Skip to main content
Log in

The Interaction of Biological Factors with Mechanical Signals in Bone Adaptation: Recent Developments

  • Skeletal Biology (D Burr, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Mechanotransduction in bone is fundamental to proper skeletal development. Deficiencies in signaling mechanisms that transduce physical forces to effector cells can have severe consequences for skeletal integrity. Therefore, a solid understanding of the cellular and molecular components of mechanotransduction is crucial for correcting skeletal modeling and remodeling errors and designing effective therapies. In recent years, progress has been made on many fronts regarding our understanding of bone cell mechanotransduction, including subcellular localization of mechanosensitive components in bone cells, the discovery of mechanosensitive G-protein-coupled receptors, identification of new ion channels and larger pores (eg, hemichannels) involved in physical signal transduction, and cell adhesion proteins, among others. These and other recent mechanisms are reviewed to provide a synthesis of recent experimental findings, in the larger context of whole bone adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Riddle RC, Donahue HJ. From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res. 2009;27:143–9.

    Article  PubMed  Google Scholar 

  2. Iqbal J, Zaidi M. Molecular regulation of mechanotransduction. Biochem Biophys Res Commun. 2005;328:751–5.

    Article  PubMed  CAS  Google Scholar 

  3. Turner CH, Pavalko FM. Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci. 1998;3:346–55.

    Article  PubMed  CAS  Google Scholar 

  4. Hert J, Pribylova E, Liskova M. Reaction of bone to mechanical stimuli. 3. Microstructure of compact bone of rabbit tibia after intermittent loading. Acta Anat (Basel). 1972;82:218–30.

    Article  CAS  Google Scholar 

  5. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5:464–75.

    Article  PubMed  CAS  Google Scholar 

  6. Kamel MA, Picconi JL, Lara-Castillo N, Johnson ML. Activation of beta-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: implications for the study of mechanosensation in bone. Bone. 2010;47:872–81.

    Article  PubMed  CAS  Google Scholar 

  7. Norvell SM, Alvarez M, Bidwell JP, Pavalko FM. Fluid shear stress induces beta-catenin signaling in osteoblasts. Calcif Tissue Int. 2004;75:396–404.

    Article  PubMed  CAS  Google Scholar 

  8. Lu XL, Huo B, Chiang V, Guo XE. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J Bone Miner Res. 2011;27:563–574

    Google Scholar 

  9. Burra S, Nicolella DP, Francis WL, Freitas CJ, Mueschke NJ, Poole K, et al. Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc Natl Acad Sci U S A. 2010;107:13648–53.

    Article  PubMed  CAS  Google Scholar 

  10. Adachi T, Aonuma Y, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H. Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J Biomech. 2009;42:1989–95.

    Article  PubMed  Google Scholar 

  11. Wu D, Ganatos P, Spray DC, Weinbaum S. On the electrophysiological response of bone cells using a Stokesian fluid stimulus probe for delivery of quantifiable localized picoNewton level forces. J Biomech. 2011;44:1702–8.

    Article  PubMed  Google Scholar 

  12. Siller-Jackson AJ, Burra S, Gu S, Xia X, Bonewald LF, Sprague E, et al. Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J Biol Chem. 2008;283:26374–82.

    Article  PubMed  CAS  Google Scholar 

  13. •• Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, Desimone D, Bonewald LF, Lafer EM, Sprague E, Schwartz MA, Jiang JX. Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci U S A. 2012;109:3359–64. This article describes the role of the α 5 β 1 integrin in directly modulating Cx43 hemichannel opening in bone cells, and implicates a role for phosphatidylinositol 3-kinase in the process.

    Article  PubMed  CAS  Google Scholar 

  14. Li J, Liu D, Ke HZ, Duncan RL, Turner CH. The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem. 2005;280:42952–9.

    Article  PubMed  CAS  Google Scholar 

  15. Grimston S, Watkins M, Brodt M, Silva M, Civitelli R. Variable bone formation response to skeletal axial load in mice with a conditional deletion of the Connexin43 (Cx43) gene (Gja1). J Bone Miner Res. 2011;26(Suppl 1):S75.

    Google Scholar 

  16. • Zhang Y, Paul EM, Sathyendra V, Davison A, Sharkey N, Bronson S, Srinivasan S, Gross TS, Donahue HJ. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One. 2011;6:e23516. This article presents data from skeletally loaded mice in which Cx43 has been deleted from osteoblasts/osteocytes; the authors found an enhancement of mechanotransduction.

    Article  PubMed  CAS  Google Scholar 

  17. Bivi N, Farlow N, Brun L, Benson J, Condon K, Robling AG, et al. Unexpected enhanced response to mechanical loading of mice lacking Cx43 exclusively in osteocytes. J Bone Miner Res. 2011;26(Suppl 1):S11.

    Google Scholar 

  18. Grimston SK, Screen J, Haskell JH, Chung DJ, Brodt MD, Silva MJ, et al. Role of connexin43 in osteoblast response to physical load. Ann N Y Acad Sci. 2006;1068:214–24.

    Article  PubMed  CAS  Google Scholar 

  19. Grimston SK, Goldberg DB, Watkins M, Brodt MD, Silva MJ, Civitelli R. Connexin43 deficiency reduces the sensitivity of cortical bone to the effects of muscle paralysis. J Bone Miner Res. 2011;26:2151–60.

    Article  PubMed  CAS  Google Scholar 

  20. Mizoguchi F, Mizuno A, Hayata T, Nakashima K, Heller S, Ushida T, et al. Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol. 2008;216:47–53.

    Article  PubMed  CAS  Google Scholar 

  21. Gao X, Wu L, O’Neil RG. Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem. 2003;278:27129–37.

    Article  PubMed  CAS  Google Scholar 

  22. • Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, Bonewald L, Quarles LD. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J. 2011;25:2418–32. This article reports on the effect of deleting the primary cilium-associated protein, Pkd1, from osteocytes, in the skeletal response to mechanical loading.

    Article  PubMed  CAS  Google Scholar 

  23. Kwon RY, Temiyasathit S, Tummala P, Quah CC, Jacobs CR. Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J. 2010;24:2859–68.

    Article  PubMed  CAS  Google Scholar 

  24. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A. 2007;104:13325–30.

    Article  PubMed  CAS  Google Scholar 

  25. You LD, Weinbaum S, Cowin SC, Schaffler MB. Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec A Discov Mol Cell Evol Biol. 2004;278:505–13.

    Article  PubMed  Google Scholar 

  26. McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB. Attachment of osteocyte cell processes to the bone matrix. Anat Rec (Hoboken). 2009;292:355–63.

    Article  CAS  Google Scholar 

  27. Xiao ZS, Quarles LD. Role of the polycytin-primary cilia complex in bone development and mechanosensing. Ann N Y Acad Sci. 2010;1192:410–21.

    Article  PubMed  CAS  Google Scholar 

  28. Rawlinson SC, Pitsillides AA, Lanyon LE. Involvement of different ion channels in osteoblasts’ and osteocytes’ early responses to mechanical strain. Bone. 1996;19:609–14.

    Article  PubMed  CAS  Google Scholar 

  29. Li J, Zhao L, Ferries IK, Jiang L, Desta MZ, Yu X, et al. Skeletal phenotype of mice with a null mutation in Cav 1.3 L-type calcium channel. J Musculoskelet Neuronal Interact. 2010;10:180–7.

    PubMed  CAS  Google Scholar 

  30. Gudi S, Nolan JP, Frangos JA. Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc Natl Acad Sci U S A. 1998;95:2515–9.

    Article  PubMed  CAS  Google Scholar 

  31. Chow JW, Fox S, Jagger CJ, Chambers TJ. Role for parathyroid hormone in mechanical responsiveness of rat bone. Am J Physiol. 1998;274:E146–54.

    PubMed  CAS  Google Scholar 

  32. • Zhang YL, Frangos JA, Chachisvilis M. Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am J Physiol Cell Physiol. 2009;296:C1391–1399. This article reports that mechanical perturbation of the PTHR1 induces conformational changes in the receptor that are ligand independent, implicating a role for G-protein-coupled receptors in mechanotransduction.

    Article  PubMed  CAS  Google Scholar 

  33. Chachisvilis M, Zhang YL, Frangos JA. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A. 2006;103:15463–8.

    Article  PubMed  Google Scholar 

  34. Litzenberger JB, Kim JB, Tummala P, Jacobs CR. Beta1 integrins mediate mechanosensitive signaling pathways in osteocytes. Calcif Tissue Int. 2010;86:325–32.

    Article  PubMed  CAS  Google Scholar 

  35. Watabe H, Furuhama T, Tani-Ishii N, Mikuni-Takagaki Y. Mechanotransduction activates alphabeta integrin and PI3K/Akt signaling pathways in mandibular osteoblasts. Exp Cell Res. 2011;317:2642–9.

    Article  PubMed  CAS  Google Scholar 

  36. Phillips JA, Almeida EA, Hill EL, Aguirre JI, Rivera MF, Nachbandi I, et al. Role for beta1 integrins in cortical osteocytes during acute musculoskeletal disuse. Matrix Biol. 2008;27:609–18.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. Robling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robling, A.G. The Interaction of Biological Factors with Mechanical Signals in Bone Adaptation: Recent Developments. Curr Osteoporos Rep 10, 126–131 (2012). https://doi.org/10.1007/s11914-012-0099-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-012-0099-y

Keywords

Navigation