Skip to main content
Log in

Sleep Dysfunction and Grey Matter Volume

  • Sleep (M. Thorpy and M. Billiard, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

With the voxel-based morphometry (VBM), structural imaging studies turned into new directions aiming to explore neurological disorders differently. This approach helps identify possible pathophysiological correlations between neuroanatomical grey matter (GM) structures in patients with sleep dysfunction. This article reviews recent findings on GM structure in various sleep disorders and possible causes of disturbed sleep and discusses the future perspectives.

Recent Findings

At present, research on the effect of GM volume changes in specific brain areas on the pathogenesis of sleep disturbances is incomplete. It remains unknown if the GM thickness reduction in patients with REM sleep behaviour disorder, obstructive sleep apnea, restless legs syndrome, and insomnia is due to complex disease presentation or direct response to disturbed sleep. Additionally, many VBM studies have yielded inconsistent results showing either reduction or increase in GM.

Summary

The spatiotemporal complexity of whole-brain networks and state transitions during sleep and the role of GM changes increase new debates. Having multimodal data from large sample studies can help model sleep network dynamics in different disorders and provide novel data for possible therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arnulf I. REM sleep behaviour disorder: motor manifestations and pathophysiology. Mov Disord. 2012;27(6):677–89. https://doi.org/10.1002/mds.24957.

    Article  PubMed  Google Scholar 

  2. American Academy of Sleep Medicine. International Classification of Sleep Disorders. 3rd ed. Darien: IL; American Academy of Sleep Medicine; 2014.

    Google Scholar 

  3. Zhang X, Sun X, Wang J, Tang L, Xie A. Prevalence of rapid eye movement sleep behavior disorder (RBD) in Parkinson’s disease: a meta and meta-regression analysis. Neurol Sci. 2017;38(1):163–70. https://doi.org/10.1007/s10072-016-2744-1.

    Article  PubMed  Google Scholar 

  4. Sixel-Döring F, Trautmann E, Mollenhauer B, Trenkwalder C. Rapid eye movement sleep behavioural events: a new marker for neurodegeneration in early Parkinson disease? Sleep. 2014;37(3):431–8. https://doi.org/10.5665/sleep.3468.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Iranzo A, Santamaria J, Tolosa E. Idiopathic rapid eye movement sleep behaviour disorder: diagnosis, management, and the need for neuroprotective interventions. Lancet Neurol. 2016;15(4):405–19. https://doi.org/10.1016/S1474-4422(16)00057-0.

    Article  PubMed  Google Scholar 

  6. Campabadal A, Segura B, Junque C, Iranzo A. Structural and functional magnetic resonance imaging in isolated REM sleep behaviour disorder: A systematic review of studies using neuroimaging software. Sleep Med Rev. 2021;22(59): 101495. https://doi.org/10.1016/j.smrv.2021.101495.

    Article  Google Scholar 

  7. Kotagal V, Albin RL, Müller ML, Koeppe RA, Chervin RD, Frey KA, Bohnen NI. Symptoms of rapid eye movement sleep behaviour disorder are associated with cholinergic denervation in Parkinson disease. Ann Neurol. 2012;71(4):560–8. https://doi.org/10.1002/ana.22691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iranzo A, Fernández-Arcos A, Tolosa E, Serradell M, Molinuevo JL, Valldeoriola F, Gelpi E, Vilaseca I, Sánchez-Valle R, Lladó A, Gaig C, Santamaría J. Neurodegenerative disorder risk in idiopathic REM sleep behaviour disorder: study in 174 patients. 2014:26;9(2):e89741. https://doi.org/10.1371/journal.pone.0089741.

  9. Postuma RB, Iranzo A, Hu M, Högl B, Boeve BF, Manni R, Oertel WH, Arnulf I, Ferini-Strambi L, Puligheddu M, Antelmi E, Cochen De Cock V, Arnaldi D, Mollenhauer B, Videnovic A, Sonka K, Jung KY, Kunz D, Dauvilliers Y, Provini F, Lewis SJ, Buskova J, Pavlova M, Heidbreder A, Montplaisir JY, Santamaria J, Barber TR, Stefani A, St Louis EK, Terzaghi M, Janzen A, Leu-Semenescu S, Plazzi G, Nobili F, Sixel-Doering F, Dusek P, Bes F, Cortelli P, Ehgoetz Martens K, Gagnon JF, Gaig C, Zucconi M, Trenkwalder C, Gan-Or Z, Lo C, Rolinski M, Mahlknecht P, Holzknecht E, Boeve AR, Teigen LN, Toscano G, Mayer G, Morbelli S, Dawson B, Pelletier A. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain. 2019;142(3):744–759. https://doi.org/10.1093/brain/awz030.

  10. Chen M, Li Y, Chen J, Gao L, Sun J, Gu Z, Wu T, Chan P. Structural and functional brain alterations in patients with idiopathic rapid eye movement sleep behaviour disorder. J Neuroradiol. 2020:12:S0150–9861(20)30196–6. https://doi.org/10.1016/j.neurad.2020.04.007.

  11. Rahayel S, Postuma RB, Montplaisir J, Bedetti C, Brambati S, Carrier J, Monchi O, Bourgouin PA, Gaubert M, Gagnon JF. Abnormal gray matter shape, thickness, and volume in the motor cortico-subcortical loop in idiopathic rapid eye movement sleep behaviour disorder: association with clinical and motor features. Cereb Cortex. 2018;28(2):658–71. https://doi.org/10.1093/cercor/bhx137.

    Article  PubMed  Google Scholar 

  12. Campabadal A, Segura B, Junque C, Serradell M, Abos A, Uribe C, Baggio HC, Gaig C, Santamaria J, Compta Y, Bargallo N, Iranzo A. Cortical Gray Matter and Hippocampal Atrophy in Idiopathic Rapid Eye Movement Sleep behaviour Disorder. Front Neurol. 2019;5(10):312. https://doi.org/10.3389/fneur.2019.00312.

    Article  Google Scholar 

  13. Li G, Chen Z, Zhou L, Zhao A, Niu M, Li Y, Luo N, Kang W, Liu J. Altered structure and functional connectivity of the central autonomic network in idiopathic rapid eye movement sleep behaviour disorder. J Sleep Res. 2021;30(3): e13136. https://doi.org/10.1111/jsr.13136.

    Article  PubMed  Google Scholar 

  14. Park KM, Lee HJ, Lee BI, Kim SE. Alterations of the brain network in idiopathic rapid eye movement sleep behaviour disorder: structural connectivity analysis. Sleep Breath. 2019;23(2):587–93. https://doi.org/10.1007/s11325-018-1737-0.

    Article  PubMed  Google Scholar 

  15. Pereira JB, Weintraub D, Chahine L, Aarsland D, Hansson O, Westman E. Cortical thinning in patients with REM sleep behaviour disorder is associated with clinical progression. NPJ Parkinsons Dis. 2019;3(5):7. https://doi.org/10.1038/s41531-019-0079-3.

    Article  Google Scholar 

  16. Yoon EJ, Monchi O. Probable REM sleep behaviour disorder is associated with longitudinal cortical thinning in Parkinson’s disease. NPJ Parkinsons Dis. 2021;7(1):19. https://doi.org/10.1038/s41531-021-00164-z.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hrozanova M, Morrison I, Riha R. Adult NREM parasomnias: an update. Clocks Sleep. 2018;1(1):87–104.

    Article  Google Scholar 

  18. Castelnovo A, Lopez R, Proserpio P, Nobili L, Dauvilliers Y. NREM sleep parasomnias as disorders of sleep-state dissociation. Nat Rev Neurol. 2018;14(8):470–81.

    Article  Google Scholar 

  19. Erickson J, Vaughn BV. Non-REM parasomnia: the promise of precision medicine. Sleep Med Clin. 2019;14(3):363–70.

    Article  Google Scholar 

  20. Heidbreder A, Stefani A, Brandauer E, Steiger R, Kremser C, Gizewski ER, et al. Gray matter abnormalities of the dorsal posterior cingulate in sleep walking. Sleep Med. 2017;36:152–5.

    Article  Google Scholar 

  21. Ramm M, Urbanek A, Failing A, Young P, Scherfler C, Hogl B, Heidbreder A. Increased behavioral inhibition trait and negative stress coping in non–rapid eye movement parasomnias. J Clin Sleep Med. 2020;16(10):1737–44.

    Article  Google Scholar 

  22. Tahmasian M, Noori K, Samea F, Zarei M, Spiegelhalder K, Eickhoff SB, Van Someren E, Khazaie H, Eickhoff CR. A lack of consistent brain alterations in insomnia disorder: An activation likelihood estimation meta-analysis. Sleep Med Rev. 2018;42:111–8. https://doi.org/10.1016/j.smrv.2018.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li G, Zhang X, Zhang J, Wang E, Zhang H, Li Y. Magnetic resonance study on the brain structure and resting-state brain functional connectivity in primary insomnia patients. Medicine (Baltimore). 2018;97(34): e11944. https://doi.org/10.1097/MD.0000000000011944.

    Article  Google Scholar 

  24. Grau-Rivera O, Operto G, Falcón C, Sánchez-Benavides G, Cacciaglia R, Brugulat-Serrat A, Gramunt N, Salvadó G, Suárez-Calvet M, Minguillon C, Iranzo Á, Gispert JD, Molinuevo JL; ALFA Study. Association between insomnia and cognitive performance, gray matter volume, and white matter microstructure in cognitively unimpaired adults. Alzheimers Res Ther. 2020;12(1):4. https://doi.org/10.1186/s13195-019-0547-3.

  25. Dai XJ, Jiang J, Zhang Z, Nie X, Liu BX, Pei L, Gong H, Hu J, Lu G, Zhan Y. Plasticity and susceptibility of brain morphometry alterations to insufficient sleep. Front Psychiatry. 2018;27(9):266. https://doi.org/10.3389/fpsyt.2018.00266.

    Article  Google Scholar 

  26. Emamian F, Mahdipour M, Noori K, Rostampour M, Mousavi SB, Khazaie H, Khodaie-Ardakani M, Tahmasian M, Zarei M. Alterations of subcortical brain structures in paradoxical and psychophysiological insomnia disorder. Front Psychiatry. 2021;7(12): 661286. https://doi.org/10.3389/fpsyt.2021.661286.

    Article  Google Scholar 

  27. American Academy of Sleep Medicine. International classification of sleep disorders: diagnostic and coding manual. Westchester: American Academy of Sleep Medicine; 2005.

    Google Scholar 

  28. Yu S, Shen Z, Lai R, Feng F, Guo B, Wang Z, Yang J, Hu Y, Gong L. The orbitofrontal cortex gray matter is associated with the interaction between insomnia and depression. Front Psychiatry. 2018;4(9):651. https://doi.org/10.3389/fpsyt.2018.00651.

    Article  Google Scholar 

  29. Pavlova MK, Duffy JF, Shea SA. Polysomnographic respiratory abnormalities in asymptomatic individuals. Sleep. 2008;31(2):241–8. https://doi.org/10.1093/sleep/31.2.241.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Macey PM, Henderson LA, Macey KE, Alger JR, Frysinger RC, Woo MA, Harper RK, Yan-Go FL, Harper RM. Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med. 2002;166(10):1382–7. https://doi.org/10.1164/rccm.200201-050OC.

    Article  PubMed  Google Scholar 

  31. Celle S, Delon-Martin C, Roche F, Barthélémy JC, Pépin JL, Dojat M. Desperately seeking grey matter volume changes in sleep apnea: A methodological review of magnetic resonance brain voxel-based morphometry studies. Sleep Med Rev. 2016;25:112–20. https://doi.org/10.1016/j.smrv.2015.03.001.

    Article  PubMed  Google Scholar 

  32. Joo EY, Tae WS, Lee MJ, Kang JW, Park HS, Lee JY, Suh M, Hong SB. Reduced brain gray matter concentration in patients with obstructive sleep apnea syndrome. Sleep. 2010;33(2):235–41. https://doi.org/10.1093/sleep/33.2.235.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Morrell MJ, Jackson ML, Twigg GL, Ghiassi R, McRobbie DW, Quest RA, Pardoe H, Pell GS, Abbott DF, Rochford PD, Jackson GD, Pierce RJ, O’Donoghue FJ, Corfield DR. Changes in brain morphology in patients with obstructive sleep apnoea. Thorax. 2010;65(10):908–14. https://doi.org/10.1136/thx.2009.126730.

    Article  CAS  PubMed  Google Scholar 

  34. Torelli F, Moscufo N, Garreffa G, Placidi F, Romigi A, Zannino S, Bozzali M, Fasano F, Giulietti G, Djonlagic I, Malhotra A, Marciani MG, Guttmann CR. Cognitive profile and brain morphological changes in obstructive sleep apnea. Neuroimage. 2011;54(2):787–93. https://doi.org/10.1016/j.neuroimage.2010.09.065.

    Article  PubMed  Google Scholar 

  35. Yeung AWK. Morphometric and functional connectivity changes in the brain of patients with obstructive sleep apnea: A meta-analysis. J Sleep Res. 2019;28(6): e12857. https://doi.org/10.1111/jsr.12857.

    Article  PubMed  Google Scholar 

  36. André C, Rehel S, Kuhn E, Landeau B, Moulinet I, Touron E, Ourry V, Le Du G, Mézenge F, Tomadesso C, de Flores R, Bejanin A, Sherif S, Delcroix N, Manrique A, Abbas A, Marchant NL, Lutz A, Klimecki OM, Collette F, Arenaza-Urquijo EM, Poisnel G, Vivien D, Bertran F, de la Sayette V, Chételat G, Rauchs G; Medit-Ageing Research Group. Association of sleep-disordered breathing with Alzheimer’s disease biomarkers in community-dwelling older adults: a secondary analysis of a randomized clinical trial. JAMA Neurol. 2020;77(6):716–724. https://doi.org/10.1001/jamaneurol.2020.0311.

  37. Hermesdorf M, Szentkirályi A, Teismann H, Teismann I, Young P, Berger K. Sleep characteristics, cognitive performance, and gray matter volume: findings from the BiDirect Study. Sleep. 2021;44(3):zsaa209. https://doi.org/10.1093/sleep/zsaa209.

  38. Allen RP, Walters AS, Montplaisir J, Hening W, Myers A, Bell TJ, Ferini-Strambi L. Restless legs syndrome prevalence and impact: REST general population study. Arch Intern Med. 2005;165(11):1286–92. https://doi.org/10.1001/archinte.165.11.1286.

    Article  PubMed  Google Scholar 

  39. Etgen T, Draganski B, Ilg C, Schröder M, Geisler P, Hajak G, Eisensehr I, Sander D, May A. Bilateral thalamic gray matter changes in patients with restless legs syndrome. Neuroimage. 2005;24(4):1242–7. https://doi.org/10.1016/j.neuroimage.2004.10.021.

    Article  PubMed  Google Scholar 

  40. Hornyak M, Feige B, Voderholzer U, Philipsen A, Riemann D. Polysomnography findings in patients with restless legs syndrome and healthy controls: a comparative observational study. Sleep. 2007;30(7):861–5. https://doi.org/10.1093/sleep/30.7.861.

    Article  PubMed  Google Scholar 

  41. Chang Y, Chang HW, Song H, Ku J, Earley CJ, Allen RP, Cho YW. Gray matter alteration in patients with restless legs syndrome: a voxel-based morphometry study. Clin Imaging. 2015;39(1):20–5. https://doi.org/10.1016/j.clinimag.2014.07.010.

    Article  PubMed  Google Scholar 

  42. Lee BY, Kim J, Connor JR, Podskalny GD, Ryu Y, Yang QX. Involvement of the central somatosensory system in restless legs syndrome: A neuroimaging study. Neurology. 2018;90(21):e1834–41. https://doi.org/10.1212/WNL.0000000000005562.

    Article  PubMed  Google Scholar 

  43. Bassetti CLA, Kallweit U, Vignatelli L, et al. European guideline and expert statements on managing narcolepsy in adults and children. J Sleep Res. 2021;30(6): e13387. https://doi.org/10.1111/jsr.13387.

    Article  PubMed  Google Scholar 

  44. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257–63.

    Article  CAS  Google Scholar 

  45. Wada M, Mimura M, Noda Y, et al. Neuroimaging correlates of narcolepsy with cataplexy: A systematic review. Neurosci Res. 2019;142:16–29. https://doi.org/10.1016/j.neures.2018.03.005.

    Article  PubMed  Google Scholar 

  46. Tondelli M, Pizza F, Vaudano AE, Plazzi G, Meletti S. Cortical and Subcortical Brain Changes in Children and Adolescents With Narcolepsy Type 1. Sleep. 2018;41(2):zsx192. https://doi.org/10.1093/sleep/zsx192.

  47. Pomares FB, Boucetta S, Lachapelle F, et al. Beyond sleepy: structural and functional changes of the default-mode network in idiopathic hypersomnia. Sleep. 2019;42(11):zsz156. https://doi.org/10.1093/sleep/zsz156.

  48. Trotti LM, Saini P, Crosson B, Meltzer CC, Rye DB, Nye JA. Regional brain metabolism differs between narcolepsy type 1 and idiopathic hypersomnia. Sleep. 2021;44(8):zsab050.https://doi.org/10.1093/sleep/zsab050.

  49. Falcon MI, Jirsa V, Solodkin A. A new neuroinformatics approach to personalized medicine in neurology: The Virtual Brain. Curr Opin Neurol. 2016;29(4):429–36. https://doi.org/10.1097/WCO.0000000000000344.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Altena E, Vrenken H, Van Der Werf YD, van den Heuvel OA, Van Someren EJ. Reduced orbitofrontal and parietal gray matter in chronic insomnia: a voxel-based morphometric study. Biol Psychiatry. 2010;67(2):182–5. https://doi.org/10.1016/j.biopsych.2009.08.003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelina Pajediene.

Ethics declarations

Conflict of Interest

Gintare Paulekiene, Milda Pajarskiene, Evelina Pajediene, and Andrius Radziunas declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection on Sleep

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulekiene, G., Pajarskiene, M., Pajediene, E. et al. Sleep Dysfunction and Grey Matter Volume. Curr Neurol Neurosci Rep 22, 275–283 (2022). https://doi.org/10.1007/s11910-022-01190-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-022-01190-x

Keywords

Navigation