Skip to main content
Log in

Proteomics in cancer screening and management in gynecologic cancer

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Biomarkers are used routinely for population screening, disease diagnosis and prognosis, monitoring of therapy, and prediction of therapeutic response. Unfortunately, most biomarkers have low sensitivity and specificity and little predictive value. Novel techniques for better screening and early diagnosis of ovarian cancer are urgently needed. Proteomics, the study of the cellular proteins and their activation states, integrates some fundamental techniques, including high-throughput protein purification and profiling, genomic and proteomic databases, and mass spectrometry. In oncology, proteomics will contribute greatly to our understanding of gene functions in tumor development and provide information in clinical applications. This article reviews proteomic techniques and their potential applications in gynecologic cancer screening and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Jemal A, Tiwari RC, Murray T, et al.: Cancer statistics, 2004. CA Cancer J Clin 2004, 541:8–29.

    Google Scholar 

  2. Diamandis EP: Tumor markers: past, present, and future. In Tumor Markers. Edited by Diamandis EP, Lilja A, Chan D, et al. Washington, DC: American Association for Clinical Chemistry; 2002:3–8.

    Google Scholar 

  3. Bast RC Jr, Xu FJ, Yu YH, et al.: CA 125: the past and the future. Int J Biol Markers 1998, 134:179–187.

    Google Scholar 

  4. Bandera CA, Ye B, Mok SC: New technologies for the identification of markers for early detection of ovarian cancer. Curr Opin Obstet Gynecol 2003, 151:51–55.

    Article  Google Scholar 

  5. Mills GB, Bast RC Jr, Srivastava S: Future for ovarian cancer screening: novel markers from emerging technologies of transcriptional profiling and proteomics. J Natl Cancer Inst 2001, 9319:1437–1439.

    Article  Google Scholar 

  6. Petricoin EF, Zoon KC, Kohn EC, et al.: Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov 2002, 19:683–695.

    Article  CAS  Google Scholar 

  7. Hanash S: Disease proteomics. Nature 2003, 422:226–232.

    Article  PubMed  CAS  Google Scholar 

  8. Krieg RC, Paweletz CP, Liotta LA, et al.: Clinical proteomics for cancer biomarker discovery and therapeutic targeting. Technol Cancer Res Treat 2002, 14:263–272.

    Google Scholar 

  9. Wilkins MR, Sanchez JC, Gooley AA, et al.: Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996, 13:19–50.

    PubMed  CAS  Google Scholar 

  10. Wu W, Hu W, Kavanagh JJ: Proteomics in cancer research. Int J Gynecol Cancer 2002, 125:409–423.

    Article  Google Scholar 

  11. Anderson L, Anderson NG: High resolution two-dimensional electrophoresis of human plasma proteins. Proc Natl Acad Sci U S A 1977, 7412:5421–5425.

    Article  Google Scholar 

  12. Adkins JN, Varnum SM, Auberry KJ, et al.: Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol Cell Proteomics 2002, 112:947–955.

    Article  CAS  Google Scholar 

  13. Pieper R, Su Q, Gatlin CL, et al.: Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 2003, 34:422–432. This study showed that a novel technology, the immunoaffinity-based protein subtraction chromatograph, removes multiple proteins present in plasma or serum in high concentrations.

    Article  Google Scholar 

  14. Zhu H, Snyder M: Protein chip technology. Curr Opin Chem Biol 2003, 71:55–63.

    Article  CAS  Google Scholar 

  15. Service RF: Proteomics: searching for recipes for protein chips. Science 2001, 294:2080–2082.

    Article  PubMed  CAS  Google Scholar 

  16. Yates JR III. Mass spectrometry: from genomics to proteomics. Trends Genet 2000, 161:5–8.

    Article  Google Scholar 

  17. Yates JR III, Carmack E, Hays L, et al.: Automated protein identification using microcolumn liquid chromatography-tandem mass spectrometry. Methods Mol Biol 1999, 112:553–569.

    PubMed  CAS  Google Scholar 

  18. Yates JR III, McCormack AL, Schieltz D, et al.: Direct analysis of protein mixtures by tandem mass spectrometry. J Protein Chem 1997, 165:495–497.

    Article  Google Scholar 

  19. Dongre AR, Eng JK, Yates JR III: Emerging tandem-massspectrometry techniques for the rapid identification of proteins. Trends Biotechnol 1997, 1510:418–425.

    Article  Google Scholar 

  20. Wulfkuhle JD, McLean KC, Paweletz CP, et al.: New approaches to proteomic analysis of breast cancer. Proteomics 2001, 110:1205–1215.

    Article  Google Scholar 

  21. Issaq HJ, Veenstra TD, Conrads TP, et al.: The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun 2002, 2923:587–592.

    Article  CAS  Google Scholar 

  22. Ciphergen. http://www.ciphergen.org Accessed June 12, 2004.

  23. McGuffin LJ, Bryson K, Jones DT: The PSIPRED protein structure prediction server. Bioinformatics 2000, 164:404–405.

    Article  Google Scholar 

  24. Xu Y, Shen Z, Wiper DW, et al.: Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA 1998, 2808:719–723.

    Article  Google Scholar 

  25. Hogdall EV, Hogdall CK, Kjaer SK, et al.: OVX1 radioimmunoassay results are dependent on the method of sample collection and storage. Clin Chem 1999, 455:692–694.

    Google Scholar 

  26. Engelen MJ, de Bruijn HW, Hollema H, et al.: Serum CA 125, carcinoembryonic antigen, and CA 19-9 as tumor markers in borderline ovarian tumors. Gynecol Oncol 2000, 781:16–20.

    Article  Google Scholar 

  27. Klockars M, Pettersson T, Froseth B, et al.: Concentration of tumor-associated trypsin inhibitor (TATI) in pleural effusions. Chest 1990, 985:1159–1164.

    Google Scholar 

  28. Mok SC, Chao J, Skates S, et al.: Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst 2001, 9319:1458–1464.

    Article  Google Scholar 

  29. Mazurek A, Niklinski J, Laudanski T, et al.: Clinical tumour markers in ovarian cancer. Eur J Cancer Prev 1998, 71:23–35.

    Google Scholar 

  30. Bast RC Jr, Urban N, Shridhar V, et al.: Early detection of ovarian cancer: promise and reality. Cancer Treat Res 2002, 107:61–97.

    PubMed  Google Scholar 

  31. Petricoin EF, Ardekani AM, Hitt BA, et al.: Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002, 359:572–527. This study indicated that proteomics patterns in serum might be a useful tool for early detection of ovarian cancer.

    Article  PubMed  CAS  Google Scholar 

  32. Petricoin EF III, Ornstein DK, Paweletz CP, et al.: Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2002, 9420:1576–1578.

    Google Scholar 

  33. Paweletz CP, Trock B, Pennanen M, et al.: Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer. Dis Markers 2001, 174:301–307.

    Google Scholar 

  34. Petricoin EE, Paweletz CP, Liotta LA: Clinical applications of proteomics: proteomic pattern diagnostics. J Mammary Gland Biol Neoplasia 2002, 74:433–440.

    Article  Google Scholar 

  35. Diamandis EP: Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J Natl Cancer Inst 2004, 965:353–356. This article reviews the potential problems of using serum proteomic patterns for early detection of ovarian cancer.

    Google Scholar 

  36. Diamandis EP: Point: Proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin Chem 2003, 498:1272–1275.

    Article  Google Scholar 

  37. Conrads TP, Fusaro VA, Ross S, et al.: High-resolution serum proteomic features for ovarian cancer detection. Endocr Relat Cancer 2004, 112:163–178.

    Article  Google Scholar 

  38. Ye B, Cramer DW, Skates SJ, et al.: Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clin Cancer Res 2003, 98:2904–2911.

    Google Scholar 

  39. Ahmed N, Barker G, Oliva KT, et al.: Proteomic-based identification of haptoglobin-1 precursor as a novel circulating biomarker of ovarian cancer. Br J Cancer 2004, 91:129–140.

    Article  PubMed  CAS  Google Scholar 

  40. Ott HW, Lindner H, Sarg B, et al.: Calgranulins in cystic fluid and serum from patients with ovarian carcinomas. Cancer Res 2003, 6321:7507–7514.

    Google Scholar 

  41. Jones MB, Krutzsch H, Shu H, et al.: Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2002, 21:76–84.

    Article  Google Scholar 

  42. Hu W, Wu W, Verschraegen CF, et al.: Proteomic identification of heat shock protein 70 as a candidate target for enhancing apoptosis induced by farnesyl transferase inhibitor. Proteomics 2003, 310:1904–1911.

    Article  CAS  Google Scholar 

  43. Young TW, Mei FC, Yang G, et al.: Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometry. Cancer Res 2004, 6413:4577–4584.

    Article  Google Scholar 

  44. Wulfkuhle JD, Aquino JA, Calvert VS, et al.: Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics 2003, 311:2085–2090.

    Article  CAS  Google Scholar 

  45. Markman M: Limitations to the use of the CA-125 antigen level in ovarian cancer. Curr Oncol Rep 2003, 54:263–264.

    Article  Google Scholar 

  46. Jacobs IJ, Skates SJ, MacDonald N, et al.: Screening for ovarian cancer: a pilot randomised controlled trial. Lancet 1999, 353:1207–1210.

    Article  PubMed  CAS  Google Scholar 

  47. Bast R, Woolas R: Screening for ovarian cancer: multiple markers may outperform CA 125 alone. BMJ 1993, 306:1684–1685.

    Article  PubMed  CAS  Google Scholar 

  48. Bast RC: Perspectives on the future of cancer markers. Clin Chem 1993, 3911:2444–2451.

    Google Scholar 

  49. Markman M: The role of CA-125 in the management of ovarian cancer. Oncologist 1997, 21:6–9.

    Google Scholar 

  50. Anderson NL, Anderson NG: The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002, 111:845–867. This article reviews the complex human-derived proteome and dynamic range of conventional proteomic technology.

    Article  CAS  Google Scholar 

  51. Issaq HJ: The role of separation science in proteomics research. Electrophoresis 2001, 2217:3629–3638.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Wu, W., Kobayashi, R. et al. Proteomics in cancer screening and management in gynecologic cancer. Curr Oncol Rep 6, 456–462 (2004). https://doi.org/10.1007/s11912-004-0076-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-004-0076-4

Keywords

Navigation