Skip to main content

Hypoxia in Breast Cancer

Role of blood flow, oxygen diffusion distances, and anemia in the development of oxygen depletion

  • Conference paper
Oxygen Transport to Tissue XXVI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 566))

Abstract

Heterogeneously distributed hypoxic areas are a characteristic property of locally advanced breast cancers. Hypoxia results from an imbalance between the supply and consumption of oxygen (O2). Major pathogenetic mechanisms for the emergence of hypoxia are (i) structural and functional abnormalities in the tumor microvasculature, (ii) an adverse diffusion geometry, and (iii) tumor-related and therapy-induced anemia leading to a reduced O2 transport capacity of the blood. There is pronounced intertumor variability in the extent of hypoxia, which is independent of clinical size, stage, histology and grade. Hypoxia is intensified in anemic patients, especially in tumor (areas) with low perfusion rates.

Tumor hypoxia is a therapeutic problem since it makes solid tumors resistant to sparsely ionizing radiation, some forms of chemotherapy, and photodynamic therapy. However, besides more direct mechanisms involved in the development of therapeutic resistance, there are, in addition, indirect machineries that can cause barriers to therapies. These include hypoxia-mediated alterations in gene expression, proteomic and genomic changes, and clonal selection. These in turn can drive subsequent events that are known to further increase resistance to therapy in addition to critically affecting long-term prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. P. Vaupel, K. Schlenger, C. Knoop, and M. Höckel, Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements, Cancer Res. 51, 3316–3322 (1991).

    PubMed  CAS  Google Scholar 

  2. P. Vaupel, S. Briest, and M. Höckel, Hypoxia in breast cancer: Pathogenesis, characterization and biological/therapeutic implications, Wien. Med. Wschr. 152, 334–342 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. M. Hoeckel, K. Schlenger, C. Knoop, and P. Vaupel, Oxygenation of carcinomas of the uterine cervix: Evaluation of computerized O2 tension measurements, Cancer Res. 51, 6098–6102 (1991).

    Google Scholar 

  4. A. W. Fyles, M. Milosevic, R. Wong, M.-C. Kavanagh, M. Pintilie, A. Sun, W. Chapman, W. Levin, L. Manchul, T. J. Keane, and R. P. Hill, Oxygenation predicts radiation response and survival in patients with cervix cancer, Radiother. Oncol. 48, 149–156 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. T. H. Knocke, H.-D. Weitmann, H.-J. Feldmann, E. Selzer, and R. Potter, Intratumoral pO2-measurements as predictive assay in the treatment of carcinoma of the uterine cervix, Radiother. Oncol. 53, 99–104 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. M. Nordsmark, and J. Overgaard, A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy, Radiother. Oncol. 57, 39–43 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. D. M. Brizel, G. S. Sibley, L. R. Prosnitz, R. L Scher, and M. W. Dewhirst, Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck, Int. J. Radial. Oncol. Biol. Phys. 38, 285–289 (1997).

    Article  CAS  Google Scholar 

  8. B. Movsas, J. D. Chapman, E. M. Horwitz, W. H. Pinover, R. E. Greenberg, A. L. Hanlon, R. Iyer, and G. E. Hanks, Hypoxic regions exist in human prostate carcinoma, Urology 53, 11–18 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. A. C. Koong, V. K. Mehta, Q. T. Le, G. A. Fisher, D. J. Terris, J. M. Brown, A. J. Bastidas, and M. Vierra, Pancreatic tumors show high levels of hypoxia, Int. J. Radiat. Oncol. Biol. Phys. 48, 919–922 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. R. Rampling, G. Cruickshank, A. D. Lewis, S. A. Fitzsimmons, and P. Workman, Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors, Int. J. Radial. Oncol. Biol. Phys. 29, 427–432 (1994).

    CAS  Google Scholar 

  11. D. R. Collingridge, J. M. Piepmeier, S. Rockwell, and J. P. S. Knisely, Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue, Radiother. Oncol. 53, 127–131 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma, Cancer Res. 56, 941–943 (1996).

    PubMed  CAS  Google Scholar 

  13. M. Nordsmark, J. Keller, O. S. Nielsen, E. Lundorf, and J. Overgaard, Tumour oxygenation assessed by polarographic needle electrodes and bioenergetic status measured by 31P magnetic resonance spectroscopy in human soft tissue tumours, Acta Oncol. 36, 565–571 (1997).

    PubMed  CAS  Google Scholar 

  14. E. Lartigau, H. Randrianarivelo, M.-F. Avril, A. Margulis, A. Spatz, F. Eschwege, and M. Guichard, Intratumoral oxygen tension in metastatic melanoma, Melanoma Res. 7, 400–406 (1997).

    PubMed  CAS  Google Scholar 

  15. P. Vaupel, O. Thews, and M. Höckel, Treatment resistance of solid tumors: Role of hypoxia and anemia, Med Oncol. 18, 243–259 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. P. Vaupel, and M. Höckel, Tumor hypoxia and therapeutic resistance, in: Recombinant Human Erythropoietin (rhEPO) in Clinical Oncology, edited by M. R. Nowrousian (Springer, Berlin, Heidelberg, New York, 2002), pp. 127–146.

    Google Scholar 

  17. M. Höckel, and P. Vaupel, Tumor hypoxia: Definitions and current clinical, biologic and molecular aspects, J. Natl. Cancer Inst. 93, 266–276 (2001).

    Article  PubMed  Google Scholar 

  18. G. L. Semenza, Targeting HIF-1 for cancer therapy, Nat. Rev. Cancer 3, 721–732 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. G. L. Semenza, HIF-1 and tumor progression: pathophysiology and therapeutics, Trends Mol. Med. 8, S62–S67 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. A. L. Harris, Hypoxia-a key regulatory factor in tumour growth, Nat. Rev. Cancer 2, 38–47 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. P. Vaupel, A. Mayer, and M. Höckel, Tumor hypoxia and malignant progression, Methods Enzymol. 383, 335–354 (2004).

    Article  Google Scholar 

  22. T. I. Goonewardene, H. M. Sowter, and A. L. Harris, Hypoxia-induced pathways in breast cancer, Microsc. Res. Tech. 59, 41–48 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. S. M. Evans, and C. J. Koch, Prognostic significance of tumor oxygenation in humans, Cancer Letters 195, 1–16 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. G. Gasparini, Prognostic value of vascular endothelial growth factor in breast cancer, Oncologist 5, 37–44 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. M. Schindl, S. F. Schoppmann, H. Samonigg, H. Hausmaninger, W. Kwasny, M. Gnant, R. Jakesz, E. Kubista, P. Birner, and G. Oberhuber, Overexpression of hypoxia-inducible factor la is associated with an unfavorable prognosis in lymph node-positive breast cancer, Clin. Cancer Res. 8, 1831–1837 (2002).

    PubMed  CAS  Google Scholar 

  26. P. N. Span, J. Bussink, P. Manders, L. V. A. M. Beex, and C. G. J. Sweep, Carbonic anhydrase-9 expression levels and prognosis in human breast cancer: association with treatment outcome, Br. J. Cancer 89, 271–276 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. S. K. Chia, C. C. Wykoff, P. H. Watson, C. Han, R. D. Leek, J. Pastorek, K. C. Gatter, P. Ratcliffe, and A. L. Harris, Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma, J. Clin. Oncol. 19, 3660–3668 (2001).

    PubMed  CAS  Google Scholar 

  28. R. Bos, P. v. d. Groep, A. E. Greijer, A. Shvarts, S. Meijer, H. M. Pinedo, G. L. Semenza, P. J. v. Diest, and E. v. d. Wall, Levels of hypoxia-inducible factor-1α independently predict prognosis in patients with lymph node negative breast carcinoma, Cancer 97, 1573–1581 (2003).

    Article  PubMed  Google Scholar 

  29. L. Tomes, E. Emberley, Y. Niu, S. Troup, J. Pastorek, K. Strange, A. Harris, and P. H. Watson, Necrosis and hypoxia in invasive breast carcinoma, Breast Cancer Res. Treat. 81, 61–69 (2003).

    Article  PubMed  Google Scholar 

  30. M. Younes, R. W. Brown, D. R. Mody, L. Fernandez, and R. Laucirica, GLUT 1 expression in human breast carcinoma: correlation with known prognostic markers, Anticancer Res. 15, 2895–2898 (1995).

    PubMed  CAS  Google Scholar 

  31. P. Vaupel, O. Thews, and M. Höckel, Tumor oxygenation: Characterization and clinical implications, in: rhErythropoietin in Cancer Supportive Treatment, edited by J. F. Smyth, M. A. Boogaerts, and B. R.-M. Ehmer (Marcel Dekker, New York, 1996), pp. 205–239.

    Google Scholar 

  32. P. Vaupel, F. Kallinowski, and P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review, Cancer Res. 49, 6449–6465 (1989).

    PubMed  CAS  Google Scholar 

  33. P. W. Vaupel, Blood flow, oxygenation, tissue pH distribution, and bioenergetic status of tumors. Lecture 23, Berlin: Ernst Schering Research Foundation (1994).

    Google Scholar 

  34. P. Vaupel, and M. Höckel, Durchblutung, Oxygenierungsstatus und metabolisches Mikromilieu des Mammakarzinoms. Pathomechanismen, Charakterisierung und biologische/therapeutische Relevanz, in: Diagnostik und Therapie des Mammakarzinoms-State of the Art, edited by M. Untch, H. Sittek, I. Bauerfeind, G. Konecny, M. Reiser, H. Hepp (Zuckschwerdt, München, 2002), pp. 289–307.

    Google Scholar 

  35. R. P. Beaney, Positron emission tomography in the study of human tumors, Semin. Nucl. Med. 14, 324–341 (1984).

    PubMed  CAS  Google Scholar 

  36. R. P. Beaney, A. A. Lammertsma, T. Jones, C. G. McKenzie, and K. E. Hainan, Positron emission tomography for in-vivo measurements of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma, Lancet 1(8369), 131–134 (1984).

    Article  PubMed  CAS  Google Scholar 

  37. R. Johnson, A thermodynamic method for investigation of radiation induced changes in the microcirculation of human tumors, Int. J. Radiat. Oncol. Biol. Phys. 1, 659–670 (1976).

    PubMed  CAS  Google Scholar 

  38. C. B. J. H. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: A rapid and noninvasive dynamic method, Cancer Res. 52, 1592–1597 (1992).

    PubMed  CAS  Google Scholar 

  39. E. M. Grischke, M. Kaufmann, M. Eberlein-Gonska, T. Mattfeld, Ch. Sohn, and G. Bastert, Angiogenesis as a diagnostic factor in primary breast cancer: Microvessel quantitation by stereological methods and correlation with color Doppler sonography, Onkologie 17, 35–42 (1994).

    Article  Google Scholar 

  40. P. Vaupel, Vascularization, blood flow, oxygenation, tissue pH, and bioenergetic status of human breast cancer, Adv. Exp. Med. Biol. 411, 243–254 (1997).

    PubMed  CAS  Google Scholar 

  41. P. Vaupel, and M. Höckel, Blood supply, oxygenation status and metabolic micromilieu of breast cancers: Characterization and therapeutic relevance, Int. J. Oncol. 17, 869–879 (2000).

    PubMed  CAS  Google Scholar 

  42. C. Peters-Engl, M. Medl, M. Mirau, C. Wanner, S. Bilgi, P. Sevelda, and A. Obermair, Color-coded and spectral Doppler flow in breast carcinomas-Relationship with the tumor microvasculature, Breast Cancer Res. Treat. 47, 83–89 (1998).

    Article  PubMed  CAS  Google Scholar 

  43. C. Peters-Engl, W. Frank, S. Leodolter, and M. Medl, Tumor flow in malignant breast tumors measured by Doppler ultrasound: an independent predictor of survival, Breast Cancer Res. Treat. 54, 65–71 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. P. Vaupel, Oxygenation of human tumors. Strahlenther. Onkol. 166, 377–386 (1990).

    PubMed  CAS  Google Scholar 

  45. P. Vaupel, A. Mayer, S. Briest, and M. Höckel, Oxygenation gain factor: A novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers, Cancer Res. 63, 7634–7637 (2003).

    PubMed  CAS  Google Scholar 

  46. A. Becker, P. Stadler, R. S. Lavey, G. Hänsgen, T. Kuhnt, C. Lautenschläger, H. J. Feldmann, M. Molls, and J. Dunst, Severe anemia is associated with poor tumor oxygenation in head and neck squamous cell carcinomas, Int. J. Radial Oncol. Biol. Phys. 46, 459–466 (2000).

    Article  CAS  Google Scholar 

  47. P. Vaupel, O. Thews, D. K. Kelleher, and M. A. Konerding, O2 extraction is a key parameter determining the oxygenation status of malignant tumors and normal tissues, Int. J. Oncol. 22, 795–798 (2003).

    PubMed  CAS  Google Scholar 

  48. P. Vaupel, D. K. Kelleher, and M. Höckel, Oxygenation status of malignant tumors: Pathogenesis of hypoxia and significance for tumor therapy, Semin. Oncol. 28, 29–35 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. D. P. Bottaro, and L. A. Liotta, Out of air is not out of action, Nature 423, 593–595 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. M. Höckel, K. Schlenger, B. Aral, M. Mitze, U. Schäffer, and P. Vaupel, Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix, Cancer Res. 56, 4509–4515 (1996).

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Vaupel, P., Mayer, A., Briest, S., Höckel, M. (2005). Hypoxia in Breast Cancer. In: Okunieff, P., Williams, J., Chen, Y. (eds) Oxygen Transport to Tissue XXVI. Advances in Experimental Medicine and Biology, vol 566. Springer, Boston, MA. https://doi.org/10.1007/0-387-26206-7_44

Download citation

Publish with us

Policies and ethics