Skip to main content

Advertisement

Log in

Molecular profiling of pediatric brain tumors: Insight into biology and treatment

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Recent history has witnessed unparalleled advances in our understanding of tumor biology, owing in large part to the publication of the human genome project. Paired with improvements in microarray technologies, the combination of genetic and expression profiles provides a unique opportunity to further enhance our understanding of the underlying mechanisms that drive tumor growth. Thus, integrated analysis of identified molecular changes with clinical and histologic data may further delineate a new risk stratification system for pediatric brain tumors, allowing more patient-tailored therapy and molecular-based therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Venter JC, Adams MD, Myers EW, et al.: The sequence of the human genome. Science 2001, 291:1304–1351.

    Article  PubMed  CAS  Google Scholar 

  2. The Cancer Genome Atlas Research Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008 [Epub ahead of print].

  3. Gilbertson RJ: Medulloblastoma: signalling a change in treatment. Lancet Oncol 2004, 5:209–218.

    Article  PubMed  Google Scholar 

  4. Avet-Loiseau H, Venuat AM, Terrier-Lacombe MJ, et al.: Comparative genomic hybridization detects many recurrent imbalances in central nervous system primitive neuroectodermal tumours in children. Br J Cancer 1999, 79:1843–1847.

    Article  PubMed  CAS  Google Scholar 

  5. Reardon DA, Michalkiewicz E, Boyett JM, et al.: Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res 1997, 57:4042–4047.

    PubMed  CAS  Google Scholar 

  6. Wasson JC, Saylors RL 3rd, Zeltzer P, et al.: Oncogene amplification in pediatric brain tumors. Cancer Res 1990, 50:2987–2990.

    PubMed  CAS  Google Scholar 

  7. Giangaspero F, Rigobello L, Badiali M, et al.: Large-cell medulloblastomas. A distinct variant with highly aggressive behavior. Am J Surg Pathol 1992, 16:687–693.

    Article  PubMed  CAS  Google Scholar 

  8. Gajjar A, Hernan R, Kocak M, et al.: Clinical, histopathologic, and molecular markers of prognosis: toward a new disease risk stratification system for medulloblastoma. J Clin Oncol 2004, 22:984–993.

    Article  PubMed  CAS  Google Scholar 

  9. Pietsch T, Waha A, Koch A, et al.: Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 1997, 57:2085–2088.

    PubMed  CAS  Google Scholar 

  10. Hahn H, Wicking C, Zaphiropoulous PG, et al.: Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996, 85:841–851.

    Article  PubMed  CAS  Google Scholar 

  11. MacDonald TJ, Brown KM, LaFleur B, et al.: Expression profiling of medulloblastoma: PDGFRA and the RAS/ MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 2001, 29:143–152.

    Article  PubMed  CAS  Google Scholar 

  12. Gilbertson RJ, Clifford SC: PDGFRB is overexpressed in metastatic medulloblastoma. Nat Genet 2003, 35:197–198.

    Article  PubMed  CAS  Google Scholar 

  13. Pomeroy SL, Tamayo P, Gaasenbeek M, et al.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002, 415:436–442.

    Article  PubMed  CAS  Google Scholar 

  14. Neben K, Korshunov A, Benner A, et al.: Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res 2004, 64:3103–3111.

    Article  PubMed  CAS  Google Scholar 

  15. Mendrzyk F, Radlwimmer B, Joos S, et al.: Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. J Clin Oncol 2005, 23:8853–8862.

    Article  PubMed  CAS  Google Scholar 

  16. Lee Y, Miller HL, Jensen P, et al.: A molecular fingerprint for medulloblastoma. Cancer Res 2003, 63:5428–5437.

    PubMed  CAS  Google Scholar 

  17. Kho AT, Zhao Q, Cai Z, et al.: Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. Genes Dev 2004, 18:629–640.

    Article  PubMed  CAS  Google Scholar 

  18. Thompson MC, Fuller C, Hogg TL, et al.: Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 2006, 24:1924–1931.

    Article  PubMed  CAS  Google Scholar 

  19. Gajjar A, Chintagumpala M, Ashley D, et al.: Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 2006, 7:813–820.

    Article  PubMed  Google Scholar 

  20. Ellison DW, Onilude OE, Lindsey JC, et al.: beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol 2005, 23:7951–7957.

    Article  PubMed  CAS  Google Scholar 

  21. Kleihues P, Louis DN, Scheithauer BW, et al.: The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 2002, 61:215–225; discussion 226–219.

    PubMed  Google Scholar 

  22. Dyer S, Prebble E, Davison V, et al.: Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. Am J Pathol 2002, 161:2133–2141.

    PubMed  CAS  Google Scholar 

  23. Hirose Y, Aldape K, Bollen A, et al.: Chromosomal abnormalities subdivide ependymal tumors into clinically relevant groups. Am J Pathol 2001, 158:1137–1143.

    PubMed  CAS  Google Scholar 

  24. Jeuken JW, Sprenger SH, Gilhuis J, et al.: Correlation between localization, age, and chromosomal imbalances in ependymal tumours as detected by CGH. J Pathol 2002, 197:238–244.

    Article  PubMed  Google Scholar 

  25. Grill J, Avet-Loiseau H, Lellouch-Tubiana A, et al.: Comparative genomic hybridization detects specific cytogenetic abnormalities in pediatric ependymomas and choroid plexus papillomas. Cancer Genet Cytogenet 2002, 136:121–125.

    Article  PubMed  CAS  Google Scholar 

  26. Koschny R, Koschny T, Froster UG, et al.: Comparative genomic hybridization in glioma: a meta-analysis of 509 cases. Cancer Genet Cytogenet 2002, 135:147–159.

    Article  PubMed  CAS  Google Scholar 

  27. Ward S, Harding B, Wilkins P, et al.: Gain of 1q and loss of 22 are the most common changes detected by comparative genomic hybridisation in paediatric ependymoma. Genes Chromosomes Cancer 2001, 32:59–66.

    Article  PubMed  CAS  Google Scholar 

  28. Carter M, Nicholson J, Ross F, et al.: Genetic abnormalities detected in ependymomas by comparative genomic hybridisation. Br J Cancer 2002, 86:929–939.

    Article  PubMed  CAS  Google Scholar 

  29. Reardon DA, Entrekin RE, Sublett J, et al.: Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Genes Chromosomes Cancer 1999, 24:230–237.

    Article  PubMed  CAS  Google Scholar 

  30. Taylor MD, Poppleton H, Fuller C, et al.: Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 2005, 8:323–335.

    Article  PubMed  CAS  Google Scholar 

  31. Ammerlaan AC, de Bustos C, Ararou A, et al.: Localization of a putative low-penetrance ependymoma susceptibility locus to 22q11 using a chromosome 22 tiling-path genomic microarray. Genes Chromosomes Cancer 2005, 43:329–338.

    Article  PubMed  CAS  Google Scholar 

  32. Mendrzyk F, Korshunov A, Benner A, et al.: Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res 2006, 12:2070–2079.

    Article  PubMed  CAS  Google Scholar 

  33. Modena P, Lualdi E, Facchinetti F, et al.: Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol 2006, 24:5223–5233.

    Article  PubMed  CAS  Google Scholar 

  34. Hitoshi S, Alexson T, Tropepe V, et al.: Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 2002, 16:846–858.

    Article  PubMed  CAS  Google Scholar 

  35. Conover JC, Doetsch F, Garcia-Verdugo JM, et al.: Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci 2000, 3:1091–1097.

    Article  PubMed  CAS  Google Scholar 

  36. Sharma MK, Mansur DB, Reifenberger G, et al.: Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res 2007, 67:890–900.

    Article  PubMed  CAS  Google Scholar 

  37. Fouladi M, Hunt DL, Pollack IF, et al.: Outcome of children with centrally reviewed low-grade gliomas treated with chemotherapy with or without radiotherapy on Children’s Cancer Group high-grade glioma study CCG-945. Cancer 2003, 98:1243–1252.

    Article  PubMed  Google Scholar 

  38. Wong KK, Tsang YT, Chang YM, et al.: Genome-wide allelic imbalance analysis of pediatric gliomas by single nucleotide polymorphic allele array. Cancer Res 2006, 66:11172–11178.

    Article  PubMed  CAS  Google Scholar 

  39. White FV, Anthony DC, Yunis EJ, et al.: Nonrandom chromosomal gains in pilocytic astrocytomas of childhood. Hum Pathol 1995, 26:979–986.

    Article  PubMed  CAS  Google Scholar 

  40. Sanoudou D, Tingby O, Ferguson-Smith MA, et al.: Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br J Cancer 2000, 82:1218–1222.

    Article  PubMed  CAS  Google Scholar 

  41. Pfister S, Janzarik WG, Remke M, et al.: BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 2008, 118:1739–1749.

    Article  PubMed  CAS  Google Scholar 

  42. Tuveson DA, Weber BL, Herlyn M: BRAF as a potential therapeutic target in melanoma and other malignancies. Cancer Cell 2003, 4:95–98.

    Article  PubMed  CAS  Google Scholar 

  43. Dibb NJ, Dilworth SM, Mol CD: Switching on kinases: oncogenic activation of BRAF and the PDGFR family. Nat Rev Cancer 2004, 4:718–727.

    Article  PubMed  CAS  Google Scholar 

  44. Deshmukh H, Yeh TH, Yu J, et al.: High-resolution, dual-platform aCGH analysis reveals frequent HIPK2 amplification and increased expression in pilocytic astrocytomas. Oncogene 2008, 27:4745–4751.

    Article  PubMed  CAS  Google Scholar 

  45. Faury D, Nantel A, Dunn SE, et al.: Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol 2007, 25:1196–1208.

    Article  PubMed  CAS  Google Scholar 

  46. Khatua S, Peterson KM, Brown KM, et al.: Overexpression of the EGFR/FKBP12/HIF-2alpha pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res 2003, 63:1865–1870.

    PubMed  CAS  Google Scholar 

  47. Donson AM, Erwin NS, Kleinschmidt-DeMasters BK, et al.: Unique molecular characteristics of radiation-induced glioblastoma. J Neuropathol Exp Neurol 2007, 66:740–749.

    Article  PubMed  CAS  Google Scholar 

  48. Nakamura M, Shimada K, Ishida E, et al.: Molecular pathogenesis of pediatric astrocytic tumors. Neuro Oncol 2007, 9:113–123.

    Article  PubMed  CAS  Google Scholar 

  49. Bredel M, Pollack IF, Hamilton RL, James CD: Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin Cancer Res 1999, 5:1786–1792.

    PubMed  CAS  Google Scholar 

  50. Gilbertson RJ, Hill DA, Hernan R, et al.: ERBB1 is amplified and overexpressed in high-grade diffusely infiltrative pediatric brain stem glioma. Clin Cancer Res 2003, 9:3620–3624.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Gilbertson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R., Wright, K.D. & Gilbertson, R.J. Molecular profiling of pediatric brain tumors: Insight into biology and treatment. Curr Oncol Rep 11, 68–72 (2009). https://doi.org/10.1007/s11912-009-0011-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-009-0011-9

Keywords

Navigation