Skip to main content

Advertisement

Log in

β1 Integrins Mediate Mechanosensitive Signaling Pathways in Osteocytes

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Integrins are cell-substrate adhesion proteins that initiate intracellular signaling and may serve as mechanosensors in bone. MLO-Y4 cells were stably transfected with a dominant negative form of the β1 integrin subunit (β1DN) containing the transmembrane domain and cytoplasmic tail of β1 integrin. Cells expressing β1DN had reduced vinculin localization to focal contacts but no change in intracellular actin organization. When exposed to oscillatory fluid flow, β1DN cells exhibited a significant reduction in the upregulation of cyclooxygenase-2 gene expression and prostaglandin E2 release. Similarly, the ratio of receptor activator of NF-κB ligand mRNA to osteoprotegerin mRNA decreased significantly after exposure to fluid flow in control cells but not in β1DN cells. Interfering with integrin signaling did not affect mechanically induced intracellular calcium mobilization. These data suggest that integrins may initiate the cellular response of osteocytes to dynamic fluid flow and may serve as mechanosensitive molecules in bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taylor AF, Saunders MM, Shingle DL, Cimbala JM, Zhou Z, Donahue HJ (2007) Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. Am J Physiol Cell Physiol 292:C545–C552

    Article  CAS  PubMed  Google Scholar 

  2. Millward-Sadler SJ, Salter DM (2004) Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng 32:435–446

    Article  CAS  PubMed  Google Scholar 

  3. Aikawa R, Nagai T, Kudoh S, Zou Y, Tanaka M, Tamura M, Akazawa H, Takano H, Nagai R, Komuro I (2002) Integrins play a critical role in mechanical stress-induced p38 MAPK activation. Hypertension 39:233–238

    Article  CAS  PubMed  Google Scholar 

  4. Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91:769–775

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, McNamara LM, Schaffler MB, Weinbaum S (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA 104:15941–15946

    Article  CAS  PubMed  Google Scholar 

  6. You LD, Weinbaum S, Cowin SC, Schaffler MB (2004) Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec A Discov Mol Cell Evol Biol 278:505–513

    Article  PubMed  Google Scholar 

  7. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  8. Litzenberger JB, Tang WJ, Castillo AB, Jacobs CR (2009) Deletion of β1 integrins from cortical osteocytes reduces load-induced bone formation. Cell Mol Bioeng 2:416–424

    Article  CAS  Google Scholar 

  9. Leucht P, Kim JB, Currey JA, Brunski J, Helms JA (2007) FAK-Mediated mechanotransduction in skeletal regeneration. PLoS ONE 2:e390

    Article  PubMed  Google Scholar 

  10. Zimmerman D, Jin F, Leboy P, Hardy S, Damsky C (2000) Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts. Dev Biol 220:2–15

    Article  CAS  PubMed  Google Scholar 

  11. Globus RK, Amblard D, Nishimura Y, Iwaniec UT, Kim JB, Almeida EA, Damsky CD, Wronski TJ, van der Meulen MC (2005) Skeletal phenotype of growing transgenic mice that express a function-perturbing form of beta1 integrin in osteoblasts. Calcif Tissue Int 76:39–49

    Article  CAS  PubMed  Google Scholar 

  12. Iwaniec UT, Wronski TJ, Amblard D, Nishimura Y, van der Meulen MC, Wade CE, Bourgeois MA, Damsky CD, Globus RK (2005) Effects of disrupted beta1-integrin function on the skeletal response to short-term hindlimb unloading in mice. J Appl Physiol 98:690–696

    Article  CAS  PubMed  Google Scholar 

  13. Phillips JA, Almeida EA, Hill EL, Aguirre JI, Rivera MF, Nachbandi I, Wronski TJ, van der Meulen MC, Globus RK (2008) Role for beta1 integrins in cortical osteocytes during acute musculoskeletal disuse. Matrix Biol 27(7):609–618

    Article  CAS  PubMed  Google Scholar 

  14. Boutahar N, Guignandon A, Vico L, Lafage-Proust MH (2004) Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation. J Biol Chem 279:30588–30599

    Article  CAS  PubMed  Google Scholar 

  15. Ponik SM, Pavalko FM (2004) Formation of focal adhesions on fibronectin promotes fluid shear stress induction of COX-2 and PGE2 release in MC3T3–E1 osteoblasts. J Appl Physiol 97:135–142

    Article  CAS  PubMed  Google Scholar 

  16. Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F (2009) Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage 17:473–481

    Article  CAS  PubMed  Google Scholar 

  17. LaFlamme SE, Thomas LA, Yamada SS, Yamada KM (1994) Single subunit chimeric integrins as mimics and inhibitors of endogenous integrin functions in receptor localization, cell spreading and migration, and matrix assembly. J Cell Biol 126:1287–1298

    Article  CAS  PubMed  Google Scholar 

  18. Lukashev ME, Sheppard D, Pytela R (1994) Disruption of integrin function and induction of tyrosine phosphorylation by the autonomously expressed beta1 integrin cytoplasmic domain. J Biol Chem 269:18311–18314

    CAS  PubMed  Google Scholar 

  19. Bakker AD, Klein-Nulend J, Burger EH (2003) Mechanotransduction in bone cells proceeds via activation of COX-2, but not COX-1. Biochem Biophys Res Commun 305:677–683

    Article  CAS  PubMed  Google Scholar 

  20. Chow JW, Chambers TJ (1994) Indomethacin has distinct early and late actions on bone formation induced by mechanical stimulation. Am J Physiol Endocrinol Metab 267:E287–E292

    CAS  Google Scholar 

  21. Forwood MR (1996) Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res 11:1688–1693

    Article  CAS  PubMed  Google Scholar 

  22. Tian XY, Zhang Q, Zhao R, Setterberg RB, Zeng QQ, Ma YF, Jee WS (2007) Continuous infusion of PGE2 is catabolic with a negative bone balance on both cancellous and cortical bone in rats. J Musculoskelet Neuronal Interact 7:372–381

    CAS  PubMed  Google Scholar 

  23. Yoshida K, Oida H, Kobayashi T, Maruyama T, Tanaka M, Katayama T, Yamaguchi K, Segi E, Tsuboyama T, Matsushita M, Ito K, Ito Y, Sugimoto Y, Ushikubi F, Ohuchida S, Kondo K, Nakamura T, Narumiya S (2002) Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci USA 99:4580–4585

    Article  CAS  PubMed  Google Scholar 

  24. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  25. Kim CH, You L, Yellowley CE, Jacobs CR (2006) Oscillatory fluid flow-induced shear stress decreases osteoclastogenesis through RANKL and OPG signaling. Bone 39:1043–1047

    Article  CAS  PubMed  Google Scholar 

  26. You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, Kingery W, Malone AM, Kwon RY, Jacobs CR (2008) Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone 42:172–179

    Article  CAS  PubMed  Google Scholar 

  27. Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, Donahue HJ (1998) Differential effect of steady versus oscillating flow on bone cells. J Biomech 31:969–976

    Article  CAS  PubMed  Google Scholar 

  28. You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR (2001) Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3–E1 osteoblasts. J Biol Chem 276:13365–13371

    Article  CAS  PubMed  Google Scholar 

  29. Harbers GM, Healy KE (2005) The effect of ligand type and density on osteoblast adhesion, proliferation, and matrix mineralization. J Biomed Mater Res A 75:855–869

    PubMed  Google Scholar 

  30. Tang CH, Yang RS, Fu WM (2005) Prostaglandin E2 stimulates fibronectin expression through EP1 receptor, phospholipase C, protein kinase Calpha, and c-Src pathway in primary cultured rat osteoblasts. J Biol Chem 280:22907–22916

    Article  CAS  PubMed  Google Scholar 

  31. Nakayamada S, Okada Y, Saito K, Tamura M, Tanaka Y (2003) Beta1 integrin/focal adhesion kinase-mediated signaling induces intercellular adhesion molecule 1 and receptor activator of nuclear factor kappaB ligand on osteoblasts and osteoclast maturation. J Biol Chem 278:45368–45374

    Article  CAS  PubMed  Google Scholar 

  32. Kamioka H, Sugawara Y, Murshid SA, Ishihara Y, Honjo T, Takano-Yamamoto T (2006) Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation. J Bone Miner Res 21:1012–1021

    Article  CAS  PubMed  Google Scholar 

  33. Ponik SM, Triplett JW, Pavalko FM (2007) Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles. J Cell Biochem 100:794–807

    Article  CAS  PubMed  Google Scholar 

  34. Jorgensen NR, Geist ST, Civitelli R, Steinberg TH (1997) ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J Cell Biol 139:497–506

    Article  CAS  PubMed  Google Scholar 

  35. Chen NX, Ryder KD, Pavalko FM, Turner CH, Burr DB, Qiu J, Duncan RL (2000) Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol Cell Physiol 278:C989–C997

    CAS  PubMed  Google Scholar 

  36. Reilly GC, Haut TR, Yellowley CE, Donahue HJ, Jacobs CR (2003) Fluid flow induced PGE2 release by bone cells is reduced by glycocalyx degradation whereas calcium signals are not. Biorheology 40:591–603

    CAS  PubMed  Google Scholar 

  37. Saunders MM, You J, Zhou Z, Li Z, Yellowley CE, Kunze EL, Jacobs CR, Donahue HJ (2003) Fluid flow-induced prostaglandin E1 response of osteoblastic ROS 17/2.8 cells is gap junction-mediated and independent of cytosolic calcium. Bone 32:350–356

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Jacobs.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litzenberger, J.B., Kim, JB., Tummala, P. et al. β1 Integrins Mediate Mechanosensitive Signaling Pathways in Osteocytes. Calcif Tissue Int 86, 325–332 (2010). https://doi.org/10.1007/s00223-010-9343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9343-6

Keywords

Navigation