Skip to main content

Advertisement

Log in

Molecular Basis of Pediatric Brain Tumors

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Brain tumors emerge as the second commonest type of pediatric solid tumors following hematologic malignancies. Genomic profiling of low- and high-grade gliomas, ependymomas and medulloblastomas has revealed chromosomal abnormalities and specific gene mutations which have been associated with aberrant activation of crucial signal transduction pathways, including mitogen-activated protein kinase, mammalian target of rapamycin and retinoblastoma tumor suppressor signaling. Furthermore, pediatric high-grade gliomas are associated with chromatin remodeling defects and somatic histone gene mutations that affect prognosis. This review provides an update of the molecular and genetic alterations that characterize pediatric brain tumors, and discusses novel therapeutic approaches targeting these abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Antonelli, M., Badiali, M., Moi, L., Buttarelli, F., Baldi, C., Massimino, M., et al. (2015). KIAA1549: BRAF fusion gene in pediatric brain tumors of various histogenesis. Pediatric Blood and Cancer, 62(4), 724–727.

    Article  CAS  PubMed  Google Scholar 

  • Bandopadhayay, P., Bergthold, G., Nguyen, B., Schubert, S., Gholamin, S., Tang, Y., et al. (2014). BET bromodomain inhibition of MYC-amplified medulloblastoma. Clinical Cancer Research, 20(4), 912–925.

    Article  CAS  PubMed  Google Scholar 

  • Bautista, F., Paci, A., Minard-Colin, V., Dufour, C., Grill, J., Lacroix, L., et al. (2014). Vemurafenib in pediatric patients with BRAFV600E mutated high-grade gliomas. Pediatric Blood and Cancer, 61(6), 1101–1103.

    Article  CAS  PubMed  Google Scholar 

  • Bax, D. A., Mackay, A., Little, S. E., Carvalho, D., Viana-Pereira, M., Tamber, N., et al. (2010). A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clinical Cancer Research, 16(13), 3368–3377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becher, O. J., & Wechsler-Reya, R. J. (2014). Cancer. For pediatric glioma, leave no histone unturned. Science, 346(6216), 1458–1459.

    Article  CAS  PubMed  Google Scholar 

  • Becker, A., Scapulatempo-Neto, C., Carloni, A., Paulino, A., Sheren, J., Aisner, D., et al. (2015). KIAA1549: BRAF gene fusion and FGFR1 hotspot mutations are prognostic factors in pilocytic astrocytomas. Journal of Neuropathology and Experimental Neurology, 74(7), 743–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergthold, G., Bandopadhayay, P., Bi, W. L., Ramkissoon, L., Stiles, C., Segal, R. A., et al. (2014). Pediatric low-grade gliomas: How modern biology reshapes the clinical field. Biochimica et Biophysica Acta, 1845(2), 294–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergthold, G., Bandopadhayay, P., Hoshida, Y., Ramkissoon, S., Ramkissoon, L., Rich, B., et al. (2015). Expression profiles of 151 pediatric low-grade gliomas reveal molecular differences associated with location and histological subtype. Neuro Oncology, 17(11), 1486–1496.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjerke, L., Mackay, A., Nandhabalan, M., Burford, A., Jury, A., Popov, S., et al. (2013). Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discovery, 3(5), 512–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buccoliero, A. M., Castiglione, F., Degl’Innocenti, D. R., Gheri, C. F., Genitori, L., & Taddei, G. L. (2012). IDH1 mutation in pediatric gliomas: Has it a diagnostic and prognostic value? Fetal and Pediatric Pathology, 31(5), 278–282.

    Article  CAS  PubMed  Google Scholar 

  • Buczkowicz, P., Hoeman, C., Rakopoulos, P., Pajovic, S., Letourneau, L., Dzamba, M., et al. (2014). Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 46(5), 451–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cin, H., Meyer, C., Herr, R., Janzarik, W. G., Lambert, S., Jones, D. T., et al. (2011). Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathologica, 121(6), 763–774.

    Article  CAS  PubMed  Google Scholar 

  • Costa, R. M., Federov, N. B., Kogan, J. H., Murphy, G. G., Stern, J., Ohno, M., et al. (2002). Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature, 415(6871), 526–530.

    Article  CAS  PubMed  Google Scholar 

  • Cruzeiro, G. A., Dos Reis, M. B., Silveira, V. S., Lira, R. C., Carlotti, C. G., Neder, L. et al. (2017). HIF1A is overexpressed in medulloblastoma and its inhibition reduces proliferation and increases EPAS1 and ATG16L1 methylation. Current Cancer Drug Targets. doi:10.2174/1568009617666170315162525.

    PubMed  Google Scholar 

  • Dasgupta, T., & Haas-Kogan, D. A. (2013). The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas. Frontiers in Oncology, 3. Article 110.

  • Downing, J. R., Wilson, R. K., Zhang, J., Mardis, E. R., Pui, C. H., Ding, L., et al. (2012). The pediatric cancer genome project. Nature Genetics, 44(6), 619–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubuc, A. M., Remke, M., Korshunov, A., Northcott, P. A., Zhan, S. H., Mendez-Lago, M., et al. (2013). Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathologica, 125(3), 373–384.

    Article  CAS  PubMed  Google Scholar 

  • Fattet, S., Haberler, C., Legoix, P., Varlet, P., Lellouch-Tubiana, A., Lair, S., et al. (2009). Beta-catenin status in paediatric medulloblastomas: Correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. The Journal of Pathology, 218(1), 86–94.

    Article  CAS  PubMed  Google Scholar 

  • Fontebasso, A. M., Gayden, T., Nikbakht, H., Neirinck, M., Papillon-Cavanagh, S., Majewski, J., et al. (2014a). Epigenetic dysregulation: A novel pathway of oncogenesis in pediatric brain tumors. Acta Neuropathologica, 128(5), 615–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontebasso, A. M., Liu, X. Y., Sturm, D., & Jabado, N. (2013). Chromatin remodeling defects in pediatric and young adult glioblastoma: A tale of a variant histone 3 tail. Brain Pathology, 23(2), 210–216.

    Article  CAS  PubMed  Google Scholar 

  • Fontebasso, A. M., Papillon-Cavanagh, S., Schwartzentruber, J., Nikbakht, H., Gerges, N., Fiset, P. O., et al. (2014b). Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nature Genetics, 46(5), 462–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forshew, T., Tatevossian, R. G., Lawson, A. R., Ma, J., Neale, G., Ogunkolade, B. W., et al. (2009). Activation of the ERK/MAPK pathway: A signature genetic defect in posterior fossa pilocytic astrocytomas. The Journal of Pathology, 218(2), 172–181.

    Article  CAS  PubMed  Google Scholar 

  • Gajjar, A., Bowers, D. C., Karajannis, M. A., Leary, S., Witt, H., & Gottardo, N. G. (2015). Pediatric brain tumors: Innovative genomic information is transforming the diagnostic and clinical landscape. Journal of Clinical Oncology, 33(27), 2986–2998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajjar, A., Pfister, S. M., Taylor, M. D., & Gilbertson, R. J. (2014). Molecular insights into pediatric brain tumors have the potential to transform therapy. Clinical Cancer Research, 20(22), 5630–5640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia, I., Crowther, A. J., Gama, V., Miller, C. R., Deshmukh, M., & Gershon, T. R. (2013). Bax deficiency prolongs cerebellar neurogenesis, accelerates medulloblastoma formation and paradoxically increases both malignancy and differentiation. Oncogene, 32(18), 2304–2314. doi:10.1038/onc.2012.248.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, M. A., Solomon, D. A., & Haas-Kogan, D. A. (2016). Exploiting molecular biology for diagnosis and targeted management of pediatric low-grade gliomas. Future Oncology, 12(12), 1493–1506. doi:10.2217/fon-2016-0039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerges, N., Fontebasso, A. M., Albrecht, S., Faury, D., & Jabado, N. (2013). Pediatric high-grade astrocytomas: A distinct neuro-oncological paradigm. Genome Medicine, 5(7), 66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gielen, G. H., Gessi, M., Hammes, J., Kramm, C. M., Waha, A., & Pietsch, T. (2013). H3F3A K27M mutation in pediatric CNS tumors: A marker for diffuse high-grade astrocytomas. American Journal of Clinical Pathology, 139(3), 345–349.

    Article  CAS  PubMed  Google Scholar 

  • Gilheeney, S. W., & Kieran, M. W. (2012). Differences in molecular genetics between pediatric and adult malignant astrocytomas: Age matters. Future Oncology, 8(5), 549–558.

    Article  CAS  PubMed  Google Scholar 

  • Glod, J., Rahme, G., Kaur, H., Raabe, E. H., Hwang, E., & Israel, M. (2016). Pediatric brain tumors: Current knowledge and therapeutic opportunities. Journal of Pediatric Hematology/Oncology, 38(4), 249–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg, A. D., Banaszynski, L. A., et al. (2010). Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell, 140(5), 678–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargrave, D. (2009). Paediatric high and low grade glioma: The impact of tumour biology on current and future therapy. British Journal of Neurosurgery, 23(4), 351–363.

    Article  PubMed  Google Scholar 

  • Hassan, B., Akcakanat, A., Holder, A. M., & Meric-Bernstam, F. (2013). Targeting the PI3-kinase/Akt/mTOR signaling pathway. Surgical Oncology Clinics of North America, 22(4), 641–664.

    Article  PubMed  Google Scholar 

  • Heaphy, C. M., de Wilde, R. F., Jiao, Y., Klein, A. P., Edil, B. H., Shi, C., et al. (2011). Altered telomeres in tumors with ATRX and DAXX mutations. Science, 333(6041), 425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., et al. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences USA, 100(25), 15178–15183.

    Article  CAS  Google Scholar 

  • Hernaiz Driever, P., von Hornstein, S., Pietsch, T., Kortmann, R., Warmuth-Metz, M., Emser, A., et al. (2010). Natural history and management of low-grade glioma in NF-1 children. Journal of Neuro-Oncology, 100(2), 199–207.

    Article  PubMed  Google Scholar 

  • Hervey-Jumper, S. L., Garton, H. J., Lau, D., Altshuler, D., Quint, D. J., Robertson, P. L., et al. (2014). Differences in vascular endothelial growth factor receptor expression and correlation with the degree of enhancement in medulloblastoma. Journal of Neurosurgery: Pediatrics, 14(2), 121–128.

    PubMed  Google Scholar 

  • Ho, C., Mobley, B., Gordish-Dressman, H., VandenBussche, C., Mason, G., Bornhorst, M., et al. (2015). A clinicopathologic study of diencephalic pediatric low-grade gliomas with BRAF V600 mutation. Acta Neuropathologica, 130(4), 575–585.

    Article  CAS  PubMed  Google Scholar 

  • Hovestadt, V., Jones, D. T., Picelli, S., Wang, W., Kool, M., Northcott, P. A., et al. (2014). Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature, 510(7506), 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Huillard, E., Hashizume, R., Phillips, J. J., Griveau, A., Ihrie, R. A., Aoki, Y., et al. (2012). Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy. Proceedings of the National Academy of Sciences USA, 109(22), 8710–8715.

    Article  CAS  Google Scholar 

  • Huse, J. T., & Rosenblum, M. K. (2015). The emerging molecular foundations of pediatric brain tumors. Journal of Child Neurology, 30(13), 1838–1850.

    Article  PubMed  Google Scholar 

  • Jacob, K., Albrecht, S., Sollier, C., Faury, D., Sader, E., Montpetit, A., et al. (2009). Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. British Journal of Cancer, 101(4), 722–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob, K., Quang-Khuong, D. A., Jones, D. T., Witt, H., Lambert, S., Albrecht, S., et al. (2011). Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clinical Cancer Research, 17(14), 4650–4660.

    Article  CAS  PubMed  Google Scholar 

  • Jones, C., Perryman, L., & Hargrave, D. (2012a). Paediatric and adult malignant glioma: Close relatives or distant cousins? Nature Reviews Clinical Oncology, 9(7), 400–413.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D. T., Gronych, J., Lichter, P., Witt, O., & Pfister, S. M. (2012b). MAPK pathway activation in pilocytic astrocytoma. Cellular and Molecular Life Sciences, 69(11), 1799–1811.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D. T., Hutter, B., Jager, N., Korshunov, A., Kool, M., Warnatz, H. J., et al. (2013). Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 45(8), 927–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, D. T., Ichimura, K., Liu, L., Pearson, D. M., Plant, K., & Collins, V. P. (2006). Genomic analysis of pilocytic astrocytomas at 0.97 Mb resolution shows an increasing tendency toward chromosomal copy number change with age. Journal of Neuropathology and Experimental Neurology, 65(11), 1049–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, D. T., Jager, N., Kool, M., Zichner, T., Hutter, B., Sultan, M., et al. (2012c). Dissecting the genomic complexity underlying medulloblastoma. Nature, 488(7409), 100–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, D. T., Kocialkowski, S., Liu, L., Pearson, D. M., Backlund, L. M., Ichimura, K., et al. (2008). Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Research, 68(21), 8673–8677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, D. T., Kocialkowski, S., Liu, L., Pearson, D. M., Ichimura, K., & Collins, V. P. (2009). Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549: BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene, 28(20), 2119–2123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khuong-Quang, D. A., Buczkowicz, P., Rakopoulos, P., Liu, X. Y., Fontebasso, A. M., Bouffet, E., et al. (2012). K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathologica, 124(3), 439–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieran, M. W., Walker, D., Frappaz, D., & Prados, M. (2010). Brain tumors: From childhood through adolescence into adulthood. Journal of Clinical Oncology, 28(32), 4783–4789.

    Article  PubMed  Google Scholar 

  • Kleiblova, P., Shaltiel, I. A., Benada, J., Ševčík, J., Pecháčková, S., Pohlreich, P., et al. (2013). Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. Journal of Cell Biology, 201, 511–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinschmidt-DeMasters, B. K., Aisner, D. L., Birks, D. K., & Foreman, N. K. (2013). Epithelioid GBMs show a high percentage of BRAF V600E mutation. The American Journal of Surgical Pathology, 37(5), 685–698.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knobbe, C. B., Reifenberger, J., & Reifenberger, G. (2004). Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathologica, 108(6), 467–470.

    Article  CAS  PubMed  Google Scholar 

  • Krueger, D. A., Care, M. M., Agricola, K., Tudor, C., Mays, M., & Franz, D. N. (2013). Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology, 80(6), 574–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassaletta, A., Zapotocky, M., Bouffet, E., Hawkins, C., & Tabori, U. (2016). An integrative molecular and genomic analysis of pediatric hemispheric low-grade gliomas: An update. Childs Nervous System, 32(10), 1789–1797.

    Article  Google Scholar 

  • Lawrence, M. S., Stojanov, P., Mermel, C. H., Robinson, J. T., Garraway, L. A., Golub, T. R., et al. (2014). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 505(7484), 495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le, L. Q., & Parada, L. F. (2007). Tumor microenvironment and neurofibromatosis type I: Connecting the GAPs. Oncogene, 26(32), 4609–4616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, A., Rodriguez, F. J., Karajannis, M. A., Williams, S. C., Legault, G., Zagzag, D., et al. (2012). BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549: BRAF fusion variants. Journal of Neuropathology and Experimental Neurology, 71(1), 66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, K., Pajtler, K., Worst, B., Pfister, S., & Wechsler-Reya, R. (2017). Molecular mechanisms and therapeutic targets in pediatric brain tumors. Science Signaling, 10(470), eaaf7593. doi:10.1126/scisignal.aaf7593.

    Article  Google Scholar 

  • Liu, X. Y., Gerges, N., Korshunov, A., Sabha, N., Khuong-Quang, D. A., Fontebasso, A. M., et al. (2012). Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathologica, 124(5), 615–625.

    Article  CAS  PubMed  Google Scholar 

  • Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., et al. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica, 114(2), 97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., et al. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica, 131(6), 803–820.

    Article  PubMed  Google Scholar 

  • Lulla, R., Saratsis, A., & Hashizume, R. (2016). Mutations in chromatin machinery and pediatric high-grade glioma. Science Advances, 2(3), e1501354. doi:10.1126/sciadv.1501354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mack, S. C., & Northcott, P. A. (2017). Genomic analysis of childhood brain tumors: Methods for genome-wide discovery and precision medicine become mainstream. Journal of Clinical Oncology, 35(21), 2346–2354.

    Article  PubMed  Google Scholar 

  • Mack, S. C., Witt, H., Piro, R. M., Gu, L., Zuyderduyn, S., Stutz, A. M., et al. (2014). Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature, 506(7489), 445–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLendon, et al. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068.

    Article  CAS  Google Scholar 

  • Nicolaides, T. P., Li, H., Solomon, D. A., Hariono, S., Hashizume, R., Barkovich, K., et al. (2011). Targeted therapy for BRAFV600E malignant astrocytoma. Clinical Cancer Research, 17(24), 7595–7604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northcott, P. A., Jones, D. T., Kool, M., Robinson, G. W., Gilbertson, R. J., Cho, Y. J., et al. (2012). Medulloblastomics: The end of the beginning. Nature Reviews Cancer, 12(12), 818–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northcott, P. A., Lee, C., Zichner, T., Stutz, A. M., Erkek, S., Kawauchi, D., et al. (2014). Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 511(7510), 428–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northcott, P. A., Pfister, S. M., & Jones, D. T. (2015). Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. The Lancet Oncology, 16(6), e293–e302.

    Article  PubMed  Google Scholar 

  • Park, S., Won, J., Kim, S., Lee, Y., Park, C., Kim, S., et al. (2017). Molecular testing of brain tumor. Journal of Pathology and Translational Medicine, 51(3), 205–223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321(5897), 1807–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paugh, B. S., Broniscer, A., Qu, C., Miller, C. P., Zhang, J., Tatevossian, R. G., et al. (2011). Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. Journal of Clinical Oncology, 29(30), 3999–4006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paugh, B. S., Qu, C., Jones, C., Liu, Z., Adamowicz-Brice, M., Zhang, J., et al. (2010). Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. Journal of Clinical Oncology, 28(18), 3061–3068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paugh, B. S., Zhu, X., Qu, C., Endersby, R., Diaz, A. K., Zhang, J., et al. (2013). Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Research, 73(20), 6219–6229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penman, C., Faulkner, C., Lowis, S., & Kurian, K. (2015). Current understanding of BRAF alterations in diagnosis, prognosis, and therapeutic targeting in pediatric low-grade gliomas. Frontiers in Oncology, eCollection 2015.

  • Populo, H., Lopes, J. M., & Soares, P. (2012). The mTOR signalling pathway in human cancer. International Journal of Molecular Sciences, 13(2), 1886–1918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puget, S., Philippe, C., Bax, D. A., Job, B., Varlet, P., Junier, M. P., et al. (2012). Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS ONE, 7(2), e30313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugh, T. J., Weeraratne, S. D., Archer, T. C., Pomeranz Krummel, D. A., Auclair, D., Bochicchio, J., et al. (2012). Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 488(7409), 106–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu, H. Q., Jacob, K., Fatet, S., Ge, B., Barnett, D., Delattre, O., et al. (2010). Genome-wide profiling using single-nucleotide polymorphism arrays identifies novel chromosomal imbalances in pediatric glioblastomas. Neuro Oncology, 12(2), 153–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raabe, E. H., Lim, K. S., Kim, J. M., Meeker, A., Mao, X. G., Nikkhah, G., et al. (2011). BRAF activation induces transformation and then senescence in human neural stem cells: A pilocytic astrocytoma model. Clinical Cancer Research, 17(11), 3590–3599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramkissoon, L. A., Horowitz, P. M., Craig, J. M., Ramkissoon, S. H., Rich, B. E., Schumacher, S. E., et al. (2013). Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proceedings of the National Academy of Sciences USA, 110(20), 8188–8193.

    Article  CAS  Google Scholar 

  • Rausch, T., Jones, D. T., Zapatka, M., Stütz, A. M., Zichner, T., Weischenfeldt, J., et al. (2012). Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell, 148(1–2), 59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuss, D., & von Deimling, A. (2009). Hereditary tumor syndromes and gliomas. Recent Results in Cancer Research, 171, 83–102.

    Article  PubMed  Google Scholar 

  • Robinson, G., Parker, M., Kranenburg, T. A., Lu, C., Chen, X., Ding, L., et al. (2012). Novel mutations target distinct subgroups of medulloblastoma. Nature, 488(7409), 43–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez, E. F., Scheithauer, B. W., Giannini, C., Rynearson, A., Cen, L., Hoesley, B., et al. (2011). PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathologica, 121(3), 407–420.

    Article  CAS  PubMed  Google Scholar 

  • Rosner, M., Hanneder, M., Siegel, N., Valli, A., & Hengstschlager, M. (2008). The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutation Research, 658(3), 234–246.

    Article  CAS  PubMed  Google Scholar 

  • Roujeau, T., Machado, G., Garnett, M. R., Miquel, C., Puget, S., Geoerger, B., et al. (2007). Stereotactic biopsy of diffuse pontine lesions in children. Journal of Neurosurgery, 107(1 Suppl), 1–4.

    PubMed  Google Scholar 

  • Ryall, S., Krishnatry, R., Arnoldo, A., Buczkowicz, P., Mistry, M., Siddaway, R., et al. (2016). Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun, 4(1), 93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schiffman, J. D., Hodgson, J. G., VandenBerg, S. R., Flaherty, P., Polley, M. Y., Yu, M., et al. (2010). Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Research, 70(2), 512–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler, G., Capper, D., Meyer, J., Janzarik, W., Omran, H., Herold-Mende, C., et al. (2011). Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathologica, 121(3), 397–405.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, K., Zelley, K., Nichols, K. E., & Garber, J. (2013). Li-Fraumeni Syndrome. In R. A. Pagon, M. P. Adam, H. H. Ardinger, S. E. Wallace, A. Amemiya, L. J. H. Bean, et al. (Eds.), GeneReviews ® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017.

  • Schwartzentruber, J., Korshunov, A., Liu, X. Y., Jones, D. T., Pfaff, E., Jacob, K., et al. (2012). Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 482(7384), 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Segal, D., & Karajannis, M. A. (2016). Pediatric brain tumors: An update. Current Problems in Pediatric and Adolescent Health Care, 46(7), 242–250.

    Article  PubMed  Google Scholar 

  • Shih, D. J., Northcott, P. A., Remke, M., et al. (2014). Cytogenetic prognostication within medulloblastoma subgroups. Journal of Clinical Oncology, 32(9), 886–896.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sie, M., den Dunnen, W. F., Hoving, E. W., & de Bont, E. S. (2014). Anti-angiogenic therapy in pediatric brain tumors: An effective strategy? Critical Reviews in Oncology Hematology, 89(3), 418–432.

    Article  Google Scholar 

  • Sobol-Milejska, G., Mizia-Malarz, A., Musiol, K., Chudek, J., Bożentowicz-Wikarek, M., Wos, H., et al. (2017). Serum levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in children with brain tumours. Advances in Clinical and Experimental Medicine. doi:10.17219/acem/62320.

    PubMed  Google Scholar 

  • Staedtke, V., A Dzaye, O. D., & Holdhoff, M. (2016). Actionable molecular biomarkers in primary brain tumors. Trends Cancer, 2(7), 338–349.

    Article  PubMed Central  Google Scholar 

  • Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D. A., Jones, D. T., Konermann, C., et al. (2012). Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 22(4), 425–437.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y., Gholamin, S., Schubert, S., Willardson, M. I., Lee, A., Bandopadhayay, P., et al. (2014). Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nature Medicine, 20(7), 732–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatevossian, R. G., Tang, B., Dalton, J., Forshew, T., Lawson, A. R., Ma, J., et al. (2010). MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas. Acta Neuropathologica, 120(6), 731–743.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor, K. R., Mackay, A., Truffaux, N., Butterfield, Y. S., Morozova, O., Philippe, C., et al. (2014). Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nature Genetics, 46(5), 457–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Slegtenhorst, M., de Hoogt, R., Hermans, C., Nellist, M., Janssen, B., Verhoef, S., et al. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science, 277(5327), 805–808.

    Article  PubMed  Google Scholar 

  • Venneti, S., Garimella, M. T., Sullivan, L. M., Martinez, D., Huse, J. T., Heguy, A., et al. (2013). Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathology, 23(5), 558–564.

    Article  CAS  PubMed  Google Scholar 

  • Venneti, S., Santi, M., Felicella, M. M., Yarilin, D., Phillips, J. J., Sullivan, L. M., et al. (2014). A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathologica, 128(5), 743–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldmann, T., & Schneider, R. (2013). Targeting histone modifications—Epigenetics in cancer. Current Opinion in Cell Biology, 25(2), 184–189.

    Article  CAS  PubMed  Google Scholar 

  • Wells, E. M., & Packer, R. J. (2015). Pediatric brain tumors. Continuum (Minneap Minn), 21(2 Neuro-oncology), 373–396.

  • Wu, G., Broniscer, A., McEachron, T. A., Lu, C., Paugh, B. S., Becksfort, J., et al. (2012). Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genetics, 44(3), 251–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, G., Diaz, A. K., Paugh, B. S., Rankin, S. L., Ju, B., Li, Y., et al. (2014). The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nature Genetics, 46(5), 444–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen, B. T., & Knoepfler, P. S. (2013). Histone H3.3 mutations: A variant path to cancer. Cancer Cell, 24(5), 567–574.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Wu, G., Miller, C. P., Tatevossian, R. G., Dalton, J. D., Tang, B., et al. (2013). Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nature Genetics, 45(6), 602–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios G. Papavassiliou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klonou, A., Piperi, C., Gargalionis, A.N. et al. Molecular Basis of Pediatric Brain Tumors. Neuromol Med 19, 256–270 (2017). https://doi.org/10.1007/s12017-017-8455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-017-8455-9

Keywords

Navigation