Skip to main content

Advertisement

Log in

Drug distribution in tumors: Mechanisms, role in drug resistance, and methods for modification

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Distribution of antineoplastic agents within tumors remains one of the major challenges in cancer chemotherapy because distribution is hampered by several factors related to the drug (its physicochemical characteristics) and to the neoplastic tissue (blood and lymphatic vasculature, cell density, extracellular matrix composition, and interstitium). The inhomogeneous distribution and structure of tumor vasculature lead to large avascular and hypoxic areas with low pH and high interstitial oncotic pressure. In these critical conditions, the gradient of drug concentrations from the vessels to the inner parts of the tumor is not sufficient to promote diffusion of pharmacologic agents. Again, cellular sequestration and binding to extracellular matrix represent further factors that limit drug distribution and reduce tumor sensitivity to chemotherapy. Several strategies have been investigated to circumvent drug resistance. The evaluation of liposomal and nanoparticle formulations and the characterization of newer bioreductive agents and drugs that should normalize tumor vasculature are in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Jain RK: Barriers to drug delivery in solid tumors. Sci Am 1994, 271:58–65.

    Article  PubMed  CAS  Google Scholar 

  2. Vaupel P, Kelleher DK, Hockel M: Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 2001, 28:29–35.

    Article  PubMed  CAS  Google Scholar 

  3. Vaupel P, Mayer A, Briest S, Hockel M: Hypoxia in breast cancer: role of blood flow, oxygen diffusion distances, and anemia in the development of oxygen depletion. Adv Exp Med Biol 2005, 566:333–342.

    Article  PubMed  Google Scholar 

  4. Jain RK: Determinants of tumor blood flow: a review. Cancer Res 1988, 48:2641–2658.

    PubMed  CAS  Google Scholar 

  5. Maruyama K, Ishida O, Takizawa T, Moribe K: Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliv Rev 1999, 40:89–102.

    Article  PubMed  CAS  Google Scholar 

  6. Braun RD, Abbas A, Bukhari SO, Wilson W III: Hemodynamic parameters in blood vessels in choroidal melanoma xenografts and rat choroid. Invest Ophthalmol Vis Sci 2002, 43:3045–3052.

    PubMed  Google Scholar 

  7. Al-Rawi MA, Mansel RE, Jiang WG: Lymphangiogenesis and its role in cancer. Histol Histopathol 2005, 20:283–298.

    PubMed  CAS  Google Scholar 

  8. Grantab R, Sivananthan S, Tannock IF: The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res 2006, 66:1033–1039.

    Article  PubMed  CAS  Google Scholar 

  9. Jain RK: Transport of macromolecules in the tumor interstitium: a review. Cancer Res 1987, 47:3039–3051.

    PubMed  CAS  Google Scholar 

  10. Toole BP: Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 2004, 4:528–539.

    Article  PubMed  CAS  Google Scholar 

  11. Nederman T, Carlsson J: Penetration and binding of vinblastine and 5-fluorouracil in cellular spheroids. Cancer Chemother Pharmacol 1984, 13:131–135.

    Article  PubMed  CAS  Google Scholar 

  12. Erlanson M, Daniel-Szolgay E, Carlsson J: Relations between the penetration, binding and average concentration of cytostatic drugs in human tumour spheroids. Cancer Chemother Pharmacol 1992, 29:343–353.

    Article  PubMed  CAS  Google Scholar 

  13. Kuh H-J, Jang SH, Guillaume Wientjes M, et al.: Determinants of paclitaxel penetration and accumulation in human solid tumor. J Pharmacol Exp Ther 1999, 290:871–880.

    PubMed  CAS  Google Scholar 

  14. Jang SH, Guillaume Wientjes M, Au JL-S: Enhancement of paclitaxel delivery to solid tumors by apoptosis-inducing pretreatment: effect of treatment schedule. J Pharmacol Exp Ther 2001, 296:1035–1042.

    PubMed  CAS  Google Scholar 

  15. Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003, 3:721–732.

    Article  PubMed  CAS  Google Scholar 

  16. Svastova E, Hulikova A, Rafajova M, et al.: Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 2004, 577:439–435.

    Article  PubMed  CAS  Google Scholar 

  17. Wike-Hooley JL, Haveman J, Reinhold HS: The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 1984, 2:343–366.

    Article  PubMed  CAS  Google Scholar 

  18. Madshus IH: Regulation of intracellular pH in eukaryotic cells. Biochem J 1988, 250:1–8.

    PubMed  CAS  Google Scholar 

  19. Mahoney BP, Raghunand N, Baggett B, Gillies RJ: Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 2003, 66:1207–1218.

    Article  PubMed  CAS  Google Scholar 

  20. Vukovic V, Tannock IF: Influence of low pH on cytotoxicity of paclitaxel, mitoxantrone and topotecan. Br J Cancer 1997, 75:1167–1172.

    PubMed  CAS  Google Scholar 

  21. Acker T, Plate KH: Hypoxia and hypoxia inducible factors (HIF) as important regulators of tumor physiology. Cancer Treat Res 2004, 117:219–248.

    PubMed  CAS  Google Scholar 

  22. Hussein D, Estlin EJ, Dive C, Makin GW: Chronic hypoxia promotes hypoxia-inducible factor-1alpha-dependent resistance to etoposide and vincristine in neuroblastoma cells. Mol Cancer Ther 2006, 5:2241–2250.

    Article  PubMed  CAS  Google Scholar 

  23. Krishnamurthy P, Schuetz JD: The ABC transporter Abcg2/Bcrp: role in hypoxia mediated survival. Biometals 2005, 18:349–358.

    Article  PubMed  CAS  Google Scholar 

  24. Krishnamurthy P, Schuetz JD: Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol. 2006, 46:381–410.

    Article  PubMed  CAS  Google Scholar 

  25. Burger H, van Tol H, Brok M, et al.: Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther 2005, 4:747–752.

    Article  PubMed  CAS  Google Scholar 

  26. Calatozzolo C, Gelati M, Ciusani E, et al.: Expression of drug resistance proteins Pgp, MRP1, MRP3, MRP5 and GST-pi in human glioma. J Neurooncol 2005, 74:113–121.

    Article  PubMed  CAS  Google Scholar 

  27. Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A: Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 2005, 16:691–707.

    Article  PubMed  CAS  Google Scholar 

  28. Yih TC, Al-Fandi M: Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 2006; 97:1184–1190.

    Article  PubMed  CAS  Google Scholar 

  29. Drummond DC, Meyer O, Hong K, et al.: Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 1999, 51:691–743.

    PubMed  CAS  Google Scholar 

  30. Northfelt DW, Martin FJ, Working P, et al.: Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J Clin Pharmacol 1996, 36:55–63.

    PubMed  CAS  Google Scholar 

  31. Kontermann RE: Immunoliposomes for cancer therapy. Curr Opin Mol Ther 2006, 8:39–45.

    PubMed  CAS  Google Scholar 

  32. Gao Z, Fain HD, Rapoport N: Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Mol Pharm 2004, 1:317–330.

    Article  PubMed  CAS  Google Scholar 

  33. Wu AM, Senter PD: Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005, 23:1137–1146.

    Article  PubMed  CAS  Google Scholar 

  34. Ahmed M, Goldberg SN: Combination radiofrequency thermal ablation and adjuvant IV liposomal doxorubicin increases tissue coagulation and intratumoural drug accumulation. Int J Hyperthermia 2004, 20:781–802.

    Article  PubMed  CAS  Google Scholar 

  35. Zheng JH, Chen CT, Au JL, Wientjes MG: Time-and concentration-dependent penetration of doxorubicin in prostate tumors. AAPS PharmSci 2001, 3:E15.

    Article  PubMed  CAS  Google Scholar 

  36. Eikenes L, Tari M, Tufto I, et al.: Hyaluronidase induces a transcapillary pressure gradient and improves the distribution and uptake of liposomal doxorubicin (Caelyx) in human osteosarcoma xenografts. Br J Cancer 2005, 93:81–88.

    Article  PubMed  CAS  Google Scholar 

  37. Hurwitz, H. Fehrenbacher L, Novotny W, et al.: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004, 350:2335–2342.

    Article  PubMed  CAS  Google Scholar 

  38. Tong RT, Boucher Y, Kozin SV et al.: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004, 64:3731–3736.

    Article  PubMed  CAS  Google Scholar 

  39. Winkler, F. Kozin SV, Tong RT, et al.: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004, 6:553–563.

    PubMed  CAS  Google Scholar 

  40. Franco, M, Man S, Chen L, et al.: Targeted anti-vascular endothelial growth factor receptor-2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia. Cancer Res 2006, 66:3639–3648.

    Article  PubMed  CAS  Google Scholar 

  41. Hirpara JL, Clement MV, Pervaiz S: Intracellular acidification triggered by mitochondrial-derived hydrogen peroxide is an effector mechanism for drug-induced apoptosis in tumor cells. J Biol Chem 2001, 276:514–521.

    Article  PubMed  CAS  Google Scholar 

  42. Ahmad KA, Iskandar KB, Hirpara JL, et al.: Hydrogen peroxide-mediated cytosolic acidification is a signal for mitochondrial translocation of Bax during drug-induced apoptosis of tumor cells. Cancer Res 2004, 64:7867–7878.

    Article  PubMed  CAS  Google Scholar 

  43. De Milito A, Fais S: Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol 2005, 1:779–786.

    Article  PubMed  Google Scholar 

  44. Stratford IJ, Williams KJ, Cowen RL, Jaffar M: Combining bioreductive drugs and radiation for the treatment of solid tumors. Semin Radiat Oncol 2003, 13:42–52.

    Article  PubMed  Google Scholar 

  45. Boyle RG, Travers S: Hypoxia: targeting the tumour. Anticancer Agents Med Chem 2006, 6:281–286.

    Article  PubMed  CAS  Google Scholar 

  46. von Pawel J, von Roemeling R, Gatzemeier U, et al.: Tirazpamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: A report of the international CATAPULT I study group. Cisplatin and Tirapazamine in Subjects with Advanced Previously Untreated Non-Small-Cell Lung Tumors. J Clin Oncol 2000, 18:1351–1359.

    Google Scholar 

  47. Rischin D, Peters L, Hicks R, et al.: Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. J Clin Oncol 2001, 19:535–542.

    PubMed  CAS  Google Scholar 

  48. Papadopoulou MV, Bloomer WD: NLCQ-1 (NSC 709257): exploiting hypoxia with a weak DNA-intercalating bioreductive drug. Clin Cancer Res 2003, 9:5714–5720.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Di Paolo MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Paolo, A., Bocci, G. Drug distribution in tumors: Mechanisms, role in drug resistance, and methods for modification. Curr Oncol Rep 9, 109–114 (2007). https://doi.org/10.1007/s11912-007-0006-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-007-0006-3

Keywords

Navigation