Skip to main content

Advertisement

Log in

Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

As the most frequent and vulnerable malignancy among women, breast cancer universally manifests a formidable healthcare challenge. From a biological and molecular perspective, it is a heterogenous disease and is stratified based on the etiological factors driving breast carcinogenesis. Notably, genetic predispositions and epigenetic impacts often constitute the heterogeneity of this disease. Typically, breast cancer is classified intrinsically into histological subtypes in clinical landscapes. These stratifications empower physicians to tailor precise treatments among the spectrum of breast cancer therapeutics. In this pursuit, numerous prognostic algorithms are extensively characterized, drastically changing how breast cancer is portrayed. Therefore, it is a basic requisite to comprehend the multidisciplinary rationales of breast cancer to assist the evolution of novel therapeutic strategies. This review aims at highlighting the molecular and genetic grounds of cancer additionally with therapeutic and phytotherapeutic context. Substantially, it also renders researchers with an insight into the breast cancer cell lines as a model paradigm for breast cancer research interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. De Rose F, Meduri B, Santis MCD, Ferro A, Marino L, Colciago RR, Gregucci F, Vanoni V, Apolone G, Di Cosimo S, Delaloge S, Cortes J, Curigliano G. Rethinking breast cancer follow-up based on individual risk and recurrence management. Cancer Treat Rev. 2022. https://doi.org/10.1016/j.ctrv.2022.102434.

    Article  PubMed  Google Scholar 

  2. Ataollahi MR, Sharifi J, Paknahad MR, Paknahad A. Breast cancer and associated factors: a review. J Med Life. 2015;8(4):6–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, Zeng H, Zhou J, Wei W. Global patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020. Cancer Commun. 2021;41(11):1183–94. https://doi.org/10.1002/cac2.12207.

    Article  Google Scholar 

  4. Nel J, Elkhoury K, Velot M, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioactive Mater. 2023;24:401–37. https://doi.org/10.1016/j.bioactmat.2022.12.027.

    Article  CAS  Google Scholar 

  5. He Z, Chen Z, Tan M, Elingarami S, Liu Y, Li T, Deng Y, He N, Li S, Fu J, Li W. A review on methods for diagnosis of breast cancer cells and tissues. Cell Prolif. 2020. https://doi.org/10.1111/cpr.12822.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yedjou CG, et al. Health and Racial Disparity in Breast Cancer. In: Ahmad A, editor., et al., Breast cancer metastasis and drug resistance. Advances in experimental medicine and biology, vol. 1152. Cham: Springer; 2019.

    Google Scholar 

  7. Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers. 2021;13(17):4287. https://doi.org/10.3390/cancers13174287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mokhtari-Hessari P, Montazeri A. Health-related quality of life in breast cancer patients: review of reviews from 2008 to 2018. Health Qual Life Outcomes. 2020;18:338. https://doi.org/10.1186/s12955-020-01591-x.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Anastasiadi Z, Lianos GD, Ignatiadou E, Harissis HV, Mitsis M. Breast cancer in young women: an overview. Updat Surg. 2017;69(3):313–7. https://doi.org/10.1007/s13304-017-0424-1.

    Article  Google Scholar 

  10. Barba D, Leon-Sosa A, Lugo P, Suquillo D, Torres F, Surre F, Trojman L, Caicedo A. Breast cancer screening and diagnostic tools: all you need to know. Crit Rev Oncology/Hematol. 2020. https://doi.org/10.1016/j.critrevonc.2020.103174.

    Article  Google Scholar 

  11. Voutsadakis IA, Zaman K, Leyvraz S. Breast sarcomas: current and future perspectives. The Breast. 2011;20(3):199–204. https://doi.org/10.1016/j.breast.2011.02.016.

    Article  PubMed  Google Scholar 

  12. Sheikh A, Md S, Kesharwani P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Amp Pharmacother. 2022. https://doi.org/10.1016/j.biopha.2021.112530.

    Article  Google Scholar 

  13. Strand SH, Rivero-Gutiérrez B, Houlahan KE, Seoane JA, King LM, Risom T, Simpson LA, Vennam S, Khan A, Cisneros L, Hardman T, Harmon B, Couch F, Gallagher K, Kilgore M, Wei S, DeMichele A, King T, McAuliffe PF, West RB. Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: analysis of TBCRC 038 and RAHBT cohorts. Cancer Cell. 2022;40(12):1521–36. https://doi.org/10.1016/j.ccell.2022.10.021.

    Article  CAS  PubMed  Google Scholar 

  14. Hammood ZD, Salih AM, Kakamad FH, Salih RQ, Mohammed SH, Sharif HM, Salih KM. Metaplastic breast carcinoma with invasive and high-grade ductal carcinoma in situ a rare case with review of literature. Int J Surg Open. 2022;40:100447. https://doi.org/10.1016/j.ijso.2022.100447.

    Article  Google Scholar 

  15. Zheng L, Gökmen-Polar Y, Badve SS. Is conservative management of ductal carcinoma in situ risky? Npj Breast Cancer. 2022;8:55. https://doi.org/10.1038/s41523-022-00420-2.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppalapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways genomics and molecular pathogenesis. Genes Amp Dis. 2018;5(2):77–106. https://doi.org/10.1016/j.gendis.2018.05.001.

    Article  CAS  Google Scholar 

  17. Kao Y, Wu YJ, Hsu CC, et al. Short- and long-term recurrence of early-stage invasive ductal carcinoma in middle-aged and old women with different treatments. Sci Rep. 2022;12:4422. https://doi.org/10.1038/s41598-022-08328-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Makki J. Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin Med Insights Pathol. 2015;8:23–31. https://doi.org/10.4137/CPath.S31563.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Davey MG, Keelan S, Lowery AJ, Kerin MJ. The impact of chemotherapy prescription on long-term survival outcomes in early-stage invasive lobular carcinoma – a systematic review and meta-analysis. Clin Breast Cancer. 2022;22(8):e843–9. https://doi.org/10.1016/j.clbc.2022.09.005.

    Article  CAS  PubMed  Google Scholar 

  20. McCart Reed AE, Kalinowski L, Simpson PT, et al. Invasive lobular carcinoma of the breast: the increasing importance of this special subtype. Breast Cancer Res. 2021;23:6. https://doi.org/10.1186/s13058-020-01384-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Niveria K, Yadav M, Dangi K, Verma AK. Overcoming challenges to enable targeting of metastatic breast cancer tumour microenvironment with nano-therapeutics: current status and future perspectives. OpenNano. 2022;8:100083. https://doi.org/10.1016/j.onano.2022.100083.

    Article  Google Scholar 

  22. Wu SG, Yang SP, Zhang WW, et al. The longitudinal risk of mortality between invasive ductal carcinoma and metaplastic breast carcinoma. Sci Rep. 2020;10:22070. https://doi.org/10.1038/s41598-020-79166-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. López C, Gibert-Ramos A, Bosch R, et al. Differences in the immune response of the nonmetastatic axillary lymph nodes between triple-negative and luminal a breast cancer surrogate subtypes. Am J Pathol. 2021;191(3):545–54. https://doi.org/10.1016/j.ajpath.2020.11.008.

    Article  CAS  PubMed  Google Scholar 

  24. Yersal O, Barutca S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol. 2014;5(3):412–24. https://doi.org/10.5306/wjco.v5.i3.412.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Provenzano E, Ulaner GA, Chin SF. Molecular classification of breast cancer. PET Clinics. 2018;13(3):325–38. https://doi.org/10.1016/j.cpet.2018.02.004.

    Article  PubMed  Google Scholar 

  26. Luo L, Zhang Z, Qiu N, et al. Disruption of FOXO3a-miRNA feedback inhibition of IGF2/IGF-1R/IRS1 signaling confers herceptin resistance in HER2-positive breast cancer. Nat Commun. 2021;12:2699. https://doi.org/10.1038/s41467-021-23052-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanglier T, Shim J, Lamarre N, Peña-Murillo C, Antao V, Montemurro F. Trastuzumab emtansine vs lapatinib and capecitabine in HER2-positive metastatic breast cancer brain metastases: a real-world study. The Breast. 2023. https://doi.org/10.1016/j.breast.2023.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yuan JQ, Wang SM, Guo L. S100A9 promotes glycolytic activity in HER2-positive breast cancer to induce immunosuppression in the tumour microenvironment. Heliyon. 2023. https://doi.org/10.1016/j.heliyon.2023.e13294.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fan M, Chen J, Gao J, et al. Triggering a switch from basal- to luminal-like breast cancer subtype by the small-molecule diptoindonesin G via induction of GABARAPL1. Cell Death Dis. 2020;11:635. https://doi.org/10.1038/s41419-020-02878-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, Shi B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Badve S, Dabbs D, Schnitt S, et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol. 2011;24:157–67. https://doi.org/10.1038/modpathol.2010.200.

    Article  PubMed  Google Scholar 

  32. Miglietta F, Cinquini M, Dieci MV, et al. PARP-inhibitors for BRCA1/2-related advanced HER2-negative breast cancer: a meta-analysis and GRADE recommendations by the Italian association of medical oncology. The Breast. 2022;66:293–304. https://doi.org/10.1016/j.breast.2022.10.014.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fazekas T, Széles ÁD, Teutsch B, et al. Therapeutic sensitivity to standard treatments in BRCA positive metastatic castration-resistant prostate cancer patients—a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2022. https://doi.org/10.1038/s41391-022-00626-2.

    Article  PubMed  Google Scholar 

  34. Maxwell KN, Wubbenhorst B, Wenz BM, et al. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers. Nat Commun. 2017;8:319. https://doi.org/10.1038/s41467-017-00388-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tung NM, Garber JE. BRCA1/2 testing: therapeutic implications for breast cancer management. Br J Cancer. 2018;119:141–52. https://doi.org/10.1038/s41416-018-0127-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Venkitaraman AR. How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility? DNA Repair. 2019;81:102668. https://doi.org/10.1016/j.dnarep.2019.102668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh AK, Yu X. Tissue-specific carcinogens as soil to seed BRCA1/2-mutant hereditary cancers. Trends in Cancer. 2020;6(7):559–68. https://doi.org/10.1016/j.trecan.2020.03.004.

    Article  CAS  PubMed  Google Scholar 

  38. Boonen RACM, Rodrigue A, Stoepker C, et al. Functional analysis of genetic variants in the high-risk breast cancer susceptibility gene PALB2. Nat Commun. 2019;10:5296. https://doi.org/10.1038/s41467-019-13194-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Behl S, Hamel N, de Ladurantaye M, et al. Founder BRCA1/BRCA2/PALB2 pathogenic variants in French-Canadian breast cancer cases and controls. Sci Rep. 2020;10:6491. https://doi.org/10.1038/s41598-020-63100-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu S, Qi L, Chen H, et al. Functional assessment of missense variants of uncertain significance in the cancer susceptibility gene PALB2. Npj Breast Cancer. 2022;8:86. https://doi.org/10.1038/s41523-022-00454-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ji JH, Bae SJ, Kim K, et al. Association between TP53 mutation and high 21-gene recurrence score in estrogen receptor-positive/HER2-negative breast cancer. Npj Breast Cancer. 2022;8:19. https://doi.org/10.1038/s41523-022-00384-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Williams LA, Butler EN, Sun X, et al. TP53 protein levels, RNA-based pathway assessment, and race among invasive breast cancer cases. Npj Breast Cancer. 2018;4:13. https://doi.org/10.1038/s41523-018-0067-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deng Q, Hu H, Yu X, et al. Tissue-specific microRNA expression alters cancer susceptibility conferred by a TP53 noncoding variant. Nat Commun. 2019;10:5061. https://doi.org/10.1038/s41467-019-13002-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stucci LS, Internò V, Tucci M, Perrone M, Mannavola F, Palmirotta R, Porta C. The ATM gene in breast cancer: its relevance in clinical practice. Genes. 2021;12(5):727. https://doi.org/10.3390/genes12050727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Di Benedetto A, Ercolani C, Mottolese M, et al. Analysis of the ATR-Chk1 and ATM-Chk2 pathways in male breast cancer revealed the prognostic significance of ATR expression. Sci Rep. 2017;7:8078. https://doi.org/10.1038/s41598-017-07366-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Estiar MA, Mehdipour P. ATM in breast and brain tumors: a comprehensive review. Cancer Biol Med. 2018;15(3):210–27. https://doi.org/10.20892/j.issn.2095-3941.2018.0022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moslemi M, Moradi Y, Dehghanbanadaki H, et al. The association between ATM variants and risk of breast cancer: a systematic review and meta-analysis. BMC Cancer. 2021;21:27. https://doi.org/10.1186/s12885-020-07749-6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stagni V, Manni I, Oropallo V, et al. ATM kinase sustains HER2 tumorigenicity in breast cancer. Nat Commun. 2015;6:6886. https://doi.org/10.1038/ncomms7886.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang YQ, Liang YK, Wu Y, et al. Notch3 inhibits cell proliferation and tumorigenesis and predicts better prognosis in breast cancer through transactivating PTEN. Cell Death Dis. 2021;12:502. https://doi.org/10.1038/s41419-021-03735-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carbognin L, Miglietta F, Paris I, Dieci MV. Prognostic and predictive implications of pten in breast cancer: unfulfilled promises but intriguing perspectives. Cancers. 2019;11(9):1401. https://doi.org/10.3390/cancers11091401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang HY, Liang F, Jia ZL, Song ST, Jiang ZF. PTEN mutation, methylation, and expression in breast cancer patients. Oncol Lett. 2013;6(1):161–8. https://doi.org/10.3892/ol.2013.1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bassi C, Fortin J, Snow BE, et al. The PTEN and ATM axis controls the G1/S cell cycle checkpoint and tumorigenesis in HER2-positive breast cancer. Cell Death Differ. 2021;28:3036–51. https://doi.org/10.1038/s41418-021-00799-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smyth LM, Batist G, Meric-Bernstam F, et al. Selective AKT kinase inhibitor capivasertib in combination with fulvestrant in PTEN-mutant ER-positive metastatic breast cancer. Npj Breast Cancer. 2021;7:44. https://doi.org/10.1038/s41523-021-00251-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gasparyan M, Lo MC, Jiang H, Lin CC, Sun D. Combined p53- and PTEN-deficiency activates expression of mesenchyme homeobox 1 (MEOX1) required for growth of triple-negative breast cancer. J Biol Chem. 2020;295(34):12188–202. https://doi.org/10.1074/jbc.ra119.010710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wendt C, Muranen TA, Mielikäinen L, et al. A search for modifying genetic factors in CHEK2:c.1100delC breast cancer patients. Sci Rep. 2021;11:14763. https://doi.org/10.1038/s41598-021-93926-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kriege M, Hollestelle A, Jager A, et al. Survival and contralateral breast cancer in CHEK2 1100delC breast cancer patients: impact of adjuvant chemotherapy. Br J Cancer. 2014;111:1004–13. https://doi.org/10.1038/bjc.2014.306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Apostolou P, Papasotiriou I. Current perspectives on CHEK2 mutations in breast cancer. Breast Cancer. 2017;9:331–5. https://doi.org/10.2147/BCTT.S111394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ren X, Long M, Li Z, et al. Oncogene PRR14 promotes breast cancer through activation of PI3K signal pathway and inhibition of CHEK2 pathway. Cell Death Dis. 2020;11:464. https://doi.org/10.1038/s41419-020-2640-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lei H, Sjöberg-Margolin S, Salahshor S, Werelius B, Jandáková E, Hemminki K, Lindblom A, Vorechovský I. CDH1 mutations are present in both ductal and lobular breast cancer, but promoter allelic variants show no detectable breast cancer risk. Int J Cancer. 2002;98(2):199–204. https://doi.org/10.1002/ijc.10176.

    Article  CAS  PubMed  Google Scholar 

  60. Adib E, El Zarif T, Nassar AH, et al. CDH1 germline variants are enriched in patients with colorectal cancer, gastric cancer, and breast cancer. Br J Cancer. 2022;126:797–803. https://doi.org/10.1038/s41416-021-01673-7.

    Article  CAS  PubMed  Google Scholar 

  61. Corso G, Veronesi P, Sacchini V, Galimberti V. Prognosis and outcome in CDH1-mutant lobular breast cancer. EurJ Cancer Prev: Off J Eur Cancer Prev Org. 2018;27(3):237–8. https://doi.org/10.1097/CEJ.0000000000000405.

    Article  Google Scholar 

  62. Han T, Jiang S, Zheng H, et al. Interplay between c-Src and the APC/C co-activator Cdh1 regulates mammary tumorigenesis. Nat Commun. 2019;10:3716. https://doi.org/10.1038/s41467-019-11618-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laderian B, Mundi P, Fojo T, Bates E, S. Emerging therapeutic implications of STK11 mutation: case series. Oncologist. 2020;25(9):733–7. https://doi.org/10.1634/theoncologist.2019-0846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen L, Engel BE, Welsh EA, Yoder SJ, Brantley SG, Chen DT, Beg AA, Cao C, Kaye FJ, Haura EB, Schabath MB, Cress WD. A Sensitive nanostring-based assay to score STK11 (LKB1) pathway disruption in lung adenocarcinoma. J Thorac Oncol. 2016;11(6):838–49. https://doi.org/10.1016/j.jtho.2016.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chiang JM, Chen TC. Clinical manifestations and STK11 germline mutations in Taiwanese patients with Peutz-Jeghers syndrome. Asian J Surg. 2018;41(5):480–5. https://doi.org/10.1016/j.asjsur.2017.08.00.

    Article  PubMed  Google Scholar 

  66. Forte G, Cariola F, De Marco K, Manghisi A, Guglielmi FA, Armentano R, Lippolis G, Giorgio P, Simone C, Disciglio V. A novel STK11 gene mutation in a Peutz-Jeghers family and evidence of higher gastric cancer susceptibility associated with alterations (c.388dupG, p.Glu130Glyfs∗33) in STK11 region aa 107–170. Genes Amp Dis. 2022;9(2):288–91. https://doi.org/10.1016/j.gendis.2021.11.002.

    Article  CAS  Google Scholar 

  67. Krishnamurthy N, Goodman AM, Barkauskas DA, Kurzrock R. STK11 alterations in the pan-cancer setting: prognostic and therapeutic implications. Eur J Cancer. 2021;148:215–29. https://doi.org/10.1016/j.ejca.2021.01.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lubián López DM, Butrón Hinojo CA, Castillo Lara M, et al. Relationship of breast volume, obesity, and central obesity with different prognostic factors of breast cancer. Sci Rep. 2021;11:1872. https://doi.org/10.1038/s41598-021-81436-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Amadou A, Torres Mejia G, Fagherazzi G, Ortega C, Angeles-Llerenas A, Chajes V, Biessy C, Sighoko D, Hainaut P, Romieu I. Anthropometry, silhouette trajectory, and risk of breast cancer in Mexican women. Am J Prev Med. 2014;46(3):S52–64. https://doi.org/10.1016/j.amepre.2013.10.024.

    Article  PubMed  Google Scholar 

  70. Hashemi SH, Karimi S, Mahboobi H. Lifestyle changes for prevention of breast cancer. Electron phys. 2014;6(3):894–905. https://doi.org/10.14661/2014.894-905.

    Article  Google Scholar 

  71. Nazari SS, Mukherjee P. An overview of mammographic density and its association with breast cancer. Breast Cancer. 2018;25(3):259–67. https://doi.org/10.1007/s12282-018-0857-5.

    Article  PubMed  Google Scholar 

  72. Dierssen-Sotos T, Palazuelos-Calderón C, Jiménez-Moleón JJ, et al. Reproductive risk factors in breast cancer and genetic hormonal pathways: a gene-environment interaction in the MCC-Spain project. BMC Cancer. 2018;18:280. https://doi.org/10.1186/s12885-018-4182-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Heikkinen S, Koskenvuo M, Malila N, et al. Use of exogenous hormones and the risk of breast cancer: results from self-reported survey data with validity assessment. Cancer Causes Control. 2016;27:249–58. https://doi.org/10.1007/s10552-015-0702-5.

    Article  PubMed  Google Scholar 

  74. Garcia-Martinez L, Zhang Y, Nakata Y, et al. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun. 2021;12:1786. https://doi.org/10.1038/s41467-021-22024-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: modifying role of environmental and bioactive food compounds. Mol Nutr Food Res. 2016;60(6):1310–29. https://doi.org/10.1002/mnfr.201501063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sher G, Salman NA, Khan AQ, Prabhu KS, Raza A, Kulinski M, Dermime S, Haris M, Junejo K, Uddin S. Epigenetic and breast cancer therapy: Promising diagnostic and therapeutic applications. Semin Cancer Biol. 2022;83:152–65. https://doi.org/10.1016/j.semcancer.2020.08.009.

    Article  CAS  PubMed  Google Scholar 

  77. Fleischer T, Tekpli X, Mathelier A, et al. DNA methylation at enhancers identifies distinct breast cancer lineages. Nat Commun. 2017;8:1379. https://doi.org/10.1038/s41467-017-00510-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lustberg MB, Ramaswamy B. Epigenetic therapy in breast cancer. Cur Breast Cancer Rep. 2011;3(1):34–43. https://doi.org/10.1007/s12609-010-0034-0.

    Article  CAS  Google Scholar 

  79. Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8(4):019521. https://doi.org/10.1101/cshperspect.a019521.

    Article  Google Scholar 

  80. Jin W, Li QZ, Liu Y, Zuo YC. Effect of the key histone modifications on the expression of genes related to breast cancer. Genomics. 2020;112(1):853–8. https://doi.org/10.1016/j.ygeno.2019.05.026.

    Article  CAS  PubMed  Google Scholar 

  81. Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting histone modifications in breast cancer: a precise weapon on the way. Front Cell Dev Biol. 2021;9:736935. https://doi.org/10.3389/fcell.2021.736935.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang T, Hu H, Yan G, Wu T, Liu S, Chen W, Ning Y, Lu Z. Long Non-Coding RNA and breast cancer. Technol Cancer Res Treat. 2019;18:1533033819843889. https://doi.org/10.1177/1533033819843889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Klinge CM. Non-Coding RNAs in breast cancer: intracellular and intercellular communication. Non-coding RNA. 2018;4(4):40. https://doi.org/10.3390/ncrna4040040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Parfenyev S, Singh A, Fedorova O, Daks A, Kulshreshtha R, Barlev NA. Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer. Cell Death Dis. 2021;12(1):17. https://doi.org/10.1038/s41419-020-03327-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu L, Zhang Y, Lu J. The roles of long noncoding RNAs in breast cancer metastasis. Cell Death Dis. 2020;11:749. https://doi.org/10.1038/s41419-020-02954-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rezaie N, Bayati M, Hamidi M, Tahaei MS, Khorasani S, Lovell NH, Breen J, Rabiee HR, Alinejad-Rokny H. Somatic point mutations are enriched in non-coding RNAs with possible regulatory function in breast cancer. Commun Biol. 2022. https://doi.org/10.1038/s42003-022-03528-0.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sun J, Li X, Yin J, Chen X, Zhu Z, Wu R, Yu E, Mao Z. Long non coding RNA COX10-DT promotes the progression of breast cancer via the COX10-DT/miR-206/BDNF axis. Biochem Biophys Res Commun. 2023;639:46–53. https://doi.org/10.1016/j.bbrc.2022.11.057.

    Article  CAS  PubMed  Google Scholar 

  88. Kärkkäinen E, Heikkinen S, Tengström M, Kosma V, Mannermaa A, Hartikainen JM. Expression profiles of small non-coding RNAs in breast cancer tumors characterize clinicopathological features and show prognostic and predictive potential. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-26954-w.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Abbas MA, El Sayed IET, Kamel Abdu-Allah AM, Kalam A, Al-Sehemi AG, Al-Hartomy OA, El-rahman M SA. Expression of MiRNA-29b and MiRNA-31 and their diagnostic and prognostic values in Egyptian females with breast cancer. Non-Coding RNA Res. 2022;7(4):248–57. https://doi.org/10.1016/j.ncrna.2022.09.003.

    Article  CAS  Google Scholar 

  90. Ahmed R, Samanta S, Banerjee J, Kar SS, Dash SK. Modulatory role of miRNAs in thyroid and breast cancer progression and insights into their therapeutic manipulation. Cur Res Pharmacol Drug Dis. 2022;3:100131. https://doi.org/10.1016/j.crphar.2022.100131.

    Article  Google Scholar 

  91. Ortega MA, Fraile-Martínez O, Asúnsolo Á, Buján J, García-Honduvilla N, Coca S. Signal transduction pathways in breast cancer: the important role of PI3K/Akt/mTOR. J Oncol. 2020;2020:9258396. https://doi.org/10.1155/2020/9258396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Juliano R. Addressing cancer signal transduction pathways with antisense and siRNA oligonucleotides. NAR Cancer. 2020. https://doi.org/10.1093/narcan/zcaa025.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Pagliuca M, Donato M, D’Amato AL, Rosanova M, Russo AOM, Scafetta R, De Angelis C, Trivedi MV, André F, Arpino G, Del Mastro L, De Laurentiis M, Puglisi F, Giuliano M. New steps on an old path: novel estrogen receptor inhibitors in breast cancer. Crit Rev Oncology/Hematol. 2022. https://doi.org/10.1016/j.critrevonc.2022.103861.

    Article  Google Scholar 

  94. Kulkoyluoglu E, Madak-Erdogan Z. Nuclear and extranuclear-initiated estrogen receptor signaling crosstalk and endocrine resistance in breast cancer. Steroids. 2016;114:41–7. https://doi.org/10.1016/j.steroids.2016.06.007.

    Article  PubMed  Google Scholar 

  95. Kulkoyluoglu-Cotul E, Arca A, Madak-Erdogan Z. Crosstalk between estrogen signaling and breast cancer metabolism. Trends Endocrinol Metab. 2019;30(1):25–38. https://doi.org/10.1016/j.tem.2018.10.006.

    Article  CAS  PubMed  Google Scholar 

  96. Thaler S, Schmidt M, Schad A, et al. RASSF1A inhibits estrogen receptor alpha expression and estrogen-independent signaling: implications for breast cancer development. Oncogene. 2012;31:4912–22. https://doi.org/10.1038/onc.2011.658.

    Article  CAS  PubMed  Google Scholar 

  97. Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26(45):6469–87. https://doi.org/10.1038/sj.onc.1210477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gutierrez C, Schiff R. HER2: biology, detection, and clinical implications. Arch Pathol Lab Med. 2011;135(1):55–62. https://doi.org/10.5858/2010-0454-RAR.1.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Stanley A, Ashrafi GH, Seddon AM, et al. Synergistic effects of various Her inhibitors in combination with IGF-1R, C-MET, and Src targeting agents in breast cancer cell lines. Sci Rep. 2017;7:3964. https://doi.org/10.1038/s41598-017-04301-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shah D, Osipo C. Cancer stem cells and HER2 positive breast cancer: the story so far. Genes & diseases. 2016;3(2):114–23. https://doi.org/10.1016/j.gendis.2016.02.002.

    Article  CAS  Google Scholar 

  101. Noh DY, Han W, Toi M. Translational Research in Breast Cancer. In: Noh DY, Han W, Toi M, editors. Advances in experimental medicine and biology. Singapore: Springer; 2021.

    Google Scholar 

  102. Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int. 2014. https://doi.org/10.1155/2014/852748.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Goutsouliak K, Veeraraghavan J, Sethunath V, De Angelis C, Osborne CK, Rimawi MF, Schiff R. Towards a personalized treatment for early stage HER2-positive breast cancer. Nat Rev Clin Oncol. 2019;17(4):233–50. https://doi.org/10.1038/s41571-019-0299-9.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2022. https://doi.org/10.1038/s41573-022-00579-0.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yang K, Wang X, Zhang H, et al. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Lab Invest. 2016;96:116–36. https://doi.org/10.1038/labinvest.2015.144.

    Article  CAS  PubMed  Google Scholar 

  106. Lee H, Lim S, Han J. Wnt/β-catenin signaling pathway activation is required for proliferation of chicken primordial germ cells in vitro. Sci Rep. 2016;6:34510. https://doi.org/10.1038/srep34510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75. https://doi.org/10.4161/org.4.2.5851.

    Article  PubMed  PubMed Central  Google Scholar 

  108. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26. https://doi.org/10.1016/j.devcel.2009.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ramani NS, Aung PP, Gu J, et al. TERT amplification but not activation of canonical Wnt/β-catenin pathway is involved in acral lentiginous melanoma progression to metastasis. Mod Pathol. 2020;33:2067–74. https://doi.org/10.1038/s41379-020-0565-5.

    Article  CAS  PubMed  Google Scholar 

  110. Naruse H, Itoh S, Itoh Y, et al. The Wnt/β-catenin signaling pathway has a healing ability for periapical periodontitis. Sci Rep. 2021;11:19673. https://doi.org/10.1038/s41598-021-99231-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Deng R, Zuo C, Li Y, et al. The innate immune effector ISG12a promotes cancer immunity by suppressing the canonical Wnt/β-catenin signaling pathway. Cell Mol Immunol. 2020;17:1163–79. https://doi.org/10.1038/s41423-020-00549-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Howe LR, Brown AM. Wnt signaling and breast cancer. Cancer Biol Ther. 2004;3(1):36–41. https://doi.org/10.4161/cbt.3.1.561.

    Article  CAS  PubMed  Google Scholar 

  113. Shukla S, Sinha S, Khan S, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860. https://doi.org/10.1038/srep21860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang S, Miyakawa A, Wickström M, et al. GIT1 protects against breast cancer growth through negative regulation of Notch. Nat Commun. 2022;13:1537. https://doi.org/10.1038/s41467-022-28631-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kontomanolis EN, Kalagasidou S, Pouliliou S, Anthoulaki X, Georgiou N, Papamanolis V, Fasoulakis ZN. The Notch pathway in breast cancer progression. Sci World J. 2018;2018:2415489. https://doi.org/10.1155/2018/2415489.

    Article  CAS  Google Scholar 

  116. Andersson E, Lendahl U. Therapeutic modulation of Notch signaling—Are we there yet? Nat Rev Drug Discov. 2014;13:357–78. https://doi.org/10.1038/nrd4252.

    Article  CAS  PubMed  Google Scholar 

  117. Edwards A, Brennan K. Notch signaling in breast development and cancer. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2021.692173.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Krishna BM, Jana S, Singhal J, Horne D, Awasthi S, Salgia R, Singhal SS. Notch signaling in breast cancer: from pathway analysis to therapy. Cancer Lett. 2019;461:123–31. https://doi.org/10.1016/j.canlet.2019.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC. Breast cancer stem cells: biology and therapeutic implications. Int J Biochem Cell Biol. 2019;107:38–52. https://doi.org/10.1016/j.biocel.2018.12.001.

    Article  CAS  PubMed  Google Scholar 

  120. Chen W, Wei W, Yu L, Ye Z, Huang F, Zhang L, Hu S, Cai C. Mammary development and breast cancer: a notch perspective. J Mammary Gland Biol Neoplasia. 2021;26(3):309–20. https://doi.org/10.1007/s10911-021-09496-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xue C, Li G, Lu J, et al. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Sig Transduct Target Ther. 2021;6:400. https://doi.org/10.1038/s41392-021-00788-w.

    Article  CAS  Google Scholar 

  122. Janku F, Yap T, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15:273–91. https://doi.org/10.1038/nrclinonc.2018.28.

    Article  CAS  PubMed  Google Scholar 

  123. Li H, Prever L, Hirsch E, Gulluni F. Targeting PI3K/AKT/mTOR signaling pathway in breast cancer. Cancers. 2021;13(14):3517. https://doi.org/10.3390/cancers13143517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. He Y, Sun MM, Zhang GG, et al. Targeting PI3K/Akt signal transduction for cancer therapy. Sig Transduct Target Ther. 2021;6:425. https://doi.org/10.1038/s41392-021-00828-5.

    Article  CAS  Google Scholar 

  125. Ibrahim SSA, El-Aal SAA, Reda AM, et al. Anti-neoplastic action of Cimetidine/Vitamin C on histamine and the PI3K/AKT/mTOR pathway in Ehrlich breast cancer. Sci Rep. 2022;12:11514. https://doi.org/10.1038/s41598-022-15551-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Woo SU, Sangai T, Akcakanat A, et al. Vertical inhibition of the PI3K/Akt/mTOR pathway is synergistic in breast cancer. Oncogenesis. 2017;6:e385. https://doi.org/10.1038/oncsis.2017.86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fujimoto Y, Morita TY, Ohashi A, et al. Combination treatment with a PI3K/Akt/mTOR pathway inhibitor overcomes resistance to anti-HER2 therapy in PIK3CA-mutant HER2-positive breast cancer cells. Sci Rep. 2020;10:21762. https://doi.org/10.1038/s41598-020-78646-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Paplomata E, O’Regan R. The PI3K/AKT/mTOR pathway in breast cancer: targets, trials, and biomarkers. Ther Adv Med Oncol. 2014;6(4):154–66. https://doi.org/10.1177/1758834014530023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bhateja P, Cherian M, Majumder S, Ramaswamy B. The hedgehog signaling pathway: a viable target in breast cancer? Cancers. 2019;11(8):1126. https://doi.org/10.3390/cancers11081126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Noman A, Uddin M, Rahman M, et al. Overexpression of sonic hedgehog in the triple negative breast cancer: clinicopathological characteristics of high burden breast cancer patients from Bangladesh. Sci Rep. 2016;6:18830. https://doi.org/10.1038/srep18830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Han X, Li B. The emerging role of noncoding RNAs in the Hedgehog signaling pathway in cancer. Biomed Amp Pharmacother. 2022. https://doi.org/10.1016/j.biopha.2022.113581.

    Article  Google Scholar 

  132. Di Mauro C, Rosa R, D’Amato V, et al. Hedgehog signaling pathway orchestrates angiogenesis in triple-negative breast cancers. Br J Cancer. 2017;116:1425–35. https://doi.org/10.1038/bjc.2017.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Niyaz M, Khan MS, Mudassar S. Hedgehog signaling: an achilles’ heel in cancer. Trans Oncol. 2019;12(10):1334–44. https://doi.org/10.1016/j.tranon.2019.07.004.

    Article  Google Scholar 

  134. Sanft T, Day A, Peterson L, Rodriguez MA, Ansbaugh S, Armenian S, Freedman-Cass DA. NCCN guidelines® Insights: survivorship, version 1.2022: featured updates to the NCCN Guidelines. J Natl Compr Cancer Netw. 2022;20(10):1080–90. https://doi.org/10.6004/jnccn.2022.0052.

    Article  Google Scholar 

  135. Agrawal A, Tripathi P, Sahu A, Daftary J. Breast screening revisited. J Family Med Prim Care. 2014;3(4):340–4. https://doi.org/10.4103/2249-4863.148103.

    Article  PubMed  PubMed Central  Google Scholar 

  136. McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89–94. https://doi.org/10.1038/s41586-019-1799-6.

    Article  CAS  PubMed  Google Scholar 

  137. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, Zackrisson S, Senkus E. Early breast cancer: ESMO Clinical Practice guidelines for diagnosis, treatment, and follow-up†. Ann Oncol. 2019;30(8):1194–220. https://doi.org/10.1093/annonc/mdz173.

    Article  CAS  PubMed  Google Scholar 

  138. Nduka IJ, Ejie IL, Okafor CE, Eleje GU, Ekwunife OI. Interventions to increase mammography screening uptake among women living in low-income and middle-income countries: a protocol for a systematic review. BMJ Open. 2022;12(3):e056901. https://doi.org/10.1136/bmjopen-2021-056901.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ding L, Poelhekken K, Greuter MJW, Truyen I, De Schutter H, Goossens M, Houssami N, Van Hal G, de Bock GH. Overdiagnosis of invasive breast cancer in population-based breast cancer screening: a short- and long-term perspective. Eur J Cancer. 2022;173:1–9. https://doi.org/10.1016/j.ejca.2022.06.027.

    Article  PubMed  Google Scholar 

  140. Ding L, Greuter MJW, Truyen I, Goossens M, De Schutter H, de Bock GH, Van Hal G. Irregular screening participation increases advanced stage breast cancer at diagnosis: a population-based study. The Breast. 2022;65:61–6. https://doi.org/10.1016/j.breast.2022.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ghaemian N, Tehrani HGN, Nabahati M. Accuracy of mammography and ultrasonography and their BI-RADS in detection of breast malignancy. Caspian J Intern Med. 2021;12(4):573–9. https://doi.org/10.22088/cjim.12.4.573.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Magny SJ, Shikhman R, Keppke AL. Breast Imaging Reporting and Data System. [Updated 2022 Aug 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459169/

  143. Barba D, León-Sosa A, Lugo P, Suquillo D, Torres F, Surre F, Caicedo A. Breast cancer, screening, and diagnostic tools: all you need to know. Crit Rev Oncology/Hematol. 2021;157:103174. https://doi.org/10.1016/j.critrevonc.2020.103174.

    Article  Google Scholar 

  144. Radhakrishna S, Agarwal S, Parikh PM, Kaur K, Panwar S, Sharma S, Dey A, Saxena KK, Chandra M, Sud S. Role of magnetic resonance imaging in breast cancer management. South Asian J Cancer. 2018;7(2):69–71. https://doi.org/10.4103/sajc.sajc_104_18.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Schoub PK. Understanding indications and defining guidelines for breast magnetic resonance imaging. SA J Radiol. 2018;22(2):1353. https://doi.org/10.4102/sajr.v22i2.1353.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Mann RM, Balleyguier C, Baltzer PA, et al. Breast MRI: EUSOBI recommendations for women’s information. Eur Radiol. 2015;25:3669–78. https://doi.org/10.1007/s00330-015-3807-z.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ye H, Hang J, Zhang M, et al. Automatic identification of triple negative breast cancer in ultrasonography using a deep convolutional neural network. Sci Rep. 2021;11:20474. https://doi.org/10.1038/s41598-021-00018-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sood R, Rositch AF, Shakoor D, Ambinder E, Pool KL, Pollack E, Mollura DJ, Mullen LA, Harvey SC. Ultrasound for breast cancer detection globally: a systematic review and meta-analysis. J Global Oncol. 2019;5:1–17. https://doi.org/10.1200/JGO.19.00127.

    Article  Google Scholar 

  149. Geisel J, Raghu M, Hooley R. The role of ultrasound in breast cancer screening: the case for and against ultrasound. Semin Ultrasound CT MR. 2018;39(1):25–34. https://doi.org/10.1053/j.sult.2017.09.006.

    Article  PubMed  Google Scholar 

  150. Lee EJ, Chang YW. Prospective analysis of breast masses using the combined score for quantitative ultrasonography parameters. Sci Rep. 2022;12:16205. https://doi.org/10.1038/s41598-022-19971-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Irwig L, Houssami N, van Vliet C. New technologies in screening for breast cancer: a systematic review of their accuracy. Br J Cancer. 2004;90:2118–22. https://doi.org/10.1038/sj.bjc.6601836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Damera A, Evans A, Cornford E, et al. Diagnosis of axillary nodal metastases by ultrasound-guided core biopsy in primary operable breast cancer. Br J Cancer. 2003;89:1310–3. https://doi.org/10.1038/sj.bjc.6601290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gamble P, Jaroensri R, Wang H, et al. Determining breast cancer biomarker status and associated morphological features using deep learning. Commun Med. 2021;1:14. https://doi.org/10.1038/s43856-021-00013-3.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer. The Lancet. 2021;397(10286):1750–69. https://doi.org/10.1016/S0140-6736(20)32381-3.

    Article  CAS  Google Scholar 

  155. Seale KN, Tkaczuk KHR. Circulating biomarkers in breast cancer. Clin Breast Cancer. 2022;22(3):e319–31. https://doi.org/10.1016/j.clbc.2021.09.006.

    Article  CAS  PubMed  Google Scholar 

  156. Matsumoto A, Jinno H, Ando T, Fujii T, Nakamura T, Saito J, Takahashi M, Hayashida T, Kitagawa Y. Biological markers of invasive breast cancer. Jpn J Clin Oncol. 2016;46(2):99–105. https://doi.org/10.1093/jjco/hyv153.

    Article  PubMed  Google Scholar 

  157. Duffy MJ, Walsh S, McDermott EW, Crown J. Biomarkers in breast cancer: where are we and where are we going? Adv Clin Chem. 2015;71:1–23. https://doi.org/10.1016/bs.acc.2015.05.001.

    Article  CAS  PubMed  Google Scholar 

  158. Perrier A, Gligorov J, Lefèvre G, et al. The extracellular domain of Her2 in serum as a biomarker of breast cancer. Lab Invest. 2018;98:696–707. https://doi.org/10.1038/s41374-018-0033-8.

    Article  CAS  PubMed  Google Scholar 

  159. Talvinen K, Tuikkala J, Nevalainen O, et al. Proliferation marker securin identifies favourable outcome in invasive ductal breast cancer. Br J Cancer. 2008;99:335–40. https://doi.org/10.1038/sj.bjc.6604475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. de Azambuja E, Cardoso F, de Castro G, et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12 155 patients. Br J Cancer. 2007;96:1504–13. https://doi.org/10.1038/sj.bjc.6603756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Matsuse M, Yabuta T, Saenko V, et al. TERT promoter mutations and Ki-67 labeling index as a prognostic marker of papillary thyroid carcinomas: combination of two independent factors. Sci Rep. 2017;7:41752. https://doi.org/10.1038/srep41752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhu X, Chen L, Huang B, et al. The prognostic and predictive potential of Ki-67 in triple-negative breast cancer. Sci Rep. 2020;10:225. https://doi.org/10.1038/s41598-019-57094-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Majewski I, Bernards R. Taming the dragon: genomic biomarkers to individualize the treatment of cancer. Nat Med. 2011;17:304–12. https://doi.org/10.1038/nm.2311.

    Article  CAS  PubMed  Google Scholar 

  164. Walsh MF, Nathanson KL, Couch FJ, Offit K. Genomic biomarkers for breast cancer risk. Adv Exp Med Biol. 2016;882:1–32. https://doi.org/10.1007/978-3-319-22909-6_1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Almangush A, Jouhi L, Atula T, et al. Tumor-infiltrating lymphocytes in oropharyngeal cancer: a validation study according to the criteria of the International immuno-oncology biomarker working group. Br J Cancer. 2022;126:1589–94. https://doi.org/10.1038/s41416-022-01708-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Balermpas P, Michel Y, Wagenblast J, et al. Tumor-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer. Br J Cancer. 2014;110:501–9. https://doi.org/10.1038/bjc.2013.640.

    Article  CAS  PubMed  Google Scholar 

  167. Shaban M, Khurram SA, Fraz MM, et al. A novel digital score for abundance of tumor infiltrating lymphocytes predicts disease free survival in oral squamous cell carcinoma. Sci Rep. 2019;9:13341. https://doi.org/10.1038/s41598-019-49710-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jiang D, Liu Y, Wang H, et al. Tumor infiltrating lymphocytes correlate with improved survival in patients with esophageal squamous cell carcinoma. Sci Rep. 2017;7:44823. https://doi.org/10.1038/srep44823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kim A, Lee SJ, Kim YK, et al. Programmed death-ligand 1 (PD-L1) expression in tumor cell and tumor infiltrating lymphocytes of HER2-positive breast cancer and its prognostic value. Sci Rep. 2017;7:11671. https://doi.org/10.1038/s41598-017-11905-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. De Mattos-Arruda L, Caldas C. Cell-free circulating tumor DNA as a liquid biopsy in breast cancer. Mol Oncol. 2016;10(3):464–74. https://doi.org/10.1016/j.molonc.2015.12.001.

    Article  CAS  PubMed  Google Scholar 

  171. Chen YH, Hancock BA, Solzak JP, et al. Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy. Npj Breast Cancer. 2017;3:24. https://doi.org/10.1038/s41523-017-0028-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. O’Leary B, Hrebien S, Morden JP, et al. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. Nat Commun. 2018;9:896. https://doi.org/10.1038/s41467-018-03215-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Walker NJ, Rashid M, Yu S, et al. Hydroxymethylation profile of cell-free DNA is a biomarker for early colorectal cancer. Sci Rep. 2022;12:16566. https://doi.org/10.1038/s41598-022-20975-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Panagopoulou M, Karaglani M, Balgkouranidou I, et al. Circulating cell-free DNA in breast cancer: size profiling, levels, and methylation patterns lead to prognostic and predictive classifiers. Oncogene. 2019;38:3387–401. https://doi.org/10.1038/s41388-018-0660-y.

    Article  CAS  PubMed  Google Scholar 

  175. Hao T, Shi W, Shen X, et al. Circulating cell-free DNA in serum as a biomarker for diagnosis and prognostic prediction of colorectal cancer. Br J Cancer. 2014;111:1482–9. https://doi.org/10.1038/bjc.2014.470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Pang S, Li H, Xu S, et al. Circulating tumor cells at baseline and late phase of treatment provide prognostic value in breast cancer. Sci Rep. 2021;11:13441. https://doi.org/10.1038/s41598-021-92876-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. De Mattos-Arruda L, Cortes J, Santarpia L, et al. Circulating tumor cells and cell-free DNA as tools for managing breast cancer. Nat Rev Clin Oncol. 2013;10:377–89. https://doi.org/10.1038/nrclinonc.2013.80.

    Article  CAS  PubMed  Google Scholar 

  178. Zou R, Loke SY, Tang YC, et al. Development and validation of a circulating microRNA panel for the early detection of breast cancer. Br J Cancer. 2022;126:472–81. https://doi.org/10.1038/s41416-021-01593-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Qu K, Zhang X, Lin T, et al. Circulating miRNA-21-5p as a diagnostic biomarker for pancreatic cancer: evidence from comprehensive miRNA expression profiling analysis and clinical validation. Sci Rep. 2017;7:1692. https://doi.org/10.1038/s41598-017-01904-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dabi Y, Bendifallah S, Suisse S, Haury J, Touboul C, Puchar A, Favier A, Daraï E. Overview of non-coding RNAs in breast cancers. Trans Oncol. 2022;25:101512. https://doi.org/10.1016/j.tranon.2022.101512.

    Article  CAS  Google Scholar 

  181. Nicolini A, Ferrari P, Duffy MJ. Prognostic and predictive biomarkers in breast cancer: Past, present and future. Semi Cancer Biol. 2018;52:56–73. https://doi.org/10.1016/j.semcancer.2017.08.010.

    Article  CAS  Google Scholar 

  182. Győrffy B, Hatzis C, Sanft T, et al. Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res. 2015;17:11. https://doi.org/10.1186/s13058-015-0514-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Arango BA, Rivera CL, Glück S. Gene expression profiling in breast cancer. Am J Trans Res. 2013;5(2):132–8.

    CAS  Google Scholar 

  184. Noordhoek I, Bastiaannet E, De Glas NA, Scheepens J, Esserman LJ, Wesseling J, Scholten AN, Schröder CP, Elias SG, Kroep JR, Portielje JE, Kleijn M, Liefers GJ. Validation of the 70-gene signature test (MammaPrint) to identify patients with breast cancer aged ≥ 70 years with ultralow risk of distant recurrence: a population-based cohort study. J Geriatric Oncol. 2022;13(8):1172–7. https://doi.org/10.1016/j.jgo.2022.07.006.

    Article  CAS  Google Scholar 

  185. Baskota SU, Dabbs DJ, Clark BZ, Bhargava R. Prosigna® breast cancer assay: histopathologic correlation development and assessment of size nodal status Ki-67 (SiNK™) index for breast cancer prognosis. Modern pathol. 2021;34(1):70–6. https://doi.org/10.1038/s41379-020-0643-8.

    Article  CAS  Google Scholar 

  186. Hicks DG, Lester SC. Expression Profiling, Oncotype DX Assay. In: Hicks David G, Lester Susan C, editors. Diagnostic pathology, diagnostic pathology: breast. 2nd ed. Amsterdam: Elsevier; 2016. p. 478–81.

    Chapter  Google Scholar 

  187. Fayanju OM, Park KU, Lucci A. Molecular genomic testing for breast cancer: utility for surgeons. Ann Surg Oncol. 2018;25(2):512–9. https://doi.org/10.1245/s10434-017-6254-z.

    Article  PubMed  Google Scholar 

  188. Jerevall PL, Ma XJ, Li H, et al. Prognostic utility of HOXB13: IL17BR and molecular grade index in early-stage breast cancer patients from the Stockholm trial. Br J Cancer. 2011;104:1762–9. https://doi.org/10.1038/bjc.2011.145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Waks AG, Winer EP. Breast cancer treatment. JAMA. 2019;321(3):288. https://doi.org/10.1001/jama.2018.19323.

    Article  CAS  PubMed  Google Scholar 

  190. Hack CC, Voiß P, Lange S, Paul AE, Conrad S, Dobos GJ, Beckmann MW, Kümmel S. Local and systemic therapies for breast cancer patients: reducing short-term symptoms with the methods of integrative medicine. Geburtshilfe Frauenheilkd. 2015;75(7):675–82. https://doi.org/10.1055/s-0035-1557748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Riis M. Modern surgical treatment of breast cancer. Ann Med Surg. 2020;2012(56):95–107. https://doi.org/10.1016/j.amsu.2020.06.016.

    Article  Google Scholar 

  192. Hamdi M, Cheng J. Repair of the partial mastectomy defect with delayed free tissue transfer. Oncoplast Surg Breast. 2009. https://doi.org/10.1016/b978-0-7020-3181-6.00014-8.

    Article  Google Scholar 

  193. Chatterjee A, Serniak N, Czerniecki BJ. Sentinel lymph node biopsy in breast cancer: a work in progress. Cancer J. 2015;21(1):7–10. https://doi.org/10.1097/PPO.0000000000000090.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Franco P, De Felice F, Jagsi R, Nader Marta G, Kaidar-Person O, Gabrys D, Kim K, Ramiah D, Meattini I, Poortmans P. Breast cancer radiation therapy: a bibliometric analysis of the scientific literature. Clin Trans Radiat Oncol. 2023;39:100556. https://doi.org/10.1016/j.ctro.2022.11.015.

    Article  Google Scholar 

  195. Lester J. Local treatment of breast cancer. Semin Oncol Nurs. 2015;31(2):122–33. https://doi.org/10.1016/j.soncn.2015.02.001.

    Article  PubMed  Google Scholar 

  196. Boria AJ, Perez-Torres CJ. Minimal difference between fractionated and single-fraction exposure in a murine model of radiation necrosis. Radiat Oncol. 2019;14:144. https://doi.org/10.1186/s13014-019-1356-3.

    Article  PubMed Central  Google Scholar 

  197. Ghaderi N, Jung J, Brüningk SC, Subramanian A, Nassour L, Peacock J. A century of fractionated radiotherapy: how mathematical oncology can break the rules. Int J Mol Sci. 2022;23(3):1316. https://doi.org/10.3390/ijms23031316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Teven CM, Schmid DB, Sisco M, Ward J, Howard MA. Systemic therapy for early-stage breast cancer: what the plastic surgeon should know. Eplasty. 2017;17: e7.

    PubMed  PubMed Central  Google Scholar 

  199. Fisusi FA, Akala EO. Drug combinations in breast cancer therapy. Pharm Nanotechnol. 2019;7(1):3–23. https://doi.org/10.2174/2211738507666190122111224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Blondeaux E, Lambertini M, Michelotti A, et al. Dose-dense adjuvant chemotherapy in early breast cancer patients: 15-year results of the phase 3 mammella intergruppo (MIG)-1 study. Br J Cancer. 2020;122:1611–7. https://doi.org/10.1038/s41416-020-0816-8.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Aarnoutse R, Ziemons J, Hillege LE, et al. Changes in intestinal microbiota in postmenopausal oestrogen receptor-positive breast cancer patients treated with (neo)adjuvant chemotherapy. Npj Breast Cancer. 2022;8:89. https://doi.org/10.1038/s41523-022-00455-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zheng S, Li L, Chen M, Yang B, Chen J, Liu G, Shao Z, Wu J. Benefits of neoadjuvant therapy compared with adjuvant chemotherapy for the survival of patients with HER2-positive breast cancer: a retrospective cohort study at FUSCC. The Breast. 2022;63:177–86. https://doi.org/10.1016/j.breast.2022.03.015.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Akbari ME, Ghelichi-Ghojogh M, Nikeghbalian Z, Karami M, Akbari A, Hashemi M, Nooraei S, Ghiasi M, Fararouei M, Moradian F. Neoadjuvant VS adjuvant chemotherapy in patients with locally advanced breast cancer; a retrospective cohort study. Ann Med Surg. 2022;84:104921. https://doi.org/10.1016/j.amsu.2022.104921.

    Article  Google Scholar 

  204. Nakao M, Komatsu H, Hayashida T, Takahashi M, Seki T, Yagasaki K. The relationship between work-related outcomes and symptoms in early breast cancer survivors receiving adjuvant endocrine therapy. Asia Pac J Oncol Nurs. 2022;9(3):174–8. https://doi.org/10.1016/j.apjon.2022.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Smith KL, Stearns V. Adjuvant endocrine therapy. The Breast. 2018. https://doi.org/10.1016/b978-0-323-35955-9.00054-4.

    Article  PubMed  Google Scholar 

  206. Lambert LK, Balneaves LG, Howard A, et al. Understanding adjuvant endocrine therapy persistence in breast cancer survivors. BMC Cancer. 2018;18:732. https://doi.org/10.1186/s12885-018-4644-7.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Masoud V, Pagès G. Targeted therapies in breast cancer: new challenges to fight against resistance. World J Clin Oncol. 2017;8(2):120–34. https://doi.org/10.5306/wjco.v8.i2.120.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Vu T, Claret FX. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol. 2012;2:62. https://doi.org/10.3389/fonc.2012.00062.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Nami B, Maadi H, Wang Z. Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancers. 2018;10(10):342. https://doi.org/10.3390/cancers10100342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Liu M, Liu H, Chen J. Mechanisms of the CDK4/6 inhibitor palbociclib (PD 0332991) and its future application in cancer treatment (Review). Oncol Rep. 2018;39(3):901–11. https://doi.org/10.3892/or.2018.6221.

    Article  CAS  PubMed  Google Scholar 

  211. Schlam I, Nunes R, Lynce F. Profile of margetuximab: evidence to date in the targeted treatment of metastatic HER2-positive breast cancer. Onco Targets Ther. 2022;15:471–8. https://doi.org/10.2147/OTT.S272197.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Segovia-Mendoza M, González-González ME, Barrera D, Díaz L, García-Becerra R. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence. Am J Cancer Res. 2015;5(9):2531–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Kirchner GI, Meier-Wiedenbach I, Manns MP. Clinical pharmacokinetics of everolimus. Clin Pharmacokinet. 2004;43(2):83–95. https://doi.org/10.2165/00003088-200443020-00002.

    Article  CAS  PubMed  Google Scholar 

  214. Wilhoit T, Patrick JM, May MB. Alpelisib: a novel therapy for patients with PIK3CA-mutated metastatic breast cancer. J Adv Pract Oncol. 2020;11(7):768–75. https://doi.org/10.6004/jadpro.2020.11.7.9.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Wahid M, Akhter N, Jawed A, Dar SA, Mandal RK, Lohani M, Areeshi MY, Khan S, Haque S. Pembrolizumab’s non-cross resistance mechanism of action successfully overthrown ipilimumab. Crit Rev Oncol Hematol. 2017;111:1–6. https://doi.org/10.1016/j.critrevonc.2017.01.001.

    Article  PubMed  Google Scholar 

  216. Franzoi M, Romano E, Piccart M. Immunotherapy for early breast cancer: too soon, too superficial, or just right? Ann Oncol. 2021;32(3):323–36. https://doi.org/10.1016/j.annonc.2020.11.022.

    Article  CAS  PubMed  Google Scholar 

  217. Chaudhuri S, Thomas S, Munster P. Immunotherapy in breast cancer: a clinician’s perspective. J Natl Cancer Center. 2021;1(2):47–57. https://doi.org/10.1016/j.jncc.2021.01.001.

    Article  Google Scholar 

  218. Bayraktar S, Batoo S, Okuno S, Glück S. Immunotherapy in breast cancer. J Carcinog. 2019;18:2. https://doi.org/10.4103/jcar.JCar_2_19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Cho YT, Lin YT, Yang CW, et al. Cutaneous immune-related adverse events among Taiwanese cancer patients receiving immune checkpoint inhibitors link to a survival benefit. Sci Rep. 2022;12:7021. https://doi.org/10.1038/s41598-022-11128-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Kikkawa Y, Enomoto-Okawa Y, Fujiyama A, et al. Internalization of CD239 highly expressed in breast cancer cells: a potential antigen for antibody-drug conjugates. Sci Rep. 2018;8:6612. https://doi.org/10.1038/s41598-018-24961-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Abdou Y, Goudarzi A, Yu JX, et al. Immunotherapy in triple negative breast cancer: beyond checkpoint inhibitors. Npj Breast Cancer. 2022;8:121. https://doi.org/10.1038/s41523-022-00486-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. El Hasasna H, Saleh A, Samri H, et al. Rhus coriaria suppresses angiogenesis, metastasis, and tumor growth of breast cancer through inhibition of STAT3, NFκB, and nitric oxide pathways. Sci Rep. 2016;6:21144. https://doi.org/10.1038/srep21144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Magalhães IDFB, da Silva Calabrese K, Figueirêdo ALM, Abreu-Silva AL, Almeida-Souza F. The use of plants’ natural products in breast cancer: have we already found the new anticancer drug? Breast Cancer Evolv Challenges Next Front. 2021. https://doi.org/10.5772/intechopen.96404.

    Article  Google Scholar 

  224. Fridlender M, Kapulnik Y, Koltai H. Plant derived substances with anti-cancer activity: from folklore to practice. Front Plant Sci. 2015. https://doi.org/10.3389/fpls.2015.00799.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Li B, Chen X, Ding T, Liu Y, Ma T, Zhang G, Wang X. Nanoparticle albumin-bound paclitaxel versus solvent-based paclitaxel in breast cancer: A protocol for systemic review and meta-analysis. Medicine. 2021;100(7):e24514. https://doi.org/10.1097/MD.0000000000024514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12):789. https://doi.org/10.3390/biom9120789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zajdel A, Nycz J, Wilczok A. Lapatinib enhances paclitaxel toxicity in MCF-7, T47D, and MDA-MB-321 breast cancer cells. Toxicol In Vitro. 2021;75:105200. https://doi.org/10.1016/j.tiv.2021.105200.

    Article  CAS  PubMed  Google Scholar 

  228. Mann J, Yang N, Montpetit R, et al. BAD sensitizes breast cancer cells to docetaxel with increased mitotic arrest and necroptosis. Sci Rep. 2020;10:355. https://doi.org/10.1038/s41598-019-57282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. González-Burgos E, Gómez-Serranillos MP. Vinca alkaloids as chemotherapeutic agents against breast cancer. Dis Develop Anti-Breast Cancer Agents Nat Prod. 2021. https://doi.org/10.1016/b978-0-12-821277-6.00004-0.

    Article  Google Scholar 

  230. Stravodimou A, Zaman K, Voutsadakis IA. Vinorelbine with or without trastuzumab in metastatic breast cancer: a retrospective single institution series. ISRN Oncol. 2014;2014:1–7. https://doi.org/10.1155/2014/289836.

    Article  Google Scholar 

  231. Zhang YW, Kong XY, Wang JH, Du GH. Vinblastine and Vincristine. In: Natural small molecule drugs from plants. Singapore: Springer; 2018.

    Google Scholar 

  232. Mahbub AA, Le Maitre CL, Cross NA, et al. The effect of apigenin and chemotherapy combination treatments on apoptosis-related genes and proteins in acute leukaemia cell lines. Sci Rep. 2022;12:8858. https://doi.org/10.1038/s41598-022-11441-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Adel M, Zahmatkeshan M, Akbarzadeh A, Rabiee N, Ahmadi S, Keyhanvar P, Rezayat SM, Seifalian AM. Chemotherapeutic effects of apigenin in breast cancer: preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles. Biotechnol Rep. 2022;34:e00730. https://doi.org/10.1016/j.btre.2022.e00730.

    Article  CAS  Google Scholar 

  234. Rosas-González VC, Téllez-Bañuelos MC, Hernández-Flores G, Bravo-Cuellar A, Aguilar-Lemarroy A, Jave-Suárez LF, Haramati J, Solorzano-Ibarra F, Ortiz-Lazareno PC. Differential effects of alliin and allicin on apoptosis and senescence in luminal A and triple-negative breast cancer: Caspase, ΔΨm, and pro-apoptotic gene involvement. Fund Amp Clin Pharmacol. 2020;34(6):671–86. https://doi.org/10.1111/fcp.12559.

    Article  CAS  Google Scholar 

  235. Antunes A, Carmo F, Pinto S, Andrade N, Martel F. The anti-proliferative effect of β-carotene against a triple-negative breast cancer cell line is cancer cell-specific and JNK-dependent. PharmaNutrition. 2022;22:100320. https://doi.org/10.1016/j.phanu.2022.100320.

    Article  CAS  Google Scholar 

  236. Qian K, Tang CY, Chen LY, Zheng S, Zhao Y, Ma LS, Xu L, Fan LH, Yu JD, Tan HS, Sun YL, Shen LL, Lu Y, Liu Q, Liu Y, Xiong Y. Berberine Reverses breast cancer multidrug resistance based on fluorescence pharmacokinetics In Vitro and In Vivo. ACS Omega. 2021;6(16):10645–54. https://doi.org/10.1021/acsomega.0c06288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Pusuluri A, Krishnan V, Wu D, Shields CW, Wang LW, Mitragotri S. Role of synergy and immunostimulation in design of chemotherapy combinations: an analysis of doxorubicin and camptothecin. Bioeng Amp Trans Med. 2019. https://doi.org/10.1002/btm2.10129.

    Article  Google Scholar 

  238. Farghadani R, Naidu R. Curcumin as an enhancer of therapeutic efficiency of chemotherapy drugs in breast cancer. Int J Mol Sci. 2022;23(4):2144. https://doi.org/10.3390/ijms23042144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Mohan L. Plant-based drugs as an adjuvant to cancer chemotherapy. Alter Med Update. 2021. https://doi.org/10.5772/intechopen.94040.

    Article  Google Scholar 

  240. Luo T, Wang J, Yin Y, et al. (-)-Epigallocatechin gallate sensitizes breast cancer cells to paclitaxel in a murine model of breast carcinoma. Breast Cancer Res. 2010;12:R8. https://doi.org/10.1186/bcr2473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Aborehab NM, Elnagar MR, Waly NE. Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line. J Biochem Mol Toxicol. 2020. https://doi.org/10.1002/jbt.22638.

    Article  PubMed  Google Scholar 

  242. Figueroa D, Asaduzzaman M, Young F. Effect of Chemotherapeutics and Tocopherols on MCF-7 Breast Adenocarcinoma and KGN ovarian carcinoma Cell Lines In Vitro. Biomed Res Int. 2019;2019:6146972. https://doi.org/10.1155/2019/6146972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wala K, Szlasa W, Sauer N, Kasperkiewicz-Wasilewska P, Szewczyk A, Saczko J, Rembiałkowska N, Kulbacka J, Baczyńska D. Anticancer efficacy of 6-gingerol with paclitaxel against wild type of human breast adenocarcinoma. Molecules. 2022;27(9):2693. https://doi.org/10.3390/molecules27092693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Plett R, Mellor P, Kendall S, et al. Homoharringtonine demonstrates a cytotoxic effect against triple-negative breast cancer cell lines and acts synergistically with paclitaxel. Sci Rep. 2022;12:15663. https://doi.org/10.1038/s41598-022-19621-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Shi R, Li W, Zhang X, Zhang Y, Peng H, Xie Y, Fan D, Liu R, Liu X, Xiong D. A novel indirubin derivative PHII-7 potentiates adriamycin cytotoxicity via inhibiting P-glycoprotein expression in human breast cancer MCF-7/ADR cells. Eur J Pharmacol. 2011;669(1–3):38–44. https://doi.org/10.1016/j.ejphar.2011.07.047.

    Article  CAS  PubMed  Google Scholar 

  246. Amjad E, Sokouti B, Asnaashari S. A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell Int. 2022;22:260. https://doi.org/10.1186/s12935-022-02673-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Tsai KJ, Tsai HY, Tsai CC, Chen TY, Hsieh TH, Chen CL, Mbuyisa L, Huang YB, Lin MW. Luteolin inhibits breast cancer stemness and enhances chemosensitivity through the Nrf2-mediated pathway. Molecules. 2021;26(21):6452. https://doi.org/10.3390/molecules26216452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Raza Q, Sadia H, Raza S, Bhinder M, Calina D, Sharifi-Rad J, Cho WC. Myricetin: targeting signaling networks in cancer and its implication in chemotherapy. Cancer Cell Int. 2022;22(1):239. https://doi.org/10.1186/s12935-022-02663-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Khamis AAA, Ali EMM, El-Moneim MAA, Abd-Alhaseeb MM, El-Magd MA, Salim EI. Hesperidin, piperine, and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed pharmacother Biomed pharmacother. 2018;105:1335–43. https://doi.org/10.1016/j.biopha.2018.06.105.

    Article  CAS  PubMed  Google Scholar 

  250. Staedler D, Idrizi E, Kenzaoui BH, et al. Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother Pharmacol. 2011;68:1161–72. https://doi.org/10.1007/s00280-011-1596-x.

    Article  CAS  PubMed  Google Scholar 

  251. Xiao Q, Zhu W, Feng W, Lee SS, Leung AW, Shen J, Gao L, Xu C. A review of resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy. Front Pharmacol. 2019;9:1534. https://doi.org/10.3389/fphar.2018.01534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Satari A, Ghasemi S, Habtemariam S, Asgharian S, Lorigooini Z. Rutin: a flavonoid as an effective sensitizer for anticancer therapy; insights into multifaceted mechanisms and applicability for combination therapy. Evidence-Based Complement Alter Med. 2021;2021:1–10. https://doi.org/10.1155/2021/9913179.

    Article  Google Scholar 

  253. Elbe H, Yigitturk G, Cavusoglu T, Baygar T, Ozgul Onal M, Ozturk F. Comparison of ultrastructural changes and the anticarcinogenic effects of thymol and carvacrol on ovarian cancer cells: which is more effective? Ultrastruct Pathol. 2020;44(2):193–202. https://doi.org/10.1080/01913123.2020.1740366.

    Article  CAS  PubMed  Google Scholar 

  254. Mallipeddi H, Thyagarajan A, Sahu RP. Implications of Withaferin-A for triple-negative breast cancer chemoprevention. Biomed Amp Pharmacother. 2021;134:111124. https://doi.org/10.1016/j.biopha.2020.111124.

    Article  CAS  Google Scholar 

  255. Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer. 2017;8(16):3131–41. https://doi.org/10.7150/jca.18457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Liu K, Newbury PA, Glicksberg BS, et al. Evaluating cell lines as models for metastatic breast cancer through integrative analysis of genomic data. Nat Commun. 2019;10:2138. https://doi.org/10.1038/s41467-019-10148-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13:215. https://doi.org/10.1186/bcr2889.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Neve RM, ChinFridlyand J GrayJW K, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–27. https://doi.org/10.1016/j.ccr.2006.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Karpagam Academy of Higher Education for providing a laboratory to carry out research work.

Funding

This research was funded by DST-FIST (SR/FST/LS-1/2018/187); DST-SHRI (DST/TDT/SHRI/2022/70) to complete this work. Department of Science and Technology, Government of Rajasthan, DST/DTD/SHRI/70/2022, Sangilimuthu Alagar Yadav.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangilimuthu Alagar Yadav.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swaminathan, H., Saravanamurali, K. & Yadav, S.A. Extensive review on breast cancer its etiology, progression, prognostic markers, and treatment. Med Oncol 40, 238 (2023). https://doi.org/10.1007/s12032-023-02111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02111-9

Keywords

Navigation