Skip to main content

Advertisement

Log in

Molecular analysis of pediatric brain tumors

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

The identification of molecular genetic abnormalities in specific types of pediatric brain tumors is beginning to play a role in the stratification of patients into treatment groups. The finding of an INI1 alteration in an atypical teratoid/ rhabdoid tumor or malignant neoplasm with overlapping histologic features will be required for entry onto diseasespecific protocols within the Children’s Oncology Group. Refinement in the classification of medulloblastoma and malignant glioma patients will likely depend on the genetic and signaling pathways that characterize these tumors. Advances in this area will depend on the ability to identify new disease genes, validate prognostic markers, and develop biologically based therapeutic strategies to tailor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Kleihues P, Cavenee WK: World Health Organization Classification of Tumours: Pathology and Genetic Tumours of the Nervous System. Lyon, France: IARC Press; 2000.

    Google Scholar 

  2. Packer RJ, Boyett JM, Zimmerman RA, et al.: Outcome for children with medulloblastoma treated with radiation and cisplatin CCNU, and vincristine chemotherapy. J Neurosurg 1994, 81:690–698.

    PubMed  CAS  Google Scholar 

  3. Zeltzer PM, Boyett JM, Finlay JL, et al.: Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol 1999, 17:832–845.

    PubMed  CAS  Google Scholar 

  4. Biegel JA, Rorke LB, Packer RJ, et al.: Isochromosome 17q in primitive neuroectodermal tumors of the central nervous system. Genes Chromosomes Cancer 1989, 1:139–147.

    Article  PubMed  CAS  Google Scholar 

  5. Biegel JA: Cytogenetics and molecular genetics of childhood brain tumors. Neuro-Oncol 1999, 1:139–151.

    Article  PubMed  CAS  Google Scholar 

  6. Ellison D: Classifying the medulloblastoma: insights from morphology and molecular genetics. Neuropathol Appl Neurobiol 2002, 28:257–282. This paper reviews the pathology and molecular genetics of medulloblastoma and has an extensive reference list.

    Article  PubMed  CAS  Google Scholar 

  7. Gilbertson R, Wickramasinghe C, Hernan R, et al.: Clinical and molecular stratification of disease risk in medulloblastoma. Br J Cancer 2001, 85:705–712.

    Article  PubMed  CAS  Google Scholar 

  8. Grotzer MA, Hogarty MD, Janss AJ, et al.: MYC messenger RNA expression predicts survival outcome in primitive neuroectodermal tumor/medulloblastoma. Clin Cancer Res 2001, 7:2425–2433.

    PubMed  CAS  Google Scholar 

  9. Lusher ME, Lindsey JC, Latif F, et al.: Biallelic epigenetic inactivation of the RASSF1A tumor suppressor gene in medulloblastoma development. Cancer Res 2002, 62:5906–5911.

    PubMed  CAS  Google Scholar 

  10. Vos MD, Martinez A, Elam C, et al.: A role for the RASSF1A tumor suppressor in the regulation of tubulin polymerization and genomic stability. Cancer Res 2004, 64:4244–4250.

    Article  PubMed  CAS  Google Scholar 

  11. Pomeroy SL, Sturla L-M: Molecular biology of medulloblastoma therapy. Pediatr Neurosurg 2003, 39:299–304. This paper reviews key signaling pathways in medulloblastoma and discusses potential targets for therapy.

    Article  PubMed  Google Scholar 

  12. Berman DM, Karhadkar SS, Hallahan AR, et al.: Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 2002, 297:1559–1561.

    Article  PubMed  CAS  Google Scholar 

  13. Pomeroy SL, Tamayo P, Gaasenbeek M, et al.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002, 415:436–442.

    Article  PubMed  CAS  Google Scholar 

  14. Chopra A, Brown KM, Rood R, et al.: The use of gene expression analysis to gain insights into signaling mechanisms of metastatic medulloblastoma. Pediatr Neurosurg 2003, 39:68–74.

    Article  PubMed  Google Scholar 

  15. Neben K, Korshunov A, Benner A, et al.: Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res 2004, 64:3103–3111.

    Article  PubMed  CAS  Google Scholar 

  16. Albright AL, Wisoff JH, Zeltzer P, et al.: Prognostic factors in children with supratentorial (nonpineal) primitive neuroectodermal tumors: a neurosurgical perspective from the Children’s Cancer Group. Pediatric Neurosurg 1995, 22:1–7.

    CAS  Google Scholar 

  17. Russo C, Pellarin M, Tingby O, et al.: Comparative genomic hybridization in patients with supratentorial and infratentorial primitive neuroectodermal tumors. Cancer 1999, 86:331–339.

    Article  PubMed  CAS  Google Scholar 

  18. Rorke LB, Packer RJ, Biegel JA: Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of entity. J Neurosurg 1996, 85:56–65.

    Article  PubMed  CAS  Google Scholar 

  19. Versteege I, Sevenet N, Lange J, et al.: Truncating mutations of hSNF5/INI1 in aggressive pediatric cancer. Nature 1998, 394:203–206.

    Article  PubMed  CAS  Google Scholar 

  20. Biegel JA, Zhou JY, Rorke LB, et al.: Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 1999, 59:74–79.

    PubMed  CAS  Google Scholar 

  21. Biegel JA, Tan L, Zhang F, et al.: Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clin Cancer Res 2002, 8:3461–3467.

    PubMed  CAS  Google Scholar 

  22. Klochendler-Yeivin A, Fiette L, Barra J, et al.: The murine SNF5/ INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep 2000, 1:500–506.

    PubMed  CAS  Google Scholar 

  23. Judkins AR, Mauger J, Rorke LB, Biegel JA: Immunohistochemical analysis of hSNF5/INI1 in pediatric CNS neoplasms. Am J Surg Pathol 2004, 28:644–650. This paper demonstrates the clinical utility of an INI1 antibody for diagnosis of atypical teratoid and rhabdoid tumors of the brain.

    PubMed  Google Scholar 

  24. Sevenet N, Sheridan E, Amram D, et al.: Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet 1999, 65:1342–1348.

    Article  PubMed  CAS  Google Scholar 

  25. Hamilton RL, Pollack IF: The molecular biology of ependymomas. Brain Pathol 1997, 7:807–822.

    PubMed  CAS  Google Scholar 

  26. Wolfsberger S, Fischer I, Hoftberger R, et al.: Ki-67 immunolabeling index is an accurate predictor of outcome in patients with intracranial ependymoma. Am J Surg Pathol 2004, 28:914–920.

    Article  PubMed  Google Scholar 

  27. Kraus JA, de Millas W, Sorensen N, et al.: Indications for a tumor suppressor gene at 22q11 involved in the pathogenesis of ependymal tumors and distinct from hSNF5/INI1. Acta Neuropathol 2001, 102:69–74.

    PubMed  CAS  Google Scholar 

  28. Kramer DL, Parmiter AH, Rorke LB, et al.: Molecular cytogenetic studies of pediatric ependymomas. J Neuro-Oncol 1998, 37:25–33.

    Article  CAS  Google Scholar 

  29. Hirose Y, Aldape K, Bollen A, et al.: Chromosomal abnormalities subdivide ependymal tumors into clinically relevant groups. Am J Pathol 2001, 158:1137–1143.

    PubMed  CAS  Google Scholar 

  30. Ward S, Harding B, Wilkins P, et al.: Gain of 1q and loss of 22 are the most common changes detected by comparative genomic hybridization in paediatric ependymoma. Genes Chromosomes Cancer 2001, 32:59–66.

    Article  PubMed  CAS  Google Scholar 

  31. Waha A, Koch A, Hartmann W, et al.: Analysis of HIC-1 methylation and transcription in human ependymomas. Int J Cancer 2004, 110:542–549.

    Article  PubMed  CAS  Google Scholar 

  32. von Deimling A, Louis DN, Menon AG, et al.: Deletions on the long arm of chromosome 17 in pilocytic astrocytoma. Acta Neuropathol 1993, 86:81–85.

    Article  Google Scholar 

  33. Guttmann DH, Donahoe J, Brown T, et al.: Loss of neurofibromatosis 1(NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathol Appl Biol 2000, 26:361–367.

    Article  Google Scholar 

  34. Griffin CA, Hawkins AL, Packer RJ, et al.: Chromosome abnormalities in pediatric brain tumors. Cancer Res 1988, 48:175–180.

    PubMed  CAS  Google Scholar 

  35. Karnes PS, Tran TN, Cui MY, et al.: Cytogenetic analysis of 39 pediatric central nervous system tumors. Cancer Genet Cytogenet 1992, 59:12–19.

    Article  PubMed  CAS  Google Scholar 

  36. Lang FF, Miller DC, Koslow M, et al.: Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors. J Neurosurg 1994, 81:427–436.

    PubMed  CAS  Google Scholar 

  37. Litofsky NS, Hinton D, Raffel C: The lack of a role for p53 in astrocytomas in pediatric patients. Neurosurgery 1994, 34:967–973.

    Article  PubMed  CAS  Google Scholar 

  38. James CD, Carlbom E, Nordenskjold M, et al.: Mitotic recombination of chromosome 17 in astrocytomas. Proc Natl Acad Sci U S A 1989, 86:2858–2862.

    Article  PubMed  CAS  Google Scholar 

  39. Lang FF, Miller DC, Pisharody S, et al.: High frequency of p53 protein accumulation without p53 gene mutation in human juvenile pilocytic, low grade and anaplastic astrocytomas. Oncogene 1994, 9:949–954.

    PubMed  CAS  Google Scholar 

  40. Cheng Y, Pang JC, Ng HK, et al.: Pilocytic astrocytomas do not show most of the genetic changes commonly seen in diffuse astrocytomas. Histopathology 2000, 37:437–444.

    Article  PubMed  CAS  Google Scholar 

  41. Fults D, Brockmeyer D, Tullous MW, et al.: p53 mutations and loss of heterozygosity on chromosome 10 during human astrocytoma progression. Cancer Res 1992, 52:664–679.

    Google Scholar 

  42. Rasheed BKA, McLendon RE, Herndon RE, et al.: Alterations of the TP53 gene in human gliomas. Cancer Res 1994, 54:1324–1330.

    PubMed  CAS  Google Scholar 

  43. Campbell J, Pollack IF, Shultz BL, Martinez AJ: Prognostic factors in the management of pediatric malignant gliomas. Neurosurgery 1996, 38:258–264.

    Article  PubMed  CAS  Google Scholar 

  44. Sposto R, Ertel IJ, Jenkin RDT, et al.: The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. J Neuro-Oncol 1989, 7:165–177.

    Article  CAS  Google Scholar 

  45. Finlay JL, Boyett JM, Yates AJ, et al.: Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. J Clin Oncol 1995, 13:112–123.

    PubMed  CAS  Google Scholar 

  46. Pollack IF, Boyett JM, Yates AJ, et al.: The influence of central review on outcome associations in childhood malignant gliomas: results from the CCG-945 experience. Neuro-Oncology 2003, 5:197–207.

    Article  PubMed  Google Scholar 

  47. Ichimura K, Bolin MB, Goike HM, et al.: Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 2000, 60:417–424.

    PubMed  CAS  Google Scholar 

  48. Louis DN: A molecular genetic model of astrocytoma histopathology. Brain Pathol 1997, 7:755–764.

    PubMed  CAS  Google Scholar 

  49. Rickert CH, Strater R, Kaatsch P, et al.: Pediatric high-grade astrocytomas show chromosomal imbalances distinct from adult cases. Am J Pathol 2001, 158:1525–1532.

    PubMed  CAS  Google Scholar 

  50. Pollack IF, Hamilton RL, Finkelstein SD, et al.: The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Res 1997, 57:304–309.

    PubMed  CAS  Google Scholar 

  51. Sung T, Miller DC, Hayes RL, et al.: Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol 2000, 10:249–259.

    Article  PubMed  CAS  Google Scholar 

  52. Sidransky D, Mikkelsen T, Schwechheimer K, et al.: Clonal expansion of p53 mutant cells is associated with brain tumor progression. Nature 1992, 355:846–847.

    Article  PubMed  CAS  Google Scholar 

  53. von Deimling A, von Ammon K, Schoenfeld D, et al.: Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 1993, 3:19–26.

    Google Scholar 

  54. Venter DJ, Thomas DGT: Multiple sequential molecular abnormalities in the evolution of human gliomas. Br J Cancer 1991, 36:753–757.

    Google Scholar 

  55. Pollack IF, Campbell JW, Hamilton RL, et al.: Proliferation index as a predictor of prognosis in malignant gliomas of childhood. Cancer 1997, 79:849–856.

    Article  PubMed  CAS  Google Scholar 

  56. Pollack IF, Hamilton RL, Burnham J, et al.: The impact of proliferation index on outcome in childhood malignant gliomas: results in a multi-institutional cohort. Neurosurgery 2002, 50:1238–1244.

    Article  PubMed  Google Scholar 

  57. Pollack IF, Finkelstein SD, Woods J, et al.: Expression of p53 and prognosis in malignant gliomas in children. N Engl J Med 2002, 346:420–427. This article highlights the independent association of p53 status and outcome in a centrally reviewed cohort of children with malignant gliomas.

    Article  PubMed  CAS  Google Scholar 

  58. Pollack IF, Finkelstein SD, Burnham J, et al.: Age and TP53 mutation frequency in childhood gliomas: results in a multiinstitutional cohort. Cancer Res 2001, 61:7404–7407.

    PubMed  CAS  Google Scholar 

  59. Duffner PK, Krischer JP, Burger PC, et al., and the Pediatric Oncology Group: Treatment of infants with malignant gliomas: the Pediatric Oncology Group experience. J Neuro-Oncol 1996, 28:245–256.

    Article  CAS  Google Scholar 

  60. Bredel M, Pollack IF, Hamilton RL, James CD: Epidermal growth factor receptor (EGFR) expression in high-grade nonbrainstem gliomas of childhood. Clin Cancer Res 1999, 5:1786–1792.

    PubMed  CAS  Google Scholar 

  61. Raffel C, Frederick L, O’Fallon JR, et al.: Analysis of oncogene and tumor suppressor gene alterations in pediatric malignant astrocytomas reveals reduced survival for patients with PTEN mutations. Clin Cancer Res 1999, 5:4085–4090.

    PubMed  CAS  Google Scholar 

  62. Ino Y, Zlatescu MC, Sasaki H, et al.: Long survival and therapeutic responses in patients with histologically disparate high-grade gliomas demonstrating chromosome 1p loss. J Neurosurg 2000, 92:983–990.

    PubMed  CAS  Google Scholar 

  63. Pollack IF, Finkelstein SD, Burnham J, et al.: The association between chromosome 1p loss and outcome in pediatric malignant gliomas: results from the CCG-945 cohort. Pediatr Neurosurg 2003, 39:114–121.

    Article  PubMed  Google Scholar 

  64. Schmidt EE, Ichimura K, Reifenberger G, Collins VP: CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 1994, 54:6321–6324.

    PubMed  CAS  Google Scholar 

  65. Collins VP: Progression as exemplified by human astrocytic tumors. Cancer Biol 1999, 9:267–276. This paper highlights the various molecular pathways of tumor progression in adult gliomas.

    Article  CAS  Google Scholar 

  66. Sure U, Ruedi D, Tachibana O, et al.: Determination of p53 mutations, EGFR overexpression, and loss of p16 expression in pediatric glioblastomas. J Neuropathol Exp Neurol 1997, 56:782–789.

    Article  PubMed  CAS  Google Scholar 

  67. Cheng Y, Ng H-K, Zhang S-F, et al.: Genetic alterations in pediatric high-grade astrocytomas. Hum Pathol 1999, 30:1284–1290.

    Article  PubMed  CAS  Google Scholar 

  68. Newcomb EW, Alonso M, Sung T, Miller DC: Incidence of p14ARF gene deletion in high-grade adult and pediatric astrocytomas. Hum Pathol 2000, 31:115–119.

    Article  PubMed  CAS  Google Scholar 

  69. Jaeckle KA, Eyre HJ, Townsend JJ, et al.: Correlation of tumor O6 methylguanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bis-chloroethylnitrosourea: a Southwest Oncology Group study. J Clin Oncol 1998, 16:3310–3315.

    PubMed  CAS  Google Scholar 

  70. Friedman HS, McLendon RE, Kerby T, et al.: DNA mismatch repair and O6-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. J Clin Oncol 1998, 16:3851–3857.

    PubMed  CAS  Google Scholar 

  71. Esteller M, Garcia-Foncillas J, Andion E, et al.: Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000, 343:1350–1354.

    Article  PubMed  CAS  Google Scholar 

  72. Nister M, Claesson-Welch L, Eriksson A, et al.: Differential expression of platelet-derived growth factor receptors in human malignant glioma cell lines. J Biol Chem 1991, 266:16755–16763.

    PubMed  CAS  Google Scholar 

  73. Maxwell M, Naber SP, Wolfe HJ, et al.: Coexpression of plateletderived growth factor (PDGF) and PDGF-receptor genes by primary human astrocytomas may contribute to their development and maintenance. J Clin Invest 1990, 86:131–140.

    Article  PubMed  CAS  Google Scholar 

  74. Gammeltoft S, Ballotti F, Kowalski A, et al.: Expression of two types of receptor for insulin-like growth factors in human malignant gliomas. Cancer Res 1988, 48:1233–1237.

    PubMed  CAS  Google Scholar 

  75. Glick RP, Gettleman R, Patel K, et al.: Insulin and insulin-like growth factor I in brain tumors: binding and in vitro effects. Neurosurgery 1989, 24:791–797.

    Article  PubMed  CAS  Google Scholar 

  76. Gross JL, Morrison RS, Eidsvoog K, et al.: Basic fibroblast growth factor: a potential autocrine regulator of human glioma growth. J Neurosci Res 1990, 27:689–696.

    Article  PubMed  CAS  Google Scholar 

  77. Plate KH, Breier G, Weich HA, et al.: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992, 359:845–848.

    Article  PubMed  CAS  Google Scholar 

  78. Millauer B, Shawver LK, Plate KH, et al.: Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994, 367:576–579.

    Article  PubMed  CAS  Google Scholar 

  79. Kuppner MC, Hamou M-F, Sawamura Y, et al.: Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor β2. J Neurosurg 1989, 71:211–217.

    PubMed  CAS  Google Scholar 

  80. Bredel M, Pollack IF, Campbell JW, Hamilton RL: Basic fibroblast growth factor (bFGF) expression as a predictor of prognosis in pediatric high-grade gliomas. Clin Cancer Res 1997, 3:2157–2164.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biegel, J.A., Pollack, I.F. Molecular analysis of pediatric brain tumors. Curr Oncol Rep 6, 445–452 (2004). https://doi.org/10.1007/s11912-004-0075-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-004-0075-5

Keywords

Navigation