Skip to main content

Overview of Skeletal Development

  • Protocol
Skeletal Development and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1130))

Abstract

Development of cartilage and bone, the core components of the mouse skeletal system, depends on the well-coordinated proliferation and differentiation of skeletogenic cells, including chondrocytes and osteoblasts. These cells differentiate from common progenitor cells originating in the mesoderm and neural crest. Multiple signaling pathways and transcription factors tightly regulate differentiation and proliferation of skeletal cells. In this chapter, we overview the process of mouse skeletal development and discuss major regulators of skeletal cells at each developmental stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220

    Article  CAS  PubMed  Google Scholar 

  2. Sharir A, Stern T, Rot C, Shahar R, Zelzer E (2011) Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development 138:3247–3259

    Article  CAS  PubMed  Google Scholar 

  3. Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394

    Article  CAS  PubMed  Google Scholar 

  4. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336

    Article  CAS  PubMed  Google Scholar 

  5. Hall BK, Miyake T (2000) All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22:138–147

    Article  CAS  PubMed  Google Scholar 

  6. Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97:33–44

    Article  CAS  PubMed  Google Scholar 

  7. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89

    Article  CAS  PubMed  Google Scholar 

  9. Mori-Akiyama Y, Akiyama H, Rowitch DH, de Crombrugghe B (2003) Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc Natl Acad Sci U S A 100:9360–9365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DeLise AM, Fischer L, Tuan RS (2000) Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 8:309–334

    Article  CAS  PubMed  Google Scholar 

  11. Luo Y, Kostetskii I, Radice GL (2005) N-cadherin is not essential for limb mesenchymal chondrogenesis. Dev Dyn 232:336–344

    Article  CAS  PubMed  Google Scholar 

  12. Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM (2005) Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A 102:5062–5067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Niswander L (2002) Interplay between the molecular signals that control vertebrate limb development. Int J Dev Biol 46:877–881

    CAS  PubMed  Google Scholar 

  14. Schipani E, Lanske B, Hunzelman J, Luz A, Kovacs CS, Lee K, Pirro A, Kronenberg HM, Juppner H (1997) Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc Natl Acad Sci U S A 94:13689–13694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci U S A 93:10240–10245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murakami S, Balmes G, McKinney S, Zhang Z, Givol D, de Crombrugghe B (2004) Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev 18:290–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kronenberg HM (2006) PTHrP and skeletal development. Ann N Y Acad Sci 1068:1–13

    Article  CAS  PubMed  Google Scholar 

  18. Ornitz DM (2005) FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 16:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Cheng Z, Elalieh HZ, Nakamura E, Nguyen MT, Mackem S, Clemens TL, Bikle DD, Chang W (2011) IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/Ihh pathway. J Bone Miner Res 26:1437–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang R, Murakami S, Coustry F, Wang Y, de Crombrugghe B (2006) Constitutive activation of MKK6 in chondrocytes of transgenic mice inhibits proliferation and delays endochondral bone formation. Proc Natl Acad Sci U S A 103:365–370

    Article  CAS  PubMed  Google Scholar 

  21. Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, Deng JM, Taketo MM, Nakamura T, Behringer RR et al (2004) Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 18:1072–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ford-Hutchinson AF, Ali Z, Lines SE, Hallgrimsson B, Boyd SK, Jirik FR (2007) Inactivation of Pten in osteo-chondroprogenitor cells leads to epiphyseal growth plate abnormalities and skeletal overgrowth. J Bone Miner Res 22:1245–1259

    Article  CAS  PubMed  Google Scholar 

  23. Yang G, Sun Q, Teng Y, Li F, Weng T, Yang X (2008) PTEN deficiency causes dyschondroplasia in mice by enhanced hypoxia-inducible factor 1alpha signaling and endoplasmic reticulum stress. Development 135:3587–3597

    Article  CAS  PubMed  Google Scholar 

  24. Yasoda A, Komatsu Y, Chusho H, Miyazawa T, Ozasa A, Miura M, Kurihara T, Rogi T, Tanaka S, Suda M et al (2004) Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med 10:80–86

    Article  CAS  PubMed  Google Scholar 

  25. Goldring MB (2012) Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis 4:269–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Enomoto H, Enomoto-Iwamoto M, Iwamoto M, Nomura S, Himeno M, Kitamura Y, Kishimoto T, Komori T (2000) Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem 275:8695–8702

    Article  CAS  PubMed  Google Scholar 

  27. Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G (2001) Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 15:467–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2007) MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 12:377–389

    Article  CAS  PubMed  Google Scholar 

  29. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA et al (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119:555–566

    Article  CAS  PubMed  Google Scholar 

  30. Sasagawa S, Takemori H, Uebi T, Ikegami D, Hiramatsu K, Ikegawa S, Yoshikawa H, Tsumaki N (2012) SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice. Development 139:1153–1163

    Article  CAS  PubMed  Google Scholar 

  31. Kozhemyakina E, Cohen T, Yao TP, Lassar AB (2009) Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway. Mol Cell Biol 29:5751–5762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rankin EB, Giaccia AJ, Schipani E (2011) A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Curr Osteoporos Rep 9:46–52

    Article  PubMed  PubMed Central  Google Scholar 

  33. Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 102:10898–10903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E, Merkenschlager M, Kronenberg HM (2008) Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci U S A 105:1949–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gaur T, Hussain S, Mudhasani R, Parulkar I, Colby JL, Frederick D, Kream BE, van Wijnen AJ, Stein JL, Stein GS et al (2010) Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev Biol 340:10–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, Ebert BL, Al-Shahrour F, Hasserjian RP, Scadden EO et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464:852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Long F, Chung UI, Ohba S, McMahon J, Kronenberg HM, McMahon AP (2004) Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development 131:1309–1318

    Article  CAS  PubMed  Google Scholar 

  38. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132:49–60

    Article  CAS  PubMed  Google Scholar 

  39. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  CAS  PubMed  Google Scholar 

  40. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR et al (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  CAS  PubMed  Google Scholar 

  41. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  CAS  PubMed  Google Scholar 

  42. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM et al (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 117:387–398

    Article  CAS  PubMed  Google Scholar 

  43. Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, Carmeliet G, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, Lin CP, Kronenberg HM, Scadden DT (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10:259–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Colnot C, Lu C, Hu D, Helms JA (2004) Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol 269:55–69

    Article  CAS  PubMed  Google Scholar 

  46. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR (2010) Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 16:1400–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fadini GP, Albiero M, Menegazzo L, Boscaro E, Vigili de Kreutzenberg S, Agostini C, Cabrelle A, Binotto G, Rattazzi M, Bertacco E et al (2011) Widespread increase in myeloid calcifying cells contributes to ectopic vascular calcification in type 2 diabetes. Circ Res 108:1112–1121

    Article  CAS  PubMed  Google Scholar 

  49. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238

    Article  CAS  PubMed  Google Scholar 

  50. Kobayashi T, Kronenberg H (2005) Minireview: transcriptional regulation in development of bone. Endocrinology 146:1012–1017

    Article  CAS  PubMed  Google Scholar 

  51. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ngo-Muller V, Muneoka K (2000) Influence of FGF4 on digit morphogenesis during limb development in the mouse. Dev Biol 219:224–236

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kobayashi, T., Kronenberg, H.M. (2014). Overview of Skeletal Development. In: Hilton, M. (eds) Skeletal Development and Repair. Methods in Molecular Biology, vol 1130. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-989-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-989-5_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-988-8

  • Online ISBN: 978-1-62703-989-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics