Skip to main content

Advertisement

Log in

Role of cytokines in postmenopausal bone loss

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

It is increasingly recognized that changes in cytokine activity are involved in the pathophysiology of postmenopausal bone loss in many ways. Estrogen may affect skeletal cytokine activity by diverse mechanisms such as direct interference with cytokine gene transcription, regulation of major signaling molecules, changes in lymphocyte function, and central effects on the hypothalamic-pituitary-adrenal axis. This article summarizes our current knowledge of these interactions and discusses the possible implications with respect to the prevention and treatment of postmenopausal osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Riggs BL, Khosla S, Melton LJ 3rd: Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002 23:279–302.

    Article  PubMed  CAS  Google Scholar 

  2. Cummings SR, Browner WS, Bauer D, et al.: Endogenous hormones and the risk of hip and vertebral fractures among older women. N Engl J Med 1998, 339:733–738.

    Article  PubMed  CAS  Google Scholar 

  3. Heshmati HM, Khosla S, Robins SP, et al.: Endogenous residual estrogen levels determine bone resorption even in late postmenopausal women. J Bone Miner Res 2002, 17:172–178.

    Article  PubMed  CAS  Google Scholar 

  4. Manolagas SC, Jilka RL: Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995, 332:305–311.

    Article  PubMed  CAS  Google Scholar 

  5. Pacifici R: Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 1996, 11:1043–1051.

    Article  PubMed  CAS  Google Scholar 

  6. Spelsberg TC, Subramaniam M, Riggs BL, Khosla S: The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Mol Endocrinol 1999, 13:819–828.

    Article  PubMed  CAS  Google Scholar 

  7. Pfeilschifter J, Köditz R, Pfohl M, Schatz H: Changes in proinflammatory cytokine activity after menopause. Endocr Rev 2002, 23:90–119.

    Article  PubMed  CAS  Google Scholar 

  8. Khosla S: Minireview: the OPG/RANKL/RANK system. Endocrinology 2001, 142:5050–5055.

    Article  PubMed  CAS  Google Scholar 

  9. Pacifici R, Brown C, Puscheck E, et al.: Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc Natl Acad Sci U S A 1991, 88:5134–5138.

    Article  PubMed  CAS  Google Scholar 

  10. An J, Ribeiro RCJ, Webb P, et al.: Estradiol repression of tumor necrosis factor-α transcription requires estrogen receptor activation function-2 and is enhanced by coactivators. Proc Natl Acad Sci U S A 1999, 96:15161–15166.

    Article  PubMed  CAS  Google Scholar 

  11. Srivastava S, Weitzmann MN, Cenci S, et al.: Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD. J Clin Invest 1999, 104:503–513.

    Article  PubMed  CAS  Google Scholar 

  12. Cenci S, Weitzmann MN, Roggia C, et al.: Estrogen deficiency induces bone loss by enhancing T-cell production of TNFalpha. J Clin Invest 2000, 106:1229–1237.

    PubMed  CAS  Google Scholar 

  13. Roggia C, Gao Y, Cenci S, et al.: Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A 2001, 98:13960–13965. This paper demonstrates the importance of TNF-α-producing T cells for bone loss in ovariectomized mice.

    Article  PubMed  CAS  Google Scholar 

  14. Jilka RL, Hangoc G, Girasole G, et al.: Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 1992, 257:88–91.

    Article  PubMed  CAS  Google Scholar 

  15. Stein B, Yang MX: Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa-B and C/EBPBETA. Mol Cell Biol 1995, 15:4971–4979.

    PubMed  CAS  Google Scholar 

  16. Quaedackers ME, Van Den Brink CE, Wissink S, et al.: 4-hydroxytamoxifen trans-represses nuclear factor-kappaB activity in human osteoblastic U2-OS cells through estrogen receptor (ER) alpha, and not through ER beta. Endocrinology 2001, 142:1156–1166.

    Article  PubMed  CAS  Google Scholar 

  17. Chrousos GP, Torpy DJ, Gold PW: Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med 1998, 129:229–240.

    PubMed  CAS  Google Scholar 

  18. Beishuizen A, Thijs LG: Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J Endotoxin Res 2003, 9:3–24. This recent review gives a comprehensive summary of the relationship between the HPA axis and inflammation. The potential relevance of this pathway with respect to postmenopausal bone loss is just beginning to be explored.

    Article  PubMed  CAS  Google Scholar 

  19. Van’t Hof RJ, Ralston SH: Nitric oxide and bone. Immunology 2001, 103:255–261.

    Article  PubMed  CAS  Google Scholar 

  20. Chambliss KL, Shaul PW: Estrogen modulation of endothelial nitric oxide synthase. Endocrine Rev 2002, 23:665–686.

    Article  CAS  Google Scholar 

  21. Wimalawansa SJ: Nitroglycerin therapy is as efficacious as standard estrogen replacement therapy (premarin) in prevention of oophorectomy-induced bone loss: a human pilot clinical study. J Bone Miner Res 2000, 15:2240–2244.

    Article  PubMed  CAS  Google Scholar 

  22. Cuzzocrea S, Mazzon E, Dugo L, et al.: Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 2003, 144:1098–1107. This paper convincingly demonstrates an essential role of iNOS in the pathogenesis of cytokine increases and bone loss in ovariectomized mice.

    Article  PubMed  CAS  Google Scholar 

  23. Hofbauer LC, Khosla S, Dunstan CR, et al.: Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999, 140:4367–4370.

    Article  PubMed  CAS  Google Scholar 

  24. Oursler MJ, Cortese C, Keeting PE, et al.: Modulation of transforming growth factor-² production in normal human osteoblast-like cells by 17²-estradiol and parathyroid hormone. Endocrinology 1991, 129:3313–3333.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou S, Turgeman G, Harris SE, et al.: Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Mol Endocrinol 2003, 17:56–66.

    Article  PubMed  CAS  Google Scholar 

  26. Yang NN, Bryant HU, Hardikar S, et al.: Estrogen and raloxifene stimulate transforming growth factor-beta 3 gene expression in rat bone: a potential mechanism for estrogen- or raloxifene-mediated bone maintenance. Endocrinology 1996, 137:2075–2084.

    Article  PubMed  CAS  Google Scholar 

  27. Weitzmann MN, Roggia C, Toraldo G, et al.: Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin Invest 2002, 110:1643–1650. This is one of the most recent papers on the essential role of a particular cytokine in ovariectomy-induced bone loss.

    Article  PubMed  CAS  Google Scholar 

  28. Lindberg MK, Movérare S, Eriksson A-L, et al.: Identification of estrogen-regulated genes of potential importance for the regulation of trabecular bone density. J Bone Miner Res 2002, 17:2183–2195. This paper gives an array-based analysis of changes in gene expression in mouse bone tissue with ovariectomy. It also gives an impression of the multitude of components in the cytokine network whose expression is altered with estrogen deficiency.

    Article  PubMed  CAS  Google Scholar 

  29. Scheidt-Nave C, Bismar H, Leidig-Bruckner G, et al.: Serum interleukin-6 is a major predictor of bone loss in women specific to the first decade past menopause. J Clin Endocrinol Metab 2001, 86:2032–2042. This paper provides evidence from an epidemiologic study that circulating IL-6 may be a major predictor of early postmenopausal bone loss.

    Article  PubMed  CAS  Google Scholar 

  30. Masiukiewicz US, Mitnick M, Grey AB, Insogna KL: Estrogen modulates parathyroid hormone-induced interleukin-6 production in vivo and in vitro. Endocrinology 2000, 141:2526–2531.

    Article  PubMed  CAS  Google Scholar 

  31. Masiukiewicz US, Mitnick M, Gulanski BI, Insogna KL: Evidence that the IL-6/IL-6 soluble receptor cytokine system plays a role in the increased skeletal sensitivity to PTH in estrogen-deficient women. J Clin Endocrinol Metab 2002, 87:2892–2898. Infusion of PTH caused an exaggerated increase in circulating concentrations of IL-6 and sIL-6r in estrogen-deficient postmenopausal women, compared with estrogen-replete women, suggesting that PTH may be an important determinant of IL-6 activity after menopause.

    Article  PubMed  CAS  Google Scholar 

  32. Ralston SH: Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 2002, 87:2460–2466.

    Article  PubMed  CAS  Google Scholar 

  33. Writing Group for the Women’s Health Initiative Investigators: Risks and benefits of estrogen plus progestin in healthy postmenopausal women. JAMA 2002, 288:321–333. The results of this landslide study have tremendously changed our perception on the risks and benefits of hormone therapy in postmenopausal women.

    Article  Google Scholar 

  34. Pacifici R, Vannice JL, Rifas L, Kimble RB: Monocytic secretion of interleukin-1 receptor antagonist in normal and osteoporotic woen: effects of menopause and estrogen/progesterone therapy. J Clin Endocrinol Metab 1993, 77:1135–1141.

    Article  PubMed  CAS  Google Scholar 

  35. Bismar H, Diel I, Ziegler R, Pfeilschifter J: Increased cytokine secretion by human bone marrow cells after menopause or discontinuation of estrogen replacement. J Clin Endocrinol Metab 1995, 80:3351–3355.

    Article  PubMed  CAS  Google Scholar 

  36. Seeman E: Pathogenesis of bone fragility in women and men. Lancet 2002, 359:1841–1850.

    Article  PubMed  Google Scholar 

  37. Schneider DL, Barrett-Connor EL, Morton DJ: Timing of postmenopausal estrogen for optimal bone mineral density. JAMA 1997, 277:543–547.

    Article  PubMed  CAS  Google Scholar 

  38. Demis E, Roux C, Breban M, Dougados M: Infliximab in spondylarthropathy-influence on bone density. Clin Exp Rheumatol 2002, 28(Suppl:20):S185–186.

    Google Scholar 

  39. Hayashi M, Rho MC, Enomoto A, et al.: Suppression of bone resorption by madindoline A, a novel nonpeptide antagonist to gp130. Proc Natl Acad Sci U S A 2002, 99:14728–14733.

    Article  PubMed  CAS  Google Scholar 

  40. Blake GJ, Ridker PM: Inflammatory bio-markers and cardiovascular risk prediction. J Intern Med 2002, 252:283–294.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeilschifter, J. Role of cytokines in postmenopausal bone loss. Curr Osteoporos Rep 1, 53–58 (2003). https://doi.org/10.1007/s11914-003-0009-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-003-0009-4

Keywords

Navigation