Skip to main content

Advertisement

Log in

The “Liquid Biopsy”: the Role of Circulating DNA and RNA in Central Nervous System Tumors

  • Neuro-oncology (LE Abrey, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The detection of tumor-derived circulating nucleic acids in patients with cancer, known as the “liquid biopsy,” has expanded from use in plasma to other bodily fluids in an increasing number of malignancies. Circulating nucleic acids could be of particular use in central nervous system tumors as biopsy carries a 5-7 % risk of major morbidity. This application presents unique challenges that have limited the use of cell-free DNA and RNA in the diagnosis and monitoring of CNS tumors. Recent work suggests that cerebrospinal fluid may be a useful source of CNS tumor-derived circulating nucleic acids. In this review, we discuss the available data and future outlook on the use of the liquid biopsy for CNS tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BBB:

Blood-brain barrier

miRNA:

micro RNA

GBM:

Glioblastoma

CNS:

Central nervous system

CSF:

Cerebral spinal fluid

cfDNA:

Cell-free DNA

CTCs:

Circulating tumor cells

ddPCR:

Digital droplet PCR

mtDNA:

Mitochondrial DNA

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rowley AH, Whitley RJ, Lakeman FD, Wolinksy SM. Rapid detection of herpes-simplex-virus DNA in cerebrospinal fluid of patients with herpes simplex encephalitis method of making. Lancet. 1990;1:440–1.

    Article  Google Scholar 

  2. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–91.

    Article  CAS  PubMed  Google Scholar 

  3. Committee Opinion Summary No. 640 [Internet]. Obstet. Gynecol. 2015. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00006250-201509000-00045

  4. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. [Internet]. 2012;366:883–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22397650

  5. Wang Y, Springer S, Zhang M, McMahon KW, Kinde I, Dobbyn L, et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci. 2015;112(31):9704–9. doi:10.1073/pnas.1511694112. Wang et al. investigated the use of CSF as a reservior for the detection of cfDNA brain and spinal tumor mutations using a high throughput sequencing approach. In a large cohort of 35 primary CNS tumors, the authors demonstrated that cfDNA tumor mutations can be detected in CSF when the tumor interfaces with a CSF reservior.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pan W, Gu W, Nagpal S, Gephart MH, Quake SR. Brain tumor mutations detected in cerebral spinal fluid. Clin Chem. 2015;61:514–22. doi:10.1373/clinchem.2014.235457. Pan et al. is one of the first studies to primarily focus on the detection of brain tumor mutations in CSF using a high throughput sequencing approach. The authors concluded that CSF may be a superior reservior for brain tumor cfDNA when the systemic disease burden is low.

    Article  CAS  PubMed  Google Scholar 

  7. Lavon I, Refael M, Zelikovitch B, Shalom E, Siegal T. Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades. Neuro-Oncol. 2010;12:173–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014;6:224ra24. Available from: http://stm.sciencemag.org/content/6/224/224ra24.short. Bettegowda et al. investigated levels of mutant cfDNA in a large cohort of 640 patients with a variety of cancers. Interestingly, the authors observed that CNS tumors and tumors with mucinous features were detected less reliably in plasma. They hypothesized that the blood–brain barrier and mucinous layers may interfere with the shedding of tumor cfDNA into the circulation.

  9. Sullivan JP, Nahed BV, Madden MW, Oliveira SM, Springer S, Bhere D, et al. Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov. 2014;4:1299–309. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4221467&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Burgos KL, Javaherian A, Bomprezzi R, Ghaffari L, Rhodes S, Courtright A, et al. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA. 2013;19:712–22. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3677285&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, et al. BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic-Acids. 2013;2:e109. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3732870&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 2014;4:650–61. AACR.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, et al. BEAMing and droplet digital PCR analysis of mutant idh1 mrna in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic-Acids. 2013;2:e109.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Alix-Panabier̀es C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59:110–8.

    Article  PubMed  Google Scholar 

  15. Racila E, Euhus D, Weiss AJ, Rao C, McConnell J, Terstappen LW, et al. Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci U S A. 1998;95:4589–94. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=22534&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Scher HI, Heller G, Molina A, Attard G, Danila DC, Jia X, et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol Am Soc Clin Oncol. 2015;33:1348–55.

    Article  CAS  Google Scholar 

  17. Cohen SJ, Punt CJA, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol Am Soc Clinl Oncol. 2008;26:3213–21.

    Article  Google Scholar 

  18. De Mattos-Arruda L, Cortes J, Santarpia L, Vivancos A, Tabernero J, Reis-Filho JS, et al. Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nat Rev Clin Oncol. 2013;10:377–89. Nature Publishing Group.

    Article  PubMed  Google Scholar 

  19. Müller C, Holtschmidt J, Auer M, Heitzer E, Lamszus K, Schulte A, et al. Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med. 2014;6:247ra101. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25080476.

    Article  PubMed  Google Scholar 

  20. Macarthur KM, Kao GD, Chandrasekaran S, Alonso-Basanta M, Chapman C, Lustig RA, et al. Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay. Cancer Res. 2014;74:2152–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4144786&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–37.

    Article  CAS  PubMed  Google Scholar 

  22. Mandel P. Les acides nucleiques du plasma sanguin chez l’homme. CR Acad Sci Paris. 1948;142:241–3.

    CAS  Google Scholar 

  23. Leon SA, Shapirio B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–50.

    CAS  PubMed  Google Scholar 

  24. Puchhammer-Stöckl E, Popow-Kraupp T, Heinz FX, Mandl CW, Kunz C. Detection of varicella-zoster virus DNA by polymerase chain reaction in the cerebrospinal fluid of patients suffering from neurological complications associated with chicken pox or herpes zoster. J Clin Microbiol Am Soc Microbiol. 1991;29:1513–6.

    Google Scholar 

  25. Lakeman FD, Whitley RJ. Diagnosis of herpes simplex encephalitis: application of polymerase chain reaction to cerebrospinal fluid from brain-biopsied patients and correlation with disease. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. J Infect Dis. 1995;171:857–63.

    Article  CAS  PubMed  Google Scholar 

  26. Wang J-Y, Hsieh J-S, Chang M-Y, Huang T-J, Chen F-M, Cheng T-L, et al. Molecular detection of APC, K-ras, and p53 mutations in the serum of colorectal cancer patients as circulating biomarkers. World J Surg. 2004;28:721–6.

    PubMed  Google Scholar 

  27. Shaw J a, Smith BM, Walsh T, Johnson S, Primrose L, Slade MJ, et al. Microsatellite alterations plasma DNA of primary breast cancer patients. Clin Cancer Res. 2000;6:1119–24.

    CAS  PubMed  Google Scholar 

  28. Benesova L, Belsanova B, Suchanek S, Kopeckova M, Minarikova P, Lipska L, et al. Mutation-based detection and monitoring of cell-free tumor DNA in peripheral blood of cancer patients. Anal Biochem. 2013;433:227–34. doi:10.1016/j.ab.2012.06.018. Elsevier Inc.

    Article  CAS  PubMed  Google Scholar 

  29. Newman AM, Bratman S V, To J, Wynne JF, Eclov NCW, Modlin L a, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. Nature Publishing Group; 2014;20:548–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24705333. Newman et al. describeed an innovative approach, termed CAPP-Seq, that uses bioinformatic methods to identify common areas of recurrent mutations followed by interrogation of these areas using deep sequencing. Although described for lung cancer, this approach could have broad implications for the implementation of the liquid biopsy for other cancers since it is not patient specific.

  30. Schwarzenbach H, Alix-Panabières C, Müller I, Letang N, Vendrell J-P, Rebillard X, et al. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res. 2009;15:1032–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19188176.

    Article  CAS  PubMed  Google Scholar 

  31. Van Der Vaart M, Pretorius PJ. Circulating DNA: its origin and fluctuation. Ann N Y Acad Sci. 2008;1137:18–26.

    Article  PubMed  Google Scholar 

  32. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nature. 2013;10:472–84. Nature Publishing Group.

    CAS  Google Scholar 

  33. Choi J-J, Reich CF, Pisetsky DS. The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells. Immunology. 2005;115:55–62. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1782131&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A. 2005;102:16368–73. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1283450&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Balaña C, Ramirez JL, Taron M, Multiforme G, Roussos Y, Ariza A, et al. O 6-methyl-guanine-DNA methyltransferase methylation in serum and tumor dna predicts response to temozolamide plus cisplatin in glioblastoma multiforme o 6 -methyl-guanine-DNA methyltransferase methylation in serum and tumor DNA predicts response to 1. 2003;9:1461–8.

  36. Wong LC, Lueth M, Li X, Lau CC, Vogel H. Detection of mitochondrial dna mutations in the tumor and cerebrospinal fluid of medulloblastoma patients detection of mitochondrial dna mutations in the tumor and cerebrospinal fluid of medulloblastoma patients 1. 2003;3866–71.

  37. Liu B-L, Cheng J-X, Zhang W, Zhang X, Wang R, Lin H, et al. Quantitative detection of multiple gene promoter hypermethylation in tumor tissue, serum, and cerebrospinal fluid predicts prognosis of malignant gliomas. Neuro-Oncol. 2010;12:540–8. Available from: http://neuro-oncology.oxfordjournals.org/cgi doi/10.1093/neuonc/nop064.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008;3:e3694. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2577891&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Fernandez-Mercado M, Manterola L, Larrea E, Goicoechea I, Arestin M, Armesto M, et al. The circulating transcriptome as a source of non-invasive cancer biomarkers: concepts and controversies of non-coding and coding RNA in body fluids. J. Cell. Mol. Med. 2015;XX:n/a – n/a. Available from: http://doi.wiley.com 10.1111/jcmm.12625

  40. El-Hefnawy T, Raja S, Kelly L, Bigbee WL, Kirkwood JM, Luketich JD, et al. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem Am Assoc Clin Chem. 2004;50:564–73.

    CAS  Google Scholar 

  41. Lo KW, Lo YM, Leung SF, Tsang YS, Chan LY, Johnson PJ, et al. Analysis of cell-free Epstein-Barr virus associated RNA in the plasma of patients with nasopharyngeal carcinoma. Clin Chem. 1999;45:1292–4.

    CAS  PubMed  Google Scholar 

  42. Kopreski MS, Benko FA, Kwak LW, Gocke CD. Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res. 1999;5:1961–5.

    CAS  PubMed  Google Scholar 

  43. Chen XQ, Bonnefoi H, Pelte MF, Lyautey J, Lederrey C, Movarekhi S, et al. Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin Cancer Res. 2000;6:3823–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11051224.

    CAS  PubMed  Google Scholar 

  44. Fleischhacker M, Beinert T, Ermitsch M, Seferi D, Possinger K, Engelmann C, et al. Detection of amplifiable messenger RNA in the serum of patients with lung cancer. Ann N Y Acad Sci. 2001;945:179–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11708476.

    Article  CAS  PubMed  Google Scholar 

  45. García V, García JM, Peña C, Silva J, Domínguez G, Lorenzo Y, et al. Free circulating mRNA in plasma from breast cancer patients and clinical outcome. Cancer Lett. 2008;263:312–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18280643.

    Article  PubMed  Google Scholar 

  46. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–5. Wiley Online Library.

    Article  PubMed  Google Scholar 

  48. Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol. 2010;28:1721–6.

    Article  PubMed  Google Scholar 

  49. Millholland JM, Li S, Fernandez CA, Shuber AP. Detection of low frequency FGFR3 mutations in the urine of bladder cancer patients using next-generation deep sequencing. Res Rep Urol. 2012;4:33. Dove Press.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Li Y, Zhou X, John MARS, Wong DTW. RNA profiling of cell-free saliva using microarray technology. J Dent Res. 2004;83:199–203. SAGE Publications.

    Article  CAS  PubMed  Google Scholar 

  51. Ahmed FE, Jeffries CD, Vos PW, Flake G, Nuovo GJ, Sinar DR, et al. Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genomics Proteomics. 2009;6:281–95. International Institute of Anticancer Research.

    CAS  PubMed  Google Scholar 

  52. Baraniskin A, Kuhnhenn J, Schlegel U, Chan A, Deckert M, Gold R, et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood. 2011;117:3140–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21200023.

    Article  CAS  PubMed  Google Scholar 

  53. Baraniskin A, Kuhnhenn J, Schlegel U, Maghnouj A, Zöllner H, Schmiegel W, et al. Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma. Neuro-Oncol. 2012;14:29–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, et al. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro-Oncol. 2012;14:689–700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Wei D, Wan Q, Li L, Jin H, Liu Y, Wang Y, et al. MicroRNAs as potential biomarkers for diagnosing cancers of central nervous system: a meta-analysis. Mol Neurobiol. 2014;51(3):1452–61.

    Article  PubMed  Google Scholar 

  56. Qu S, Guan J, Liu Y. Identification of microRNAs as novel biomarkers for glioma detection: a meta-analysis based on 11 articles. J Neurol Sci. 2015;348:181–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022510X14007655.

    Article  CAS  PubMed  Google Scholar 

  57. Evaluating the expression levels of microRNA-10b in patients with gliomas. Available from: https://clinicaltrials.gov/ct2/show/NCT01849952

  58. Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A., Jones RT, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 2015; Available from: http://cancerdiscovery.aacrjournals.org/cgi doi/10.1158/2159-8290.CD-15-0369

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian D. Connolly.

Ethics declarations

Conflict of Interest

Ian D. Connolly, Yingmei Li, Melanie Hayden Gephart, and Seema Nagpal declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Financial Support

The authors have no financial interests to declare in the preparation of this work.

Additional information

This article is part of the Topical collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connolly, I.D., Li, Y., Gephart, M.H. et al. The “Liquid Biopsy”: the Role of Circulating DNA and RNA in Central Nervous System Tumors. Curr Neurol Neurosci Rep 16, 25 (2016). https://doi.org/10.1007/s11910-016-0629-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-016-0629-6

Keywords

Navigation