Skip to main content

Advertisement

Log in

Current Clinical Trial Landscape of OX40 Agonists

  • Immuno-oncology (RM Bukowski and JH Finke, Section Editors)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Despite the efficacy of immune checkpoint blockade (ICB) immunotherapy, most cancer patients still develop progressive disease necessitating additional treatment options. One approach is ligation of the OX40 (CD134) costimulatory receptor which promotes T cell activation, effector function, and the generation of long-lived memory cells.

Recent Findings

Numerous preclinical studies have demonstrated that OX40 agonists alone or in combination with ICB (e.g., anti-PD-1, anti-PD-L1, and anti-CTLA-4) augment anti-tumor immunity.

Summary

In this review, we discuss the impact of OX40 agonists on T cell function and the therapeutic potential of OX40 agonists alone or in conjunction with ICB for patients with advanced malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1(5):405–13.

    Article  CAS  PubMed  Google Scholar 

  2. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25(21):9543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sledzinska A, Menger L, Bergerhoff K, Peggs KS, Quezada SA. Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol. 2015;9(10):1936–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jago CB, Yates J, Camara NO, Lechler RI, Lombardi G. Differential expression of CTLA-4 among T cell subsets. Clin Exp Immunol. 2004;136(3):463–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Montler R, Bell RB, Thalhofer C, Leidner R, Feng Z, Fox BA, et al. OX40, PD-1 and CTLA-4 are selectively expressed on tumor-infiltrating T cells in head and neck cancer. Clin Transl Immunol. 2016;5(4):e70.

    Article  CAS  Google Scholar 

  6. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58–67.

    Article  CAS  PubMed  Google Scholar 

  7. Schwartz JC, Zhang X, Fedorov AA, Nathenson SG, Almo SC. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature. 2001;410(6828):604–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B. 2020;10(3):414–33, This review summarizes the therapeutic application of aOX40 in autoimmune diseases and cancer immunotherapy. It also explores the combination therapy of OX40 with other therapeutic alternatives such as aPD-1, and a CTLA-4, chemotherapy, cytokines etc..

    Article  CAS  PubMed  Google Scholar 

  12. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front Oncol. 2018;8:86.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, et al. Association of Pembrolizumab With Tumor Response and Survival Among Patients With Advanced Melanoma. JAMA. 2016;315(15):1600–9.

    Article  CAS  PubMed  Google Scholar 

  14. Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, et al. PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma. N Engl J Med. 2016;374(26):2542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    Article  CAS  PubMed  Google Scholar 

  16. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N Engl J Med. 2016;375(9):819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother. 2005;54(4):307–14.

    Article  CAS  PubMed  Google Scholar 

  18. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. • Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18(3):153–67. This review summarizes the diverse roles of PD-1 pathway in modulating immune response and the impact of PD-1 inhibitors in cancer immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  20. Emens LA, Ascierto PA, Darcy PK, Demaria S, Eggermont AMM, Redmond WL, et al. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer. 2017;81:116–29.

    Article  CAS  PubMed  Google Scholar 

  21. Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, et al. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front Immunol. 2019;10:168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Redmond WL, Ruby CE, Weinberg AD. The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit Rev Immunol. 2009;29(3):187–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Evans DE, Prell RA, Thalhofer CJ, Hurwitz AA, Weinberg AD. Engagement of OX40 enhances antigen-specific CD4(+) T cell mobilization/memory development and humoral immunity: comparison of alphaOX-40 with alphaCTLA-4. J Immunol. 2001;167(12):6804–11.

    Article  CAS  PubMed  Google Scholar 

  24. Gough MJ, Ruby CE, Redmond WL, Dhungel B, Brown A, Weinberg AD. OX40 agonist therapy enhances CD8 infiltration and decreases immune suppression in the tumor. Can Res. 2008;68(13):5206–15.

    Article  CAS  Google Scholar 

  25. Kitamura N, Murata S, Ueki T, Mekata E, Reilly RT, Jaffee EM, et al. OX40 costimulation can abrogate Foxp3+ regulatory T cell-mediated suppression of antitumor immunity. Int J Cancer. 2009;125(3):630–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weixler B, Cremonesi E, Sorge R, Muraro MG, Delko T, Nebiker CA, et al. OX40 expression enhances the prognostic significance of CD8 positive lymphocyte infiltration in colorectal cancer. Oncotarget. 2015;6(35):37588–99.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Infante JR, Ahlers CM, Hodi FS, Postel-Vinay S, Schellens JHM, Heymach J, et al. ENGAGE-1: A first in human study of the OX40 agonist GSK3174998 alone and in combination with pembrolizumab in patients with advanced solid tumors. J Clin Oncol. 2016;34(15_suppl):TPS3107-TPS.

    Article  Google Scholar 

  28. Redmond WL, Triplett T, Floyd K, Weinberg AD. Dual anti-OX40/IL-2 therapy augments tumor immunotherapy via IL-2R-mediated regulation of OX40 expression. PloS one. 2012;7(4):e34467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Redmond WL, Linch SN, Kasiewicz MJ. Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity. Cancer Immunol Res. 2014;2(2):142–53.

    Article  CAS  PubMed  Google Scholar 

  30. Linch SN, McNamara MJ, Redmond WL. OX40 Agonists and Combination Immunotherapy: Putting the Pedal to the Metal. Front Oncol. 2015;5:34.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Linch SN, Redmond WL. Combined OX40 ligation plus CTLA-4 blockade: More than the sum of its parts. Oncoimmunology. 2014;3:e28245.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Linch SN, Kasiewicz MJ, McNamara MJ, Hilgart-Martiszus IF, Farhad M, Redmond WL. Combination OX40 agonism/CTLA-4 blockade with HER2 vaccination reverses T-cell anergy and promotes survival in tumor-bearing mice. Proc Natl Acad Sci U S A. 2016;113(3):E319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Emerson DA, Rolig AS, Redmond WL. Enhancing the Generation of Eomes(hi) CD8(+) T Cells Augments the Efficacy of OX40- and CTLA-4-Targeted Immunotherapy. Cancer Immunol Res. 2021;9(4):430–40. Showed that increasing the extent of CD8+ T cell-specific Eomes expression via ITK blockade with ibrutinib significantly improved the therapeutic effiacy of combined aOX40 + aCTLA-4 immunotherapy in a preclinical model.

    Article  CAS  PubMed  Google Scholar 

  34. Stuber E, Neurath M, Calderhead D, Fell HP, Strober W. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity. 1995;2(5):507–21.

    Article  CAS  PubMed  Google Scholar 

  35. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL. Cross-talk between activated human NK cells and CD4+ T cells via OX40-OX40 ligand interactions. J Immunol. 2004;173(6):3716–24.

    Article  CAS  PubMed  Google Scholar 

  36. Baumann R, Yousefi S, Simon D, Russmann S, Mueller C, Simon HU. Functional expression of CD134 by neutrophils. Eur J Immunol. 2004;34(8):2268–75.

    Article  CAS  PubMed  Google Scholar 

  37. Jensen SM, Maston LD, Gough MJ, Ruby CE, Redmond WL, Crittenden M, et al. Signaling through OX40 enhances antitumor immunity. Semin Oncol. 2010;37(5):524–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gramaglia I, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol. 2000;165(6):3043–50.

    Article  CAS  PubMed  Google Scholar 

  39. Maxwell JR, Weinberg A, Prell RA, Vella AT. Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J Immunol. 2000;164(1):107–12.

    Article  CAS  PubMed  Google Scholar 

  40. Gramaglia I, Weinberg AD, Lemon M, Croft M. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol. 1998;161(12):6510–7.

    CAS  PubMed  Google Scholar 

  41. Salek-Ardakani S, Croft M. Regulation of CD4 T cell memory by OX40 (CD134). Vaccine. 2006;24(7):872–83.

    Article  CAS  PubMed  Google Scholar 

  42. Bansal-Pakala P, Jember AG, Croft M. Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nat Med. 2001;7(8):907–12.

    Article  CAS  PubMed  Google Scholar 

  43. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G. Expression and function of OX40 ligand on human dendritic cells. J Immunol. 1997;159(8):3838–48.

    CAS  PubMed  Google Scholar 

  44. Murata K, Ishii N, Takano H, Miura S, Ndhlovu LC, Nose M, et al. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J Exp Med. 2000;191(2):365–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Imura A, Hori T, Imada K, Ishikawa T, Tanaka Y, Maeda M, et al. The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J Exp Med. 1996;183(5):2185–95.

    Article  CAS  PubMed  Google Scholar 

  46. Nakae S, Suto H, Iikura M, Kakurai M, Sedgwick JD, Tsai M, et al. Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol. 2006;176(4):2238–48.

    Article  CAS  PubMed  Google Scholar 

  47. Soroosh P, Ine S, Sugamura K, Ishii N. OX40-OX40 ligand interaction through T cell-T cell contact contributes to CD4 T cell longevity. J Immunol. 2006;176(10):5975–87.

    Article  CAS  PubMed  Google Scholar 

  48. Bulliard Y, Jolicoeur R, Zhang J, Dranoff G, Wilson NS, Brogdon JL. OX40 engagement depletes intratumoral Tregs via activating FcgammaRs, leading to antitumor efficacy. Immunol Cell Biol. 2014;92(6):475–80.

    Article  CAS  PubMed  Google Scholar 

  49. So T, Croft M. Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells. J Immunol. 2007;179(3):1427–30.

    Article  CAS  PubMed  Google Scholar 

  50. Vu MD, Xiao X, Gao W, Degauque N, Chen M, Kroemer A, et al. OX40 costimulation turns off Foxp3+ Tregs. Blood. 2007;110(7):2501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Takeda I, Ine S, Killeen N, Ndhlovu LC, Murata K, Satomi S, et al. Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol. 2004;172(6):3580–9.

    Article  CAS  PubMed  Google Scholar 

  52. So T, Lee SW, Croft M. Immune regulation and control of regulatory T cells by OX40 and 4–1BB. Cytokine Growth Factor Rev. 2008;19(3–4):253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 2013;1(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  54. Ito T, Wang YH, Duramad O, Hanabuchi S, Perng OA, Gilliet M, et al. OX40 ligand shuts down IL-10-producing regulatory T cells. Proc Natl Acad Sci U S A. 2006;103(35):13138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Burocchi A, Pittoni P, Gorzanelli A, Colombo MP, Piconese S. Intratumor OX40 stimulation inhibits IRF1 expression and IL-10 production by Treg cells while enhancing CD40L expression by effector memory T cells. Eur J Immunol. 2011;41(12):3615–26.

    Article  CAS  PubMed  Google Scholar 

  56. Ruby CE, Yates MA, Hirschhorn-Cymerman D, Chlebeck P, Wolchok JD, Houghton AN, et al. Cutting Edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. J Immunol. 2009;183(8):4853–7.

    Article  CAS  PubMed  Google Scholar 

  57. • Polesso F, Sarker M, Weinberg AD, Murray SE, Moran AE. OX40 Agonist Tumor Immunotherapy Does Not Impact Regulatory T Cell Suppressive Function. J Immunol. 2019;203(7):2011–9. Demonstrated that agonist aOX40 therapy does not impair Treg function, but instead increases the proliferation of conventional T cells and Tregs.

    Article  CAS  PubMed  Google Scholar 

  58. Compaan DM, Hymowitz SG. The crystal structure of the costimulatory OX40-OX40L complex. Structure. 2006;14(8):1321–30.

    Article  CAS  PubMed  Google Scholar 

  59. Arch RH, Thompson CB. 4–1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor kappaB. Mol Cell Biol. 1998;18(1):558–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kawamata S, Hori T, Imura A, Takaori-Kondo A, Uchiyama T. Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-kappaB activation. J Biol Chem. 1998;273(10):5808–14.

    Article  CAS  PubMed  Google Scholar 

  61. Prell RA, Evans DE, Thalhofer C, Shi T, Funatake C, Weinberg AD. OX40-mediated memory T cell generation is TNF receptor-associated factor 2 dependent. J Immunol. 2003;171(11):5997–6005.

    Article  CAS  PubMed  Google Scholar 

  62. Song J, So T, Croft M. Activation of NF-kappaB1 by OX40 contributes to antigen-driven T cell expansion and survival. J Immunol. 2008;180(11):7240–8.

    Article  CAS  PubMed  Google Scholar 

  63. Rogers PR, Song J, Gramaglia I, Killeen N, Croft M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity. 2001;15(3):445–55.

    Article  CAS  PubMed  Google Scholar 

  64. So T, Song J, Sugie K, Altman A, Croft M. Signals from OX40 regulate nuclear factor of activated T cells c1 and T cell helper 2 lineage commitment. Proc Natl Acad Sci U S A. 2006;103(10):3740–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K, et al. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res. 2013;73(24):7189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. •• Duhen R, Ballesteros-Merino C, Frye AK, Tran E, Rajamanickam V, Chang SC, et al. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat Commun. 2021;12(1):1047. Highlights the safety and immunological activity of neoadjuvant aOX40 therapy prior to surgical resection in patients with head and neck squamous cell carcinoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. •• Glisson BS, Leidner RS, Ferris RL, Powderly J, Rizvi NA, Keam B, et al. Safety and Clinical Activity of MEDI0562, a Humanized OX40 Agonist Monoclonal Antibody, in Adult Patients with Advanced Solid Tumors. Clin Cancer Res. 2020;26(20):5358–67. This phase I clinical trial showed that an agonist humanized aOX40 mAb was safe, elicited immunomodulatory effects, and led to a partial clinical response in 2 patients.

    Article  CAS  PubMed  Google Scholar 

  68. DNAtrix Announces First Patient Dosed in Clinical Study of DNX-2440, an OX40 Ligand Expressing Immunotherapy, in Colorectal Cancer and Other Cancers with Liver Metastasis [press release]. PR Newswire, Mar 04, 2021.

  69. Messenheimer DJ, Jensen SM, Afentoulis ME, Wegmann KW, Feng Z, Friedman DJ, et al. Timing of PD-1 Blockade Is Critical to Effective Combination Immunotherapy with Anti-OX40. Clin Cancer Res. 2017;23(20):6165–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ma Y, Li J, Wang H, Chiu Y, Kingsley CV, Fry D, et al. Combination of PD-1 Inhibitor and OX40 Agonist Induces Tumor Rejection and Immune Memory in Mouse Models of Pancreatic Cancer. Gastroenterology. 2020;159(1):306-19 e12.

    Article  CAS  PubMed  Google Scholar 

  71. Polesso F, Weinberg AD, Moran AE. Late-Stage Tumor Regression after PD-L1 Blockade Plus a Concurrent OX40 Agonist. Cancer Immunol Res. 2019;7(2):269–81.

    Article  CAS  PubMed  Google Scholar 

  72. Fear VS, Tilsed C, Chee J, Forbes CA, Casey T, Solin JN, et al. Combination immune checkpoint blockade as an effective therapy for mesothelioma. Oncoimmunology. 2018;7(10):e1494111.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Guo Z, Wang X, Cheng D, Xia Z, Luan M, Zhang S. Correction: PD-1 Blockade and OX40 Triggering Synergistically Protects against Tumor Growth in a Murine Model of Ovarian Cancer. PLoS One. 2017;12(10):e0186965.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shrimali RK, Ahmad S, Verma V, Zeng P, Ananth S, Gaur P, et al. Concurrent PD-1 Blockade Negates the Effects of OX40 Agonist Antibody in Combination Immunotherapy through Inducing T-cell Apoptosis. Cancer Immunol Res. 2017;5(9):755–66.

    Article  CAS  PubMed  Google Scholar 

  75. Postel-Vinay S, Lam VK, Ros W, Bauer TM, Hansen AR, Cho DC, et al. Abstract CT150: A first-in-human phase I study of the OX40 agonist GSK3174998 (GSK998) +/- pembrolizumab in patients (Pts) with selected advanced solid tumors (ENGAGE-1). Cancer Res. 2020;80(16 Supplement):CT150-CT.

    Google Scholar 

  76. Wang R, Gao C, Raymond M, Dito G, Kabbabe D, Shao X, et al. An Integrative Approach to Inform Optimal Administration of OX40 Agonist Antibodies in Patients with Advanced Solid Tumors. Clin Cancer Res. 2019;25(22):6709–20.

    Article  CAS  PubMed  Google Scholar 

  77. Gutierrez M, Moreno V, Heinhuis KM, Olszanski AJ, Spreafico A, Ong M, et al. OX40 Agonist BMS-986178 Alone or in Combination With Nivolumab and/or Ipilimumab in Patients With Advanced Solid Tumors. Clin Cancer Res. 2021;27(2):460–72.

    Article  CAS  PubMed  Google Scholar 

  78. Diab A, Hamid O, Thompson JA, Ros W, Eskens F, Doi T, et al. A phase I, open-label, dose-escalation study of the OX40 agonist ivuxolimab in patients with locally advanced or metastatic cancers. Clin Cancer Res. 2022;28(1):71–83.

  79. Romano E, Kusio-Kobialka M, Foukas PG, Baumgaertner P, Meyer C, Ballabeni P, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci U S A. 2015;112(19):6140–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arce Vargas F, Furness AJS, Litchfield K, Joshi K, Rosenthal R, Ghorani E, et al. Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies. Cancer Cell. 2018;33(4):649-63 e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14(8):561–84.

    Article  CAS  PubMed  Google Scholar 

  82. Wang RF, Wang HY. Immune targets and neoantigens for cancer immunotherapy and precision medicine. Cell Res. 2017;27(1):11–37.

    Article  CAS  PubMed  Google Scholar 

  83. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 2017;377(14):1345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Cowey CL, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(11):1480–92.

    Article  CAS  PubMed  Google Scholar 

  87. Kvarnhammar AM, Veitonmaki N, Hagerbrand K, Dahlman A, Smith KE, Fritzell S, et al. The CTLA-4 x OX40 bispecific antibody ATOR-1015 induces anti-tumor effects through tumor-directed immune activation. J Immunother Cancer. 2019;7(1):103.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yachnin J, Ullenhag GJ, Carneiro A, Nielsen D, Rohrberg KS, Kvarnhammar AM, et al. A first-in-human phase I study in patients with advanced and/or refractory solid malignancies to evaluate the safety of ATOR-1015, a CTLA-4 x OX40 bispecific antibody. J Clin Oncol. 2020;38(15_suppl):3061.

    Article  Google Scholar 

  89. Gaspar M, Pravin J, Rodrigues L, Uhlenbroich S, Everett KL, Wollerton F, et al. CD137/OX40 Bispecific Antibody Induces Potent Antitumor Activity that Is Dependent on Target Coengagement. Cancer Immunol Res. 2020;8(6):781–93.

    Article  CAS  PubMed  Google Scholar 

  90. Patel M, Jimeno A, Wang D, Stemmer S, Bauer T, Sweis R, et al. J ImmunoTher Cancer. 2021;9(Suppl 2):A569-A.

    Article  Google Scholar 

  91. Jimeno A, Gupta S, Sullivan R, Do KT, Akerley WL, Wang D, et al. A phase 1/2, open-label, multicenter, dose escalation and efficacy study of mRNA-2416, a lipid nanoparticle encapsulated mRNA encoding human OX40L, for intratumoral injection alone or in combination with durvalumab for patients with advanced malignancies. Cancer Res. 2020;80(16_Supplement):CT032.

Download references

Acknowledgements

The authors would like to acknowledge Annah S. Rolig for reviewing the manuscript.

Funding

Funding was provided by a T cell Post-doctoral Fellowship from the Andy and Mary Weinberg Foundation (RY) and the Providence Portland Medical Foundation (WLR).

Author information

Authors and Affiliations

Authors

Contributions

RY and WLR wrote, reviewed, and approved the submitted manuscript.

Corresponding author

Correspondence to William L. Redmond.

Ethics declarations

Competing Interests

Yadav: No competing interests. Redmond: Research support from Bristol Myers Squibb, GlaxoSmithKline, MiNA Therapeutics, Inhibrx, Galectin Therapeutics, Veana Therapeutics, Shimadzu, OncoSec, and Calibr. Patents/Licensing Fees: Galectin Therapeutics. Advisory Boards: Medicenna, Vesselon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Immuno-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Redmond, W.L. Current Clinical Trial Landscape of OX40 Agonists. Curr Oncol Rep 24, 951–960 (2022). https://doi.org/10.1007/s11912-022-01265-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01265-5

Keywords

Navigation