Skip to main content

Advertisement

Log in

Osteocytes and Estrogen Deficiency

  • Osteocytes (J Delgado-Calle and J Klein-Nulend, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Postmenopausal osteoporosis reduces circulating estrogen levels, which leads to osteoclast resorption, bone loss, and fracture. This review addresses emerging evidence that osteoporosis is not simply a disease of bone loss but that mechanosensitive osteocytes that regulate both osteoclasts and osteoblasts are also impacted by estrogen deficiency.

Recent Findings

At the onset of estrogen deficiency, the osteocyte mechanical environment is altered, which coincides with temporal changes in bone tissue composition. The osteocyte microenvironment is also altered, apoptosis is more prevalent, and hypermineralization occurs. The mechanobiological responses of osteocytes are impaired under estrogen deficiency, which exacerbates osteocyte paracrine regulation of osteoclasts.

Summary

Recent research reveals changes in osteocytes during estrogen deficiency that may play a critical role in the etiology of the disease. A paradigm change for osteoporosis therapy requires an advanced understanding of such changes to establish the efficacy of osteocyte-targeted therapies to inhibit resorption and secondary mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wang Y, McNamara LM, Schaffler MB, Weinbaum S. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci U S A. 2007;104(40):15941–6. https://doi.org/10.1073/pnas.0707246104.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang L, Wang Y, Han Y, Henderson SC, Majeska RJ, Weinbaum S, Schaffler MB. In situ measurement of solute transport in the bone lacunar-canalicular system. Proc Natl Acad Sci U S A. 2005;102(33):11911–6. https://doi.org/10.1073/pnas.0505193102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Knothe Tate ML. “Whither flows the fluid in bone?” An osteocyte’s perspective. J Biomech. 2003;36(10):1409–24. https://doi.org/10.1016/S0021-9290(03)00123-4.

    Article  PubMed  Google Scholar 

  4. Vaughan TJ, Mullen CA, Verbruggen SW, McNamara LM. Bone cell mechanosensation of fluid flow stimulation: A fluid-structure interaction model characterising the role integrin attachments and primary cilia. Biomech Model Mechanobiol. 2015;14(4):703–18. https://doi.org/10.1007/s10237-014-0631-3.

    Article  CAS  PubMed  Google Scholar 

  5. Verbruggen SW, Vaughan TJ, McNamara LM. Fluid flow in the osteocyte mechanical environment: A fluid-structure interaction approach. Biomech Model Mechanobiol. 2014;13(1):85–97. https://doi.org/10.1007/s10237-013-0487-y.

    Article  PubMed  Google Scholar 

  6. Verbruggen SW, Vaughan TJ, McNamara LM. Strain amplification in bone mechanobiology: A computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface. 2012;9(75):2735–44. https://doi.org/10.1098/rsif.2012.0286.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater. 2012;23:13–27. https://doi.org/10.22203/ecm.v023a02.

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Rose E, Frances D, Sun Y, You L. Effect of oscillating fluid flow stimulation on osteocyte mRNA expression. J Biomech. 2012;45:247–51.

    Article  Google Scholar 

  9. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A. 2007;104(33):13325–30. https://doi.org/10.1073/pnas.0700636104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee KL, Hoey DA, Spasic M, Tang T, Hammond HK, Jacobs CR. Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo. FASEB J. 2014;28(3):1157–65. https://doi.org/10.1096/fj.13-240432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoey DA, Kelly DJ, Jacobs CR. A role for the primary cilium in paracrine signaling between mechanically stimulated osteocytes and mesenchymal stem cells. Biochem Biophys Res Commun. 2011;412(1):182–7. https://doi.org/10.1016/j.bbrc.2011.07.072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geoghegan IP, McNamara LM, Hoey DA. Estrogen withdrawal alters cytoskeletal and primary ciliary dynamics resulting in increased Hedgehog and osteoclastogenic paracrine signalling in osteocytes. Sci Rep. 2021;11(1):9272. https://doi.org/10.1038/s41598-021-88633-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geoghegan IP, Hoey DA, McNamara LM. Estrogen deficiency impairs integrin alphavbeta3-mediated mechanosensation by osteocytes and alters osteoclastogenic paracrine signalling. Sci Rep. 2019;9(1):4654. https://doi.org/10.1038/s41598-019-41095-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deepak V, Kayastha P, McNamara LM. Estrogen deficiency attenuates fluid flow-induced [Ca2+]i oscillations and mechanoresponsiveness of MLO-Y4 osteocytes. FASEB J. 2017;31:3027–39. https://doi.org/10.1096/fj.201601280R.

    Article  CAS  PubMed  Google Scholar 

  15. Allison H, Holdsworth G, McNamara LM. Scl-Ab reverts pro-osteoclastogenic signalling and resorption in estrogen deficient osteocytes. BMC Mol Cell Biol. 2020;21(1):78. https://doi.org/10.1186/s12860-020-00322-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Franz-Odendaal TA, Hall BK, Witten PE. Buried alive: How osteoblasts become osteocytes. Dev Dyn. 2006;235(1):176–90. https://doi.org/10.1002/dvdy.20603.

    Article  CAS  PubMed  Google Scholar 

  17. Schaffler MB, Kennedy OD. Osteocyte signaling in bone. Curr Osteoporos Rep. 2012;10(2):118–25. https://doi.org/10.1007/s11914-012-0105-4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mullen CA, Haugh MG, Schaffler MB, Majeska RJ, McNamara LM. Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation. J Mech Behav Biomed Mater. 2013;28:183–94. https://doi.org/10.1016/j.jmbbm.2013.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dole NS, Mazur CM, Acevedo C, Lopez JP, Monteiro DA, Fowler TW, Gludovatz B, Walsh F, Regan JN, Messina S, Evans DS, Lang TF, Zhang B, Ritchie RO, Mohammad KS, Alliston T. Osteocyte-intrinsic TGF-beta signaling regulates bone quality through perilacunar/canalicular remodeling. Cell Rep. 2017;21(9):2585–96. https://doi.org/10.1016/j.celrep.2017.10.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bonewald L. Osteocyte remodeling of their perilacunar/canalicular matrix: Hormonal/mechanical regulation. Bone. 2010;46:S11-S. https://doi.org/10.1016/j.bone.2010.01.010.

    Article  Google Scholar 

  21. Milovanovic P, Zimmermann EA, Vom Scheidt A, Hoffmann B, Sarau G, Yorgan T, et al. The formation of calcified nanospherites during micropetrosis represents a unique mineralization mechanism in aged human bone. Small. 2017;13(3):10.1002/smll.201602215.

    Article  Google Scholar 

  22. Frost HM. Micropetrosis. J Bone Joint Surgery-Ame Vol. 1960;42(1):144–50. https://doi.org/10.2106/00004623-196042010-00012.

    Article  Google Scholar 

  23. Nicolella DP, Moravits DE, Gale AM, Bonewald LF, Lankford J. Osteocyte lacunae tissue strain in cortical bone. J Biomech. 2006;39(9):1735–43. https://doi.org/10.1016/j.jbiomech.2005.04.032.

    Article  PubMed  Google Scholar 

  24. Verbruggen SW, Mc Garrigle MJ, Haugh MG, Voisin MC, McNamara LM. Altered mechanical environment of bone cells in an animal model of short- and long-term osteoporosis. Biophys J. 2015;108(7):1587–98. https://doi.org/10.1016/j.bpj.2015.02.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Knothe Tate ML, Knothe U, Niederer P. Experimental elucidation of mechanical load-induced fluid flow and its potential role in bone metabolism and functional adaptation. Am J Med Sci. 1998;316(3):189–95.

    CAS  PubMed  Google Scholar 

  26. Knothe Tate ML, Niederer P, Knothe U. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone. 1998;22(2):107–17. https://doi.org/10.1016/s8756-3282(97)00234-2.

    Article  CAS  PubMed  Google Scholar 

  27. Price C, Zhou X, Li W, Wang L. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: Direct evidence for load-induced fluid flow. J Bone Miner Res. 2011;26(2):277–85. https://doi.org/10.1002/jbmr.211.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, McNamara LM, Schaffler MB, Weinbaum S. Strain amplification and integrin based signaling in osteocytes. J Musculoskelet Neuronal Interact. 2008;8(4):332–4.

    CAS  PubMed  Google Scholar 

  29. Han Y, Cowin SC, Schaffler MB, Weinbaum S. Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci U S A. 2004;101(47):16689–94. https://doi.org/10.1073/pnas.0407429101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Verbruggen SW, Vaughan TJ, McNamara LM. Mechanisms of osteocyte stimulation in osteoporosis. J Mech Behav Biomed Mater. 2016;62:158–68. https://doi.org/10.1016/j.jmbbm.2016.05.004.

    Article  CAS  PubMed  Google Scholar 

  31. Vaughan TJ, Verbruggen SW, McNamara LM. Are all osteocytes equal? Multiscale modelling of cortical bone to characterise the mechanical stimulation of osteocytes. Int J numer Method Biomed Eng. 2013;29(12):1361–72. https://doi.org/10.1002/cnm.2578.

    Article  PubMed  Google Scholar 

  32. van Tol AF, Schemenz V, Wagermaier W, Roschger A, Razi H, Vitienes I, Fratzl P, Willie BM, Weinkamer R. The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture. Proc Natl Acad Sci U S A. 2020;117(51):32251–9. https://doi.org/10.1073/pnas.2011504117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dallas SL, Prideaux M, Bonewald LF. The osteocyte: An endocrine cell ... and more. Endocr Rev. 2013;34(5):658–90. https://doi.org/10.1210/er.2012-1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo D, Keightley A, Guthrie J, Veno PA, Harris SE, Bonewald LF. Identification of osteocyte-selective proteins. Proteomics. 2010;10(20):3688–98. https://doi.org/10.1002/pmic.201000306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16. https://doi.org/10.1038/s41413-018-0019-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: Master orchestrators of bone. Calcif Tissue Int. 2014;94(1):5–24. https://doi.org/10.1007/s00223-013-9790-y.

    Article  CAS  PubMed  Google Scholar 

  37. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38. https://doi.org/10.1002/jbmr.320.

    Article  CAS  PubMed  Google Scholar 

  38. Knothe Tate ML, Adamson JR, Tami AE, Bauer TW. The osteocyte. Int J Biochem Cell Biol. 2004;36(1):1–8. https://doi.org/10.1016/s1357-2725(03)00241-3.

    Article  CAS  PubMed  Google Scholar 

  39. Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54(2):182–90. https://doi.org/10.1016/j.bone.2012.10.013.

    Article  CAS  PubMed  Google Scholar 

  40. Ishihara Y, Sugawara Y, Kamioka H, Kawanabe N, Hayano S, Balam TA, Naruse K, Yamashiro T. Ex vivo real-time observation of Ca 2+ signaling in living bone in response to shear stress applied on the bone surface. Bone. 2013;53(1):204–15.

    Article  CAS  Google Scholar 

  41. Ishihara Y, Sugawara Y, Kamioka H, Kawanabe N, Kurosaka H, Naruse K, Yamashiro T. In situ imaging of the autonomous intracellular Ca 2+ oscillations of osteoblasts and osteocytes in bone. Bone. 2012;50(4):842–52.

    Article  CAS  Google Scholar 

  42. Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, DeSimone D, Bonewald LF, Lafer EM, Sprague E, Schwartz MA, Jiang JX. Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci U S A. 2012;109(9):3359–64. https://doi.org/10.1073/pnas.1115967109.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Litzenberger JB, Kim JB, Tummala P, Jacobs CR. Beta1 integrins mediate mechanosensitive signaling pathways in osteocytes. Calcif Tissue Int. 2010;86(4):325–32. https://doi.org/10.1007/s00223-010-9343-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miyauchi A, Gotoh M, Kamioka H, Notoya K, Sekiya H, Takagi Y, Yoshimoto Y, Ishikawa H, Chihara K, Takano-Yamamoto T, Fujita T, Mikuni-Takagaki Y. AlphaVbeta3 integrin ligands enhance volume-sensitive calcium influx in mechanically stretched osteocytes. J Bone Miner Metab. 2006;24(6):498–504. https://doi.org/10.1007/s00774-006-0716-x.

    Article  CAS  PubMed  Google Scholar 

  45. Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, et al. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 1995;9(5):441–5. https://doi.org/10.1096/fasebj.9.5.7896017.

    Article  CAS  PubMed  Google Scholar 

  46. Ajubi NE, Klein-Nulend J, Nijweide PJ, Vrijheid-Lammers T, Alblas MJ, Burger EH. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes--a cytoskeleton-dependent process. Biochem Biophys Res Commun. 1996;225(1):62–8. https://doi.org/10.1006/bbrc.1996.1131.

    Article  CAS  PubMed  Google Scholar 

  47. Santos A, Bakker AD, Zandieh-Doulabi B, Semeins CM, Klein-Nulend J. Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. J Orthop Res. 2009;27:1280–7. https://doi.org/10.1002/jor.20888.

    Article  CAS  PubMed  Google Scholar 

  48. Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone. 2017;96:29–37. https://doi.org/10.1016/j.bone.2016.10.007.

    Article  CAS  PubMed  Google Scholar 

  49. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One. 2011;6(10):e25900. https://doi.org/10.1371/journal.pone.0025900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Poole KES, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005;19(10):1842-+. https://doi.org/10.1096/fj.05-4221fje.

    Article  CAS  PubMed  Google Scholar 

  51. Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH, Weber PB, Feng JQ, Bonewald LF, Kneissel M. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010;30(12):3071–85. https://doi.org/10.1128/Mcb.01428-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75. https://doi.org/10.1074/jbc.M705092200.

    Article  CAS  PubMed  Google Scholar 

  53. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4. https://doi.org/10.1038/nm.2452.

    Article  CAS  PubMed  Google Scholar 

  54. Goldring SR. The osteocyte: Key player in regulating bone turnover. RMD Open. 2015;1(Suppl 1):1–4. https://doi.org/10.1136/rmdopen-2015-000049.

    Article  Google Scholar 

  55. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235–41. https://doi.org/10.1038/nm.2448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tu XL, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D, Stolina M, Turner CH, Robling AG, Plotkin LI, Bellido T. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012;50(1):209–17. https://doi.org/10.1016/j.bone.2011.10.025.

    Article  CAS  PubMed  Google Scholar 

  57. You L, Temiyasathit S, Lee P, Hyun C, Tummala P, Yao W, et al. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone. 2008;42:172–9. https://doi.org/10.1016/j.bone.2007.09.047.

    Article  CAS  PubMed  Google Scholar 

  58. Kulkarni RN, Bakker AD, Everts V, Klein-Nulend J. Inhibition of osteoclastogenesis by mechanically loaded osteocytes: involvement of MEPE. Calcif Tissue Int. 2010;87(5):461–8. https://doi.org/10.1007/s00223-010-9407-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kogawa M, Khalid KA, Wijenayaka AR, Ormsby RT, Evdokiou A, Anderson PH, Findlay DM, Atkins GJ. Recombinant sclerostin antagonizes effects of ex vivo mechanical loading in trabecular bone and increases osteocyte lacunar size. Am J Phys Cell Phys. 2018;314(1):C53–61. https://doi.org/10.1152/ajpcell.00175.2017.

    Article  CAS  Google Scholar 

  60. Moustafa A, Sugiyama T, Prasad J, Zaman G, Gross TS, Lanyon LE, Price JS. Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int. 2012;23(4):1225–34. https://doi.org/10.1007/s00198-011-1656-4.

    Article  CAS  PubMed  Google Scholar 

  61. Papanicolaou SE, Phipps RJ, Fyhrie DP, Genetos DC. Modulation of sclerostin expression by mechanical loading and bone morphogenetic proteins in osteogenic cells. Biorheology. 2009;46(5):389–99. https://doi.org/10.3233/BIR-2009-0550.

    Article  CAS  PubMed  Google Scholar 

  62. Thompson WR, Uzer G, Brobst KE, Xie Z, Sen B, Yen SS, Styner M, Rubin J. Osteocyte specific responses to soluble and mechanical stimuli in a stem cell derived culture model. Sci Rep. 2015;5:11049. https://doi.org/10.1038/srep11049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hemmatian H, Jalali R, Semeins CM, Hogervorst JMA, van Lenthe GH, Klein-Nulend J, Bakker AD. Mechanical loading differentially affects osteocytes in fibulae from lactating mice compared to osteocytes in virgin mice: Possible role for lacuna size. Calcif Tissue Int. 2018;103(6):675–85. https://doi.org/10.1007/s00223-018-0463-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Spatz JM, Wein MN, Gooi JH, Qu Y, Garr JL, Liu S, Barry KJ, Uda Y, Lai F, Dedic C, Balcells-Camps M, Kronenberg HM, Babij P, Pajevic PD. The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J Biol Chem. 2015;290(27):16744–58. https://doi.org/10.1074/jbc.M114.628313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Burra S, Nicolella DP, Francis WL, Freitas CJ, Mueschke NJ, Poole K, Jiang JX. Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc Natl Acad Sci U S A. 2010;107(31):13648–53. https://doi.org/10.1073/pnas.1009382107.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang B, Lai X, Price C, Thompson WR, Li W, Quabili TR, Tseng WJ, Liu XS, Zhang H, Pan J, Kirn-Safran CB, Farach-Carson MC, Wang L. Perlecan-containing pericellular matrix regulates solute transport and mechanosensing within the osteocyte lacunar-canalicular system. J Bone Miner Res. 2014;29(4):878–91. https://doi.org/10.1002/jbmr.2105.

    Article  CAS  PubMed  Google Scholar 

  67. Cherian PP, Cheng B, Gu S, Sprague E, Bonewald LF, Jiang JX. Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J Biol Chem. 2003;278(44):43146–56. https://doi.org/10.1074/jbc.M302993200.

    Article  CAS  PubMed  Google Scholar 

  68. Maycas M, Ardura JA, de Castro LF, Bravo B, Gortazar AR, Esbrit P. Role of the parathyroid hormone type 1 receptor (PTH1R) as a mechanosensor in osteocyte survival. J Bone Miner Res. 2015;30(7):1231–44. https://doi.org/10.1002/jbmr.2439.

    Article  CAS  PubMed  Google Scholar 

  69. Lyons JS, Joca HC, Law RA, Williams KM, Kerr JP, Shi G, et al. Microtubules tune mechanotransduction through NOX2 and TRPV4 to decrease sclerostin abundance in osteocytes. Sci Signal. 2017;10(506). https://doi.org/10.1126/scisignal.aan5748.

  70. Yu K, Sellman DP, Bahraini A, Hagan ML, Elsherbini A, Vanpelt KT, Marshall PL, Hamrick MW, McNeil A, McNeil PL, McGee-Lawrence ME. Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone. J Orthop Res. 2018;36(2):653–62. https://doi.org/10.1002/jor.23665.

    Article  CAS  PubMed  Google Scholar 

  71. Kwon RY, Temiyasathit S, Tummala P, Quah CC, Jacobs CR. Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J. 2010;24(8):2859–68. https://doi.org/10.1096/fj.09-148007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, Dallas SL, Maser R, Calvet JP, Bonewald L, Quarles LD. Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem. 2006;281(41):30884–95. https://doi.org/10.1074/jbc.M604772200.

    Article  CAS  PubMed  Google Scholar 

  73. Loiselle AE, Jiang JX, Donahue HJ. Gap junction and hemichannel functions in osteocytes. Bone. 2013;54(2):205–12. https://doi.org/10.1016/j.bone.2012.08.132.

    Article  CAS  PubMed  Google Scholar 

  74. Haugh MG, Vaughan TJ, McNamara LM. The role of integrin alpha(V)beta(3) in osteocyte mechanotransduction. J Mech Behav Biomed Mater. 2015;42:67–75. https://doi.org/10.1016/j.jmbbm.2014.11.001.

    Article  CAS  PubMed  Google Scholar 

  75. Hagan ML, Balayan V, McGee-Lawrence ME. Plasma membrane disruption (PMD) formation and repair in mechanosensitive tissues. Bone. 2021;115970:115970. https://doi.org/10.1016/j.bone.2021.115970.

    Article  CAS  Google Scholar 

  76. Gould NR, Torre OM, Leser JM, Stains JP. The cytoskeleton and connected elements in bone cell mechano-transduction. Bone. 2021;115971:115971. https://doi.org/10.1016/j.bone.2021.115971.

    Article  CAS  Google Scholar 

  77. McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB. Attachment of osteocyte cell processes to the bone matrix. Anat Rec (Hoboken). 2009;292(3):355–63. https://doi.org/10.1002/ar.20869.

    Article  CAS  Google Scholar 

  78. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med. 1996;2(10):1132–6.

    Article  CAS  Google Scholar 

  79. Michael H, Harkonen PL, Vaananen HK, Hentunen TA. Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J Bone Miner Res. 2005;20(12):2224–32. https://doi.org/10.1359/JBMR.050803.

    Article  CAS  PubMed  Google Scholar 

  80. Krum SA, Miranda-Carboni GA, Hauschka PV, Carroll JS, Lane TF, Freedman LP, Brown M. Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J. 2008;27(3):535–45. https://doi.org/10.1038/sj.emboj.7601984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marathe N, Rangaswami H, Zhuang S, Boss GR, Pilz RB. Pro-survival effects of 17beta-estradiol on osteocytes are mediated by nitric oxide/cGMP via differential actions of cGMP-dependent protein kinases I and II. J Biol Chem. 2012;287(2):978–88. https://doi.org/10.1074/jbc.M111.294959.

    Article  CAS  PubMed  Google Scholar 

  82. Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem. 2005;280(8):7317–25. https://doi.org/10.1074/jbc.M412817200.

    Article  CAS  PubMed  Google Scholar 

  83. Joshua J, Kalyanaraman H, Marathe N, Pilz RB. Nitric oxide as a mediator of estrogen effects in osteocytes. Vitam Horm. 2014;96:247–63. https://doi.org/10.1016/B978-0-12-800254-4.00010-6.

    Article  CAS  PubMed  Google Scholar 

  84. Jagger CJ, Chow JW, Chambers TJ. Estrogen suppresses activation but enhances formation phase of osteogenic response to mechanical stimulation in rat bone. J Clin Invest. 1996;98(10):2351–7. https://doi.org/10.1172/JCI119047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cheng MZ, Zaman G, Rawlinson SC, Suswillo RF, Lanyon LE. Mechanical loading and sex hormone interactions in organ cultures of rat ulna. J Bone Miner Res. 1996;11(4):502–11. https://doi.org/10.1002/jbmr.5650110411.

    Article  CAS  PubMed  Google Scholar 

  86. Bakker AD, Klein-Nulend J, Tanck E, Albers GH, Lips P, Burger EH. Additive effects of estrogen and mechanical stress on nitric oxide and prostaglandin E2 production by bone cells from osteoporotic donors. Osteoporos Int. 2005;16(8):983–9. https://doi.org/10.1007/s00198-004-1785-0.

    Article  CAS  PubMed  Google Scholar 

  87. Allison H, McNamara LM. Inhibition of osteoclastogenesis by mechanically stimulated osteoblasts is attenuated during estrogen deficiency. Am J Phys Cell Phys. 2019;317(5):C969–C82. https://doi.org/10.1152/ajpcell.00168.2019.

    Article  CAS  Google Scholar 

  88. Jia J, Zhou H, Zeng X, Feng S. Estrogen stimulates osteoprotegerin expression via the suppression of miR-145 expression in MG-63 cells. Mol Med Rep. 2017;15(4):1539–46. https://doi.org/10.3892/mmr.2017.6168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yeh CR, Chiu JJ, Lee CI, Lee PL, Shih YT, Sun JS, Chien S, Cheng CK. Estrogen augments shear stress-induced signaling and gene expression in osteoblast-like cells via estrogen receptor-mediated expression of beta1-integrin. J Bone Miner Res. 2010;25(3):627–39. https://doi.org/10.1359/jbmr.091008.

    Article  CAS  PubMed  Google Scholar 

  90. Zaman G, Jessop HL, Muzylak M, De Souza RL, Pitsillides AA, Price JS, et al. Osteocytes use estrogen receptor alpha to respond to strain but their ERalpha content is regulated by estrogen. J Bone Miner Res. 2006;21(8):1297–306. https://doi.org/10.1359/jbmr.060504.

    Article  CAS  PubMed  Google Scholar 

  91. Ren J, Wang XH, Wang GC, Wu JH. 17 beta Estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like MLO-Y4 cells. Bone. 2013;53(2):587–96. https://doi.org/10.1016/j.bone.2012.12.004.

    Article  CAS  PubMed  Google Scholar 

  92. Rosen CJ. Pathogenesis of osteoporosis. Baillieres Best Pract Res Clin Endocrinol Metab. 2000;14(2):181–93.

    Article  CAS  Google Scholar 

  93. McNamara LM, Ederveen AG, Lyons CG, Price C, Schaffler MB, Weinans H, et al. Strength of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats over the course of ageing. Bone. 2006;39(2):392–400. https://doi.org/10.1016/j.bone.2006.02.070.

    Article  CAS  PubMed  Google Scholar 

  94. Brennan MA, Gleeson JP, Browne M, O'Brien FJ, Thurner PJ, McNamara LM. Site specific increase in heterogeneity of trabecular bone tissue mineral during oestrogen deficiency. Eur Cell Mater. 2011;21:396–406. https://doi.org/10.22203/ecm.v021a30.

    Article  CAS  PubMed  Google Scholar 

  95. Brennan MA, Gleeson JP, O'Brien FJ, McNamara LM. Effects of ageing, prolonged estrogen deficiency and zoledronate on bone tissue mineral distribution. J Mech Behav Biomed Mater. 2014;29:161–70. https://doi.org/10.1016/j.jmbbm.2013.08.029.

    Article  CAS  PubMed  Google Scholar 

  96. Busse B, Hahn M, Soltau M, Zustin J, Püschel K, Duda GN, Amling M. Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: Mineralization, morphology and biomechanics of human single trabeculae. Bone. 2009;45(6):1034–43. https://doi.org/10.1016/j.bone.2009.08.002.

    Article  CAS  PubMed  Google Scholar 

  97. Parle E, Tio S, Behre A, Carey JJ, Murphy CG, O'Brien TF, et al. Bone mineral is more heterogeneously distributed in the femoral heads of osteoporotic and diabetic patients: A pilot study. JBMR Plus. 2019:e10253-e. https://doi.org/10.1002/jbm4.10253.

  98. Bousson V, Bergot C, Wu Y, Jolivet E, Zhou LQ, Laredo JD. Greater tissue mineralization heterogeneity in femoral neck cortex from hip-fractured females than controls. A microradiographic study. Bone. 2011;48(6):1252–9. https://doi.org/10.1016/j.bone.2011.03.673.

    Article  PubMed  Google Scholar 

  99. O'Sullivan LM, Allison H, Parle EE, Schiavi J, McNamara LM. Secondary alterations in bone mineralisation and trabecular thickening occur after long-term estrogen deficiency in ovariectomised rat tibiae, which do not coincide with initial rapid bone loss. Osteoporos Int. 2020;31(3):587–99. https://doi.org/10.1007/s00198-019-05239-5.

    Article  CAS  PubMed  Google Scholar 

  100. Brennan O, Kuliwaba JS, Lee TC, Parkinson IH, Fazzalari NL, McNamara LM, et al. Temporal changes in bone composition, architecture, and strength following estrogen deficiency in osteoporosis. Calcif Tissue Int. 2012;91(6):440–9. https://doi.org/10.1007/s00223-012-9657-7.

    Article  CAS  PubMed  Google Scholar 

  101. Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab. 1997;82(9):3128–35.

    CAS  PubMed  Google Scholar 

  102. Emerton KB, Hu B, Woo AA, Sinofsky A, Hernandez C, Majeska RJ, Jepsen KJ, Schaffler MB. Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. Bone. 2010;46(3):577–83. https://doi.org/10.1016/j.bone.2009.11.006.

    Article  CAS  PubMed  Google Scholar 

  103. Brennan MA, Haugh MG, O'Brien FJ, McNamara LM. Estrogen withdrawal from osteoblasts and osteocytes causes increased mineralization and apoptosis. Horm Metab Res. 2014;46(8):537–45. https://doi.org/10.1055/s-0033-1363265.

    Article  CAS  PubMed  Google Scholar 

  104. Florencio-Silva R, Sasso GRS, Sasso-Cerri E, Simoes MJ, Cerri PS. Effects of estrogen status in osteocyte autophagy and its relation to osteocyte viability in alveolar process of ovariectomized rats. Biomed Pharmacother. 2018;98:406–15. https://doi.org/10.1016/j.biopha.2017.12.089.

    Article  CAS  PubMed  Google Scholar 

  105. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5(6):464–75. https://doi.org/10.1016/j.cmet.2007.05.001.

    Article  CAS  PubMed  Google Scholar 

  106. Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Puschel K, Djuric M, et al. Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano. 2013;7(9):7542–51. https://doi.org/10.1021/nn401360u.

    Article  CAS  PubMed  Google Scholar 

  107. Mullender MG, Vandermeer DD, Huiskes R, Lips P. Osteocyte density changes in aging and osteoporosis. Bone. 1996;18(2):109–13.

    Article  CAS  Google Scholar 

  108. Sharma D, Ciani C, Marin PA, Levy JD, Doty SB, Fritton SP. Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency. Bone. 2012;51(3):488–97. https://doi.org/10.1016/j.bone.2012.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ciani C, Sharma D, Doty SB, Fritton SP. Ovariectomy enhances mechanical load-induced solute transport around osteocytes in rat cancellous bone. Bone. 2014;59:229–34. https://doi.org/10.1016/j.bone.2013.11.026.

    Article  CAS  PubMed  Google Scholar 

  110. Sharma D, Larriera AI, Palacio-Mancheno PE, Gatti V, Fritton JC, Bromage TG, Cardoso L, Doty SB, Fritton SP. The effects of estrogen deficiency on cortical bone microporosity and mineralization. Bone. 2018;110:1–10. https://doi.org/10.1016/j.bone.2018.01.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gatti V, Azoulay EM, Fritton SP. Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone. J Biomech. 2018;66:127–36. https://doi.org/10.1016/j.jbiomech.2017.11.011.

    Article  PubMed  Google Scholar 

  112. Voisin M, McNamara LM. Differential beta 1 and beta 3 integrin expression in bone marrow and cortical bone of estrogen deficient rats. Anat Rec (Hoboken). 2015;298:1548–59. https://doi.org/10.1002/ar.23173.

    Article  CAS  Google Scholar 

  113. Simfia I, Schiavi J, McNamara LM. Alterations in osteocyte mediated osteoclastogenesis during estrogen deficiency and under ROCK-II inhibition: An in vitro study using a novel postmenopausal multicellular niche model. Exp Cell Res. 2020;392(1):112005. https://doi.org/10.1016/j.yexcr.2020.112005.

    Article  CAS  PubMed  Google Scholar 

  114. Naqvi SM, Panadero Perez JA, Kumar V, Verbruggen ASK, McNamara LM. A novel 3D osteoblast and osteocyte model revealing changes in mineralization and pro-osteoclastogenic paracrine signaling during estrogen deficiency. Front Bioeng Biotechnol. 2020;8:601. https://doi.org/10.3389/fbioe.2020.00601.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Randell KM, Honkanen RJ, Kroger H, Saarikoski S. Does hormone-replacement therapy prevent fractures in early postmenopausal women? J Bone Miner Res. 2002;17(3):528–33.

    Article  CAS  Google Scholar 

  116. Recker RR, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J, Chiang AY, Hu L, Krege JH, Sowa H, Mitlak BH, Myers SL. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res. 2015;30(2):216–24. https://doi.org/10.1002/jbmr.2351.

    Article  CAS  PubMed  Google Scholar 

  117. Li X, Niu QT, Warmington KS, Asuncion FJ, Dwyer D, Grisanti M, Han CY, Stolina M, Eschenberg MJ, Kostenuik PJ, Simonet WS, Ominsky MS, Ke HZ. Progressive increases in bone mass and bone strength in an ovariectomized rat model of osteoporosis after 26 weeks of treatment with a sclerostin antibody. Endocrinology. 2014;155(12):4785–97. https://doi.org/10.1210/en.2013-1905.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang DY, Hu MY, Chu T, Lin LJ, Wang JY, Li XD, Ke HZ, Qin YX. Sclerostin antibody prevented progressive bone loss in combined ovariectomized and concurrent functional disuse. Bone. 2016;87:161–8. https://doi.org/10.1016/j.bone.2016.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. McClung MR. Sclerostin antibodies in osteoporosis: latest evidence and therapeutic potential. Ther Adv Musculoskelet Dis. 2017;9(10):263–70. https://doi.org/10.1177/1759720X17726744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Holdsworth G, Roberts SJ, Ke HZ. Novel actions of sclerostin on bone. J Mol Endocrinol. 2019;62(2):R167–R85. https://doi.org/10.1530/JME-18-0176.

    Article  CAS  PubMed  Google Scholar 

  121. Holdsworth G, Greenslade K, Jose J, Stencel Z, Kirby H, Moore A, Ke HZ, Robinson MK. Dampening of the bone formation response following repeat dosing with sclerostin antibody in mice is associated with up-regulation of Wnt antagonists. Bone. 2018;107:93–103. https://doi.org/10.1016/j.bone.2017.11.003.

    Article  CAS  PubMed  Google Scholar 

  122. Ominsky MS, Boyce RW, Li X, Ke HZ. Effects of sclerostin antibodies in animal models of osteoporosis. Bone. 2017;96:63–75. https://doi.org/10.1016/j.bone.2016.10.019.

    Article  CAS  PubMed  Google Scholar 

  123. Chavassieux P, Chapurlat R, Portero-Muzy N, Garcia P, Brown JP, Horlait S, et al. Effects of romosozumab in postmenopausal women with osteoporosis after 2 and 12 months: Bone histomorphometry substudy. J Bone Miner Res. 2017;32:S25-S.

    Google Scholar 

  124. Ren Y, Han X, Ho SP, Harris SE, Cao Z, Economides AN, Qin C, Ke H, Liu M, Feng JQ. Removal of SOST or blocking its product sclerostin rescues defects in the periodontitis mouse model. FASEB J. 2015;29(7):2702–11. https://doi.org/10.1096/fj.14-265496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Qin W, Li X, Peng Y, Harlow LM, Ren Y, Wu Y, Li J, Qin Y, Sun J, Zheng S, Brown T, Feng JQ, Ke HZ, Bauman WA, Cardozo CC. Sclerostin antibody preserves the morphology and structure of osteocytes and blocks the severe skeletal deterioration after motor-complete spinal cord injury in rats. J Bone Miner Res. 2015;30(11):1994–2004. https://doi.org/10.1002/jbmr.2549.

    Article  CAS  PubMed  Google Scholar 

  126. Achiou Z, Toumi H, Touvier J, Boudenot A, Uzbekov R, Ominsky MS, Pallu S, Lespessailles E. Sclerostin antibody and interval treadmill training effects in a rodent model of glucocorticoid-induced osteopenia. Bone. 2015;81:691–701. https://doi.org/10.1016/j.bone.2015.09.010.

    Article  CAS  PubMed  Google Scholar 

  127. Tu X, Delgado-Calle J, Condon KW, Maycas M, Zhang H, Carlesso N, Taketo MM, Burr DB, Plotkin LI, Bellido T. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci. 2015;112(5):E478–E86. https://doi.org/10.1073/pnas.1409857112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nioi P, Taylor S, Hu R, Pacheco E, He YDD, Hamadeh H, et al. Transcriptional profiling of laser capture microdissected subpopulations of the osteoblast lineage provides insight into the early response to sclerostin antibody in rats. J Bone Miner Res. 2015;30(8):1457–67. https://doi.org/10.1002/jbmr.2482.

    Article  CAS  PubMed  Google Scholar 

  129. Ominsky MS, Brown DL, Van G, Cordover D, Pacheco E, Frazier E, et al. Differential temporal effects of sclerostin antibody and parathyroid hormone on cancellous and cortical bone and quantitative differences in effects on the osteoblast lineage in young intact rats. Bone. 2015;81:380–91. https://doi.org/10.1016/j.bone.2015.08.007.

    Article  CAS  PubMed  Google Scholar 

  130. Boyce RW, Niu QT, Ominsky MS. Kinetic reconstruction reveals time-dependent effects of romosozumab on bone formation and osteoblast function in vertebral cancellous and cortical bone in cynomolgus monkeys. Bone. 2017;101:77–87. https://doi.org/10.1016/j.bone.2017.04.005.

    Article  CAS  PubMed  Google Scholar 

  131. Taylor S, Ominsky MS, Hu R, Pacheco E, He YD, Brown DL, Aguirre JI, Wronski TJ, Buntich S, Afshari CA, Pyrah I, Nioi P, Boyce RW. Time-dependent cellular and transcriptional changes in the osteoblast lineage associated with sclerostin antibody treatment in ovariectomized rats. Bone. 2016;84:148–59. https://doi.org/10.1016/j.bone.2015.12.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This publication has emanated from research conducted with the financial support of funding from European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreements: No 258992 and No 863795), Science Foundation Ireland (SFI) Grant co-funded under the European Regional Development fund (14/IA/2884), and the Irish Research Council (IRC) under the Laureate Consolidator Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laoise M. McNamara.

Ethics declarations

Conflict of Interest

Laoise M. McNamara declares no conflict of interest

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Osteocytes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNamara, L.M. Osteocytes and Estrogen Deficiency. Curr Osteoporos Rep 19, 592–603 (2021). https://doi.org/10.1007/s11914-021-00702-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00702-x

Keywords

Navigation