Skip to main content
Log in

Molecular Mechanisms of PINK1-Related Neurodegeneration

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

PINK1 is a mitochondrially targeted kinase that has been linked to a rare monogenic form of Parkinson’s disease (PD), a common neurodegenerative disease characterized by the degeneration of selected dopaminergic neurons. Intensive research using many model systems has clearly established a fundamental role for PINK1 in preventing mitochondrial dysfunction—a key mechanism long thought to play a central role in PD pathogenesis. Current hypotheses propose PINK1’s important functions involve mitophagy, mitochondrial calcium buffering, and mitochondrial quality control. Furthermore, recent findings have revealed that PINK1’s functions are likely regulated by a complex mechanism that includes regulated mitochondrial import and intramembrane proteolysis to influence its sub cellular and sub mitochondrial distribution. This review aims to summarize and evaluate recent findings, with particular emphasis on PINK1 localization, cleavage, and function in mitochondrial homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158–60.

    Article  PubMed  CAS  Google Scholar 

  2. Hardy J. Genetic analysis of pathways to Parkinson disease. Neuron. 2010;68(2):201–6.

    Article  PubMed  CAS  Google Scholar 

  3. Abou-Sleiman PM, Muqit MMK, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci. 2006;7(3):207–19.

    Article  PubMed  CAS  Google Scholar 

  4. Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet. 2005;14(22):3477–92.

    Article  PubMed  CAS  Google Scholar 

  5. Sim CH, Lio DSS, Mok SS, et al. C-terminal truncation and Parkinson’s disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Hum Mol Genet. 2006;15(21):3251–62.

    Article  PubMed  CAS  Google Scholar 

  6. Deas E, Plun-Favreau H, Wood NW. PINK1 function in health and disease. EMBO Mol Med. 2009;1(3):152–65.

    Article  PubMed  CAS  Google Scholar 

  7. Beilina A, Van Der Brug M, Ahmad R, et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci USA. 2005;102(16):5703–8.

    Article  PubMed  CAS  Google Scholar 

  8. Lin W, Kang UJ. Characterization of PINK1 processing, stability, and sub cellular localization. J Neurochem. 2008;106(1):464–74.

    Article  PubMed  CAS  Google Scholar 

  9. •• Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010; 8(1): e1000298. This article provided compelling evidence for the dynamic nature of PINK1 stability leading to the conclusion that PINK1 is normally rapidly turned over in healthy mitochondria but becomes stabilized on dysfunctional mitochondria as a prelude to Parkin-induced mitophagy.

    Article  PubMed  Google Scholar 

  10. •• Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 2010; 189(2): 211–221. This article provided compelling evidence for the dynamic nature of PINK1 stability leading to the conclusion that PINK1 is normally rapidly turned over in healthy mitochondria but becomes stabilized on dysfunctional mitochondria as a prelude to Parkin-induced mitophagy.

    Article  PubMed  CAS  Google Scholar 

  11. • Haque ME, Thomas KJ, D'Souza C, et al. Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc. Natl. Acad. Sci. U.S.A. 2008; 105(5): 1716–1721. This article provided the first evidence that at least part of PINK1’s neuroprotective function is within the cytoplasm. The full nature of this is not yet known.

    Article  PubMed  CAS  Google Scholar 

  12. •• Whitworth AJ, Lee JR, Ho VM, et al. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Dis Model Mech 2008; 1(2–3): 168–174; discussion 173. This article provides important insight into how PINK1 is regulated by proteolysis. PINK1 undergoes an unusual intramembrane proteolytic processing by rhomboid-7/PARL. This was first shown genetically and biochemically in Drosophila and subsequently verified and extended in mammalian systems.

    Article  PubMed  CAS  Google Scholar 

  13. •• Jin SM, Lazarou M, Wang C, et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 2010; 191(5): 933–942. This article provides important insight into how PINK1 is regulated by proteolysis. PINK1 undergoes an unusual intramembrane proteolytic processing by rhomboid-7/PARL. This was first shown genetically and biochemically in Drosophila and subsequently verified and extended in mammalian systems.

    Article  PubMed  CAS  Google Scholar 

  14. •• Deas E, Plun-Favreau H, Gandhi S, et al. PINK1 Cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 2010. Dec 6 [Epub ahead of print]. This article provides important insight into how PINK1 is regulated by proteolysis. PINK1 undergoes an unusual intramembrane proteolytic processing by rhomboid-7/PARL. This was first shown genetically and biochemically in Drosophila and subsequently verified and extended in mammalian systems.

  15. • Zhou C, Huang Y, Shao Y, et al. The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 2008; 105(33): 12022–12027. This article provided compelling evidence that PINK1 is mitochondrially targeted but extrudes to the outer surface, concurring with Haque et al. [11•] that an important site of action is within the cytoplasm.

    Article  PubMed  CAS  Google Scholar 

  16. Pridgeon JW, Olzmann JA, Chin L, Li L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 2007;5(7):e172.

    Article  PubMed  Google Scholar 

  17. • Weihofen A, Thomas KJ, Ostaszewski BL, et al. Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry. 2009; 48(9): 2045–2052. This article provides an intriguing link to mitochondrial dynamics, which may directly or indirectly impact on mitochondrial transport, fission/fusion, clustering, and mitophagy, although the findings await verification.

    Article  PubMed  CAS  Google Scholar 

  18. Plun-Favreau H, Klupsch K, Moisoi N, et al. The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol. 2007;9(11):1243–52.

    Article  PubMed  CAS  Google Scholar 

  19. Clark IE, Dodson MW, Jiang C, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006;441(7097):1162–6.

    Article  PubMed  CAS  Google Scholar 

  20. Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441(7097):1157–61.

    Article  PubMed  CAS  Google Scholar 

  21. Kitada T, Pisani A, Porter DR, et al. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA. 2007;104(27):11441–6.

    Article  PubMed  CAS  Google Scholar 

  22. Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci USA. 2008;105(32):11364–9.

    Article  PubMed  CAS  Google Scholar 

  23. Gispert S, Ricciardi F, Kurz A, et al. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE. 2009;4(6):e5777.

    Article  PubMed  Google Scholar 

  24. Sämann J, Hegermann J, von Gromoff E, et al. Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem. 2009;284(24):16482–91.

    Article  PubMed  Google Scholar 

  25. Bandmann O, Flinn L, Mortiboys H. POMD08 zebrafish models for early onset Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81(11):e59.

    Article  Google Scholar 

  26. Greene JC, Whitworth AJ, Kuo I, et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA. 2003;100(7):4078–83.

    Article  PubMed  CAS  Google Scholar 

  27. Poole AC, Thomas RE, Andrews LA, et al. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA. 2008;105(5):1638–43.

    Article  PubMed  CAS  Google Scholar 

  28. Exner N, Treske B, Paquet D, et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci. 2007;27(45):12413–8.

    Article  PubMed  CAS  Google Scholar 

  29. Yang Y, Ouyang Y, Yang L, et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci USA. 2008;105(19):7070–5.

    Article  PubMed  CAS  Google Scholar 

  30. Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA. 2010;107(11):5018–23.

    Article  PubMed  CAS  Google Scholar 

  31. Wood-Kaczmar A, Gandhi S, Yao Z, et al. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE. 2008;3(6):e2455.

    Article  PubMed  Google Scholar 

  32. Dagda RK, Cherra SJ, Kulich SM, et al. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 2009;284(20):13843–55.

    Article  PubMed  CAS  Google Scholar 

  33. Mortiboys H, Thomas KJ, Koopman WJH, et al. Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol. 2008;64(5):555–65.

    Article  PubMed  CAS  Google Scholar 

  34. Morais VA, Verstreken P, Roethig A, et al. Parkinson’s disease mutations in PINK1 result in decreased complex I activity and deficient synaptic function. EMBO Mol Med. 2009;1(2):99–111.

    Article  PubMed  CAS  Google Scholar 

  35. Wang X, Schwarz TL. The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell. 2009;136(1):163–74.

    Article  PubMed  CAS  Google Scholar 

  36. Twig G, Elorza A, Molina AJA, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433–46.

    Article  PubMed  CAS  Google Scholar 

  37. Narendra D, Tanaka A, Suen D, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803.

    Article  PubMed  CAS  Google Scholar 

  38. •• Vives-Bauza C, Zhou C, Huang Y, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. U.S.A. 2010; 107(1): 378–383. This paper provided the first evidence that PINK1 is required for Parkin translocation to dysfunctional mitochondria to promote mitophagy.

    Article  PubMed  CAS  Google Scholar 

  39. Michiorri S, Gelmetti V, Giarda E, et al. The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ. 2010;17(6):962–74.

    Article  PubMed  CAS  Google Scholar 

  40. Poole AC, Thomas RE, Yu S, et al. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS ONE. 2010;5(4):e10054.

    Article  PubMed  Google Scholar 

  41. Gegg ME, Cooper JM, Chau K, et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet. 2010;19(24):4861–70. Epub 2010 Sep 24.

    Article  PubMed  CAS  Google Scholar 

  42. Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–31.

    Article  PubMed  CAS  Google Scholar 

  43. Narendra DP, Kane LA, Hauser DN, et al. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy. 2010; 6(8)

  44. Misko A, Jiang S, Wegorzewska I, et al. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci. 2010;30(12):4232–40.

    Article  PubMed  CAS  Google Scholar 

  45. Hoepken H, Gispert S, Morales B, et al. Mitochondrial dysfunction, per oxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis. 2007;25(2):401–11.

    Article  PubMed  CAS  Google Scholar 

  46. Piccoli C, Ripoli M, Quarato G, et al. Coexistence of mutations in PINK1 and mitochondrial DNA in early onset parkinsonism. J Med Genet. 2008;45(9):596–602.

    Article  PubMed  CAS  Google Scholar 

  47. Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38(5):515–7.

    Article  PubMed  CAS  Google Scholar 

  48. Gandhi S, Wood-Kaczmar A, Yao Z, et al. PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell. 2009;33(5):627–38.

    Article  PubMed  CAS  Google Scholar 

  49. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456(7222):605–10.

    Article  PubMed  Google Scholar 

  50. Surmeier DJ, Guzman JN, Sanchez-Padilla J. Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium. 2010;47(2):175–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work we were unable to cite due to space constraints. Work in the authors’ laboratory is supported in part by grants from the Wellcome Trust, European Framework 7, Parkinson’s UK, and the Wellcome/MRC Parkinson Disease Consortium grant to UCL/IoN, the University of Sheffield, and the MRC Protein Phosphorylation Unit at the University of Dundee.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Whitworth.

Additional information

The first two authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogson, J.H., Ivatt, R.M. & Whitworth, A.J. Molecular Mechanisms of PINK1-Related Neurodegeneration. Curr Neurol Neurosci Rep 11, 283–290 (2011). https://doi.org/10.1007/s11910-011-0187-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-011-0187-x

Keywords

Navigation