Skip to main content

Advertisement

Log in

Bone Imaging and Fracture Risk after Spinal Cord Injury

  • Therapeutics and Medical Management (E Shane and R Adler, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is characterized by marked bone loss and an increased risk of fracture with high complication rate. Recent research based on advanced imaging analysis, including quantitative computed tomography (QCT) and patient-specific finite element (FE) modeling, has provided new and important insights into the magnitude and temporal pattern of bone loss, as well as the associated changes to bone structure and strength, following SCI. This work has illustrated the importance of early therapeutic treatment to prevent bone loss after SCI and may someday serve as the basis for a clinical fracture risk assessment tool for the SCI population. This review provides an update on the epidemiology of fracture after SCI and discusses new findings and significant developments related to bone loss and fracture risk assessment in the SCI population based on QCT analysis and patient-specific FE modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Biering-Sorensen F, Bohr HH, Schaadt OP. Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest. 1990;20(3):330–5.

    Article  CAS  PubMed  Google Scholar 

  2. Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, et al. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone. 2004;34(5):869–80.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang SD, Dai LY, Jiang LS. Osteoporosis after spinal cord injury. Osteoporos Int. 2006;17(2):180–92.

    Article  PubMed  Google Scholar 

  4. Alexandre C, Vico L. Pathophysiology of bone loss in disuse osteoporosis. Joint Bone Spine. 2011;78(6):572–6.

    Article  CAS  PubMed  Google Scholar 

  5. Garland DE, Adkins RH. Bone loss at the knee in spinal cord injury. Top Spinal Cord Inj Rehabil. 2001;6(3):37–46.

    Article  Google Scholar 

  6. Sabo D, Blaich S, Wenz W, Hohmann M, Loew M, Gerner HJ. Osteoporosis in patients with paralysis after spinal cord injury. A cross sectional study in 46 male patients with dual-energy X-ray absorptiometry. Arch Orthop Trauma Surg. 2001;121(1–2):75–8.

    Article  CAS  PubMed  Google Scholar 

  7. Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF. Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone. 2000;27(2):305–9.

    Article  CAS  PubMed  Google Scholar 

  8. Demirel G, Yilmaz H, Paker N, Onel S. Osteoporosis after spinal cord injury. Spinal Cord. 1998;36(12):822–5.

    Article  CAS  PubMed  Google Scholar 

  9. Vestergaard P, Krogh K, Rejnmark L, Mosekilde L. Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord. 1998;36(11):790–6.

    Article  CAS  PubMed  Google Scholar 

  10. Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, Neto I, et al. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int. 2004;15(3):180–9.

    Article  PubMed  Google Scholar 

  11. Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, et al. Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int. 2009;20(3):385–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Gifre L, Vidal J, Carrasco J, Portell E, Puig J, Monegal A, et al. Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study. Clin Rehabil. 2014;28(4):361–9.

    Article  PubMed  Google Scholar 

  13. Craven BC, Robertson LA, McGillivray CF, Adachi JD. Detection and treatment of sublesional osteoporosis among patients with chronic spinal cord injury: proposed paradigms. Top Spinal Cord Inj Rehabil. 2009;14(4):1–22.

    Article  Google Scholar 

  14. Biering-Sorensen F, Hansen B, Lee BS. Non-pharmacological treatment and prevention of bone loss after spinal cord injury: a systematic review. Spinal Cord. 2009;47(7):508–18.

    Article  CAS  PubMed  Google Scholar 

  15. Bryson JE, Gourlay ML. Bisphosphonate use in acute and chronic spinal cord injury: a systematic review. J Spinal Cord Med. 2009;32(3):215–25.

    PubMed Central  PubMed  Google Scholar 

  16. Maimoun L, Fattal C, Sultan C. Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review. Metabolism. 2011;60(12):1655–63.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang SD, Jiang LS, Dai LY. Mechanisms of osteoporosis in spinal cord injury. Clin Endocrinol (Oxf). 2006;65(5):555–65.

    Article  CAS  Google Scholar 

  18. Battaglino RA, Lazzari AA, Garshick E, Morse LR. Spinal cord injury-induced osteoporosis: pathogenesis and emerging therapies. Curr Osteoporos Rep. 2012;10(4):278–85.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Dionyssiotis Y. Spinal cord injury-related bone impairment and fractures: an update on epidemiology and physiopathological mechanisms. J Musculoskelet Neuronal Interact. 2011;11(3):257–65.

    CAS  PubMed  Google Scholar 

  20. Charmetant C, Phaner V, Condemine A, Calmels P. Diagnosis and treatment of osteoporosis in spinal cord injury patients: a literature review. Ann Phys Rehabil Med. 2010;53(10):655–68.

    Article  CAS  PubMed  Google Scholar 

  21. Chang KV, Hung CY, Chen WS, Lai MS, Chien KL, Han DS. Effectiveness of bisphosphonate analogues and functional electrical stimulation on attenuating post-injury osteoporosis in spinal cord injury patients—a systematic review and meta-analysis. PLoS One. 2013;8(11):e81124.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Frotzler A, Cheikh-Sarraf B, Pourtehrani M, Krebs J, Lippuner K. Long-bone fractures in persons with spinal cord injury. Spinal Cord. 2015. doi:10.1038/sc.2015.74.

  24. Comarr AE, Hutchinson RH, Bors E. Extremity fractures of patients with spinal cord injuries. Am J Surg. 1962;103:732–9.

    Article  CAS  PubMed  Google Scholar 

  25. Freehafer AA. Limb fractures in patients with spinal cord injury. Arch Phys Med Rehabil. 1995;76(9):823–7.

    Article  CAS  PubMed  Google Scholar 

  26. Rogers T, Shokes LK, Woodworth PH. Pathologic extremity fracture care in spinal cord injury. Top Spinal Cord Inj Rehabil. 2005;11(1):70–8.

    Article  Google Scholar 

  27. Ragnarsson KT, Sell GH. Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil. 1981;62(9):418–23.

    CAS  PubMed  Google Scholar 

  28. Nottage WM. A review of long-bone fractures in patients with spinal cord injuries. Clin Orthop Relat Res. 1981;(155):65–70.

  29. Carbone LD, Chin AS, Burns SP, Svircev JN, Hoenig H, Heggeness M, et al. Mortality after lower extremity fractures in men with spinal cord injury. J Bone Miner Res. 2014;29(2):432–9. Population based, cohort study of male veterans with SCI demonstrating that fragility fractures and underlying comorbidities contribute to mortality after SCI.

    Article  PubMed  Google Scholar 

  30. Krause JS, Carter RE, Pickelsimer EE, Wilson D. A prospective study of health and risk of mortality after spinal cord injury. Arch Phys Med Rehabil. 2008;89(8):1482–91.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Logan Jr WC, Sloane R, Lyles KW, Goldstein B, Hoenig HM. Incidence of fractures in a cohort of veterans with chronic multiple sclerosis or traumatic spinal cord injury. Arch Phys Med Rehabil. 2008;89(2):237–43.

    Article  PubMed  Google Scholar 

  32. Lala D, Craven BC, Thabane L, Papaioannou A, Adachi JD, Popovic MR, et al. Exploring the determinants of fracture risk among individuals with spinal cord injury. Osteoporos Int. 2014;25(1):177–85. Recent cross-sectional study demonstrating that aBMD at the knee and pQCT derived measures of tibial geometry are associated with fragility fractures after SCI.

    Article  CAS  PubMed  Google Scholar 

  33. Eser P, Frotzler A, Zehnder Y, Denoth J. Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil. 2005;86(3):498–504.

    Article  PubMed  Google Scholar 

  34. Wang CM, Chen Y, DeVivo MJ, Huang CT. Epidemiology of extraspinal fractures associated with acute spinal cord injury. Spinal Cord. 2001;39(11):589–94.

    Article  CAS  PubMed  Google Scholar 

  35. Frisbie JH. Fractures after myelopathy: the risk quantified. J Spinal Cord Med. 1997;20(1):66–9.

    CAS  PubMed  Google Scholar 

  36. Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M. Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord. 2001;39(4):208–14.

    Article  CAS  PubMed  Google Scholar 

  37. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.

    Article  CAS  PubMed  Google Scholar 

  38. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    Article  CAS  PubMed  Google Scholar 

  39. Freehafer AA, Hazel CM, Becker CL. Lower extremity fractures in patients with spinal cord injury. Paraplegia. 1981;19(6):367–72.

    Article  CAS  PubMed  Google Scholar 

  40. Fournier A, Golerberg M, Green B, Brucker B, Petrofsky J, Eismont F, et al. Medical evaluation of the effects of computer assisted muscle stimulation in paraplegic patients. Orthopedics. 1984;7:1129–33.

    CAS  PubMed  Google Scholar 

  41. Hartkopp A, Murphy RJ, Mohr T, Kjaer M, Biering-Sorensen F. Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch Phys Med Rehabil. 1998;79(9):1133–6.

    Article  CAS  PubMed  Google Scholar 

  42. Keating JF, Kerr M, Delargy M. Minimal trauma causing fractures in patients with spinal cord injury. Disabil Rehabil. 1992;14:108–9.

    Article  CAS  PubMed  Google Scholar 

  43. Martínez AA, Cuenca J, Herrera A, Domingo J. Late lower extremity fractures in patients with paraplegia. Injury. 2002;33:583–6.

    Article  PubMed  Google Scholar 

  44. Brotherton SS, Krause JS, Nietert PJ. Falls in individuals with incomplete spinal cord injury. Spinal Cord. 2007;45(1):37–40.

    Article  CAS  PubMed  Google Scholar 

  45. Edwards WB, Schnitzer TJ, Troy KL. Reduction in proximal femoral strength in patients with acute spinal cord injury. J Bone Miner Res. 2014;29(9):2074–9. Short-term prospective analysis demonstrating the rapid and disproportionate decline of bone strength after SCI in relation to bone mineral.

    Article  PubMed  Google Scholar 

  46. Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, et al. Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 2006;17(6):855–64.

    Article  CAS  PubMed  Google Scholar 

  47. Manske SL, Liu-Ambrose T, Cooper DM, Kontulainen S, Guy P, Forster BB, et al. Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int. 2009;20(3):445–53.

    Article  CAS  PubMed  Google Scholar 

  48. Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, et al. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res. 2008;23(12):1974–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Keaveny TM, McClung MR, Wan X, Kopperdahl DL, Mitlak BH, Krohn K. Femoral strength in osteoporotic women treated with teriparatide or alendronate. Bone. 2012;50(1):165–70.

    Article  CAS  PubMed  Google Scholar 

  50. Edwards WB, Schnitzer TJ, Troy KL. Bone mineral loss at the proximal femur in acute spinal cord injury. Osteoporos Int. 2013;24(9):2461–9.

    Article  CAS  PubMed  Google Scholar 

  51. Edwards WB, Schnitzer TJ, Troy KL. Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury. Osteoporos Int. 2014;25(3):1005–15.

    Article  CAS  PubMed  Google Scholar 

  52. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19(6):1006–12.

    Article  PubMed  Google Scholar 

  53. Keaveny TM, Kopperdahl DL, Melton 3rd LJ, Hoffmann PF, Amin S, Riggs BL, et al. Age-dependence of femoral strength in white women and men. J Bone Miner Res. 2010;25(5):994–1001.

    PubMed Central  PubMed  Google Scholar 

  54. Frey-Rindova P, de Bruin ED, Stussi E, Dambacher MA, Dietz V. Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord. 2000;38(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  55. Rittweger J, Goosey-Tolfrey VL, Cointry G, Ferretti JL. Structural analysis of the human tibia in men with spinal cord injury by tomographic (pQCT) serial scans. Bone. 2010;47(3):511–8.

    Article  PubMed  Google Scholar 

  56. Edwards WB, Simonian N, Troy KL, Schnitzer TJ. Reduction in torsional stiffness and strength at the proximal tibia as a function of time since spinal cord injury. J Bone Miner Res. 2015;30:1422–30. Cross -sectional study demonstrating rapid decline of bone strength after SCI and the establishment of a new steady state within 2–3 years of injury.

    Article  CAS  PubMed  Google Scholar 

  57. Modlesky CM, Slade JM, Bickel CS, Meyer RA, Dudley GA. Deteriorated geometric structure and strength of the midfemur in men with complete spinal cord injury. Bone. 2005;36(2):331–9.

    Article  PubMed  Google Scholar 

  58. Coupaud S, McLean AN, Allan DB. Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia. Skeletal Radiol. 2009;38(10):989–95.

    Article  PubMed  Google Scholar 

  59. Minaire P, Edouard C, Arlot M, Meunier PJ. Marrow changes in paraplegic patients. Calcif Tissue Int. 1984;36(3):338–40.

    Article  CAS  PubMed  Google Scholar 

  60. Frotzler A, Berger M, Knecht H, Eser P. Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT). Bone. 2008;43(3):549–55.

    Article  PubMed  Google Scholar 

  61. Dudley-Javoroski S, Shields RK. Longitudinal changes in femur bone mineral density after spinal cord injury: effects of slice placement and peel method. Osteoporos Int. 2010;21(6):985–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Leslie WD, Nance PW. Dissociated hip and spine demineralization: a specific finding in spinal cord injury. Arch Phys Med Rehabil. 1993;74(9):960–4.

    CAS  PubMed  Google Scholar 

  63. Garland DE, Adkins RH, Stewart CA, Ashford R, Vigil D. Regional osteoporosis in women who have a complete spinal cord injury. J Bone Joint Surg Am. 2001;83-A(8):1195–200.

    CAS  PubMed  Google Scholar 

  64. Biering-Sorensen F, Bohr HH, Schaadt OP. Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia. 1988;26:293–301.

    Article  CAS  PubMed  Google Scholar 

  65. Szollar SM, Martin EM, Sartoris DJ, Parthemore JG, Deftos LJ. Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil. 1998;77(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  66. Ausk BJ, Huber P, Srinivasan S, Bain SD, Kwon RY, McNamara EA, et al. Metaphyseal and diaphyseal bone loss in the tibia following transient muscle paralysis are spatiotemporally distinct resorption events. Bone. 2013;57(2):413–22. Animal study suggesting different osteoclastogenic events mediate metaphyseal and diaphyseal bone loss following paralysis.

    Article  PubMed  Google Scholar 

  67. Edwards WB, Troy KL. Number crunching: how and when will numerical models be used in the clinical setting? Curr Osteoporos Rep. 2011;9(1):1–3.

    Article  PubMed  Google Scholar 

  68. Carpenter RD. Finite element analysis of the hip and spine based on quantitative computed tomography. Curr Osteoporos Rep. 2013;11(2):156–62. Recent review summarizing QCT based subject-specific FE modeling and its potential clinical utility.

    Article  PubMed  Google Scholar 

  69. Edwards WB, Schnitzer TJ, Troy KL. Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT. J Biomech. 2013;46(10):1655–62.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech. 2007;40(8):1745–53.

    Article  PubMed  Google Scholar 

  71. Edwards WB, Schnitzer TJ, Troy KL. The mechanical consequence of actual bone loss and simulated bone recovery in acute spinal cord injury. Bone. 2014;60:141–7.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Keyak JH, Koyama AK, LeBlanc A, Lu Y, Lang TF. Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 2009;44(3):449–53.

    Article  CAS  PubMed  Google Scholar 

  73. Guo XE, Kim CH. Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation. Bone. 2002;30(2):404–11.

    Article  CAS  PubMed  Google Scholar 

  74. Silva MJ, Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone. 1997;21(2):191–9.

    Article  CAS  PubMed  Google Scholar 

  75. Pistoia W, van Rietbergen B, Ruegsegger P. Mechanical consequences of different scenarios for simulated bone atrophy and recovery in the distal radius. Bone. 2003;33(6):937–45.

    Article  CAS  PubMed  Google Scholar 

  76. Morse LR, Giangregorio L, Battaglino RA, Holland R, Craven BC, Stolzmann KL, et al. VA-based survey of osteoporosis management in spinal cord injury. PM R. 2009;1(3):240–4.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Morse LR, Lazzari AA, Battaglino R, Stolzmann KL, Matthess KR, Gagnon DR, et al. Dual energy x-ray absorptiometry of the distal femur may be more reliable than the proximal tibia in spinal cord injury. Arch Phys Med Rehabil. 2009;90(5):827–31.

    Article  PubMed Central  PubMed  Google Scholar 

  78. McPherson JG, Edwards WB, Prasad A, Troy KL, Griffith JW, Schnitzer TJ. Dual energy X-ray absorptiometry of the knee in spinal cord injury: methodology and correlation with quantitative computed tomography. Spinal Cord. 2014;52:821–5.

    Article  CAS  PubMed  Google Scholar 

  79. Shields RK, Schlechte J, Dudley-Javoroski S, Zwart BD, Clark SD, Grant SA, et al. Bone mineral density after spinal cord injury: a reliable method for knee measurement. Arch Phys Med Rehabil. 2005;86(10):1969–73.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Bakkum AJ, Janssen TW, Rolf MP, Roos JC, Burcksen J, Knol DL, et al. A reliable method for measuring proximal tibia and distal femur bone mineral density using dual-energy X-ray absorptiometry. Med Eng Phys. 2014;36(3):387–90.

    Article  PubMed  Google Scholar 

  81. Garland DE, Adkins RH, Stewart CA. Fracture threshold and risk for osteoporosis and pathologic fractures in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil. 2005;11:61–9.

    Article  Google Scholar 

  82. de Bruin ED, Dietz V, Dambacher MA, Stussi E. Longitudinal changes in bone in men with spinal cord injury. Clin Rehabil. 2000;14(2):145–52.

    Article  PubMed  Google Scholar 

  83. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 1999;32(10):1013–20.

    Article  CAS  PubMed  Google Scholar 

  84. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33(4):744–50.

    Article  PubMed  Google Scholar 

  85. Melton 3rd LJ, Riggs BL, Keaveny TM, Achenbach SJ, Hoffmann PF, Camp JJ, et al. Structural determinants of vertebral fracture risk. J Bone Miner Res. 2007;22(12):1885–92.

    Article  PubMed  Google Scholar 

  86. Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, et al. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res. 2009;24(3):475–83.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Edwards WB, Simonian N, Schnitzer TJ. Bone mineral density assessed by QCT, but not DXA, discriminates SCI patients with prevalent fragility fractures. Proceedings of the 4th Joint Meeting of the ISCoS and ASIA. 2015.

  88. Edwards WB, Simonian N, Troy, KL, Schnitzer TJ. Discriminants of prevalent fragility fractures in chronic spinal cord injury. Proceedings of the American Society of Bone and Mineral Research Annual Meeting. 2014. http://www.asbmr.org/education/AbstractDetail?aid=221f59d8-978b-4a89-8734-201bd3bdd8c8.

  89. Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res. 2011;26(1):50–62.

    Article  PubMed  Google Scholar 

  90. Manske SL, Zhu Y, Sandino C, Boyd SK. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone. 2015;79:213–21.

    Article  CAS  PubMed  Google Scholar 

  91. Giangregorio LM, Webber CE, Phillips SM, Hicks AL, Craven BC, Bugaresti JM, et al. Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury? Appl Physiol Nutr Metab. 2006;31(3):283–91.

    Article  PubMed  Google Scholar 

  92. Moran de Brito CM, Battistella LR, Saito ET, Sakamoto H. Effect of alendronate on bone mineral density in spinal cord injury patients: a pilot study. Spinal Cord. 2005;43(6):341–8.

    Article  CAS  PubMed  Google Scholar 

  93. Needham-Shropshire BM, Broton JG, Klose KJ, Lebwohl N, Guest RS, Jacobs PL. Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 3. Lack of effect on bone mineral density. Arch Phys Med Rehabil. 1997;78(8):799–803.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Edwards declare they have no conflicts of interest to disclose

Dr. Schnitzer reports non-financial support from Eli LIlly, non-financial support from Novartis, outside the submitted work.

Human and Animal Rights and Informed Consent

All studies by Dr. Edwards and Dr. Schnitzer involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Brent Edwards.

Additional information

This article is part of the Topical Collection on Therapeutics and Medical Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edwards, W.B., Schnitzer, T.J. Bone Imaging and Fracture Risk after Spinal Cord Injury. Curr Osteoporos Rep 13, 310–317 (2015). https://doi.org/10.1007/s11914-015-0288-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-015-0288-6

Keywords

Navigation