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfecta. J Pediatr. 2006;148(4):456–60.

    Article  CAS  PubMed  Google Scholar 

  16. Sumnik Z, et al. Effect of pamidronate treatment on vertebral deformity in children with primary osteoporosis. A pilot study using radiographic morphometry. Horm Res. 2004;61(3):137–42.

    Article  CAS  PubMed  Google Scholar 

  17. Glorieux FH, et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339(14):947–52.

    Article  CAS  PubMed  Google Scholar 

  18. Gatti D, et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res. 2005;20(5):758–63.

    Article  CAS  PubMed  Google Scholar 

  19. Maines E, et al. Children and adolescents treated with neridronate for osteogenesis imperfecta show no evidence of any osteonecrosis of the jaw. J Bone Miner Metab. 2011;30:434–8.

    Article  PubMed  Google Scholar 

  20. Bishop N, et al. Risedronate in children with osteogenesis imperfecta: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382(9902):1424–32.

    Article  CAS  PubMed  Google Scholar 

  21. Hoyer-Kuhn H, et al. Two years experience with denosumab for children with Osteogenesis imperfecta type VI. Orphanet J Rare Dis. 2014;9(1):145.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Orwoll ES, et al. Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest. 2014;124(2):491–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gatti D, et al. Teriparatide treatment in adult patients with osteogenesis imperfecta type I. Calcif Tissue Int. 2013;93(5):448–52.

    Article  CAS  PubMed  Google Scholar 

  24. Vahle JL, et al. Bone neoplasms in F344 rats given teriparatide [rhPTH(1–34)] are dependent on duration of treatment and dose. Toxicol Pathol. 2004;32(4):426–38.

    Article  CAS  PubMed  Google Scholar 

  25. Koerber F, et al. Introduction of a new standardized assessment score of spine morphology in osteogenesis imperfecta. Rofo. 2012;184(8):719–25.

    Article  CAS  PubMed  Google Scholar 

  26. Wirth T, [Osteogenesis imperfecta]. Orthopade. 2012;41(9):773–82; quiz 83–4.

    Article  CAS  PubMed  Google Scholar 

  27. Karbowski A, et al. Experience with Bailey-Dubow rodding in children with osteogenesis imperfecta. Eur J Pediatr Surg. 2000;10(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  28. Ruck J, et al. Fassier-Duval femoral rodding in children with osteogenesis imperfecta receiving bisphosphonates: functional outcomes at one year. J Child Orthop. 2011;5(3):217–24.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hoyer-Kuhn H, et al. A specialized rehabilitation approach improves mobility in children with osteogenesis imperfecta. J Musculoskelet Neuronal Interact. 2014;14(4):445–53.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Hoyer-Kuhn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoyer-Kuhn, H., Netzer, C. & Semler, O. Osteogenesis imperfecta: pathophysiology and treatment. Wien Med Wochenschr 165, 278–284 (2015). https://doi.org/10.1007/s10354-015-0361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-015-0361-x

Keywords

Schüsselwörter

Navigation