Skip to main content
Log in

Myotonic dystrophy: Clinical and molecular parallels between myotonic dystrophy type 1 and type 2

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Myotonic dystrophy (DM) is a dominantly inherited disorder with a peculiar pattern of multisystemic clinical features affecting skeletal muscle, the heart, the eye, and the endocrine system. Two genetic loci have been associated with the DM phenotype: DM1 on chromosome 19, and DM2 on chromosome 3. In 1992, the mutation responsible for DM1 was identified as a CTG expansion located in the 3′ untranslated region of the dystrophica myotonica-protein kinase gene (DMPK). How this untranslated CTG expansion causes DM1 has been a matter of controversy. The recent discovery that DM2 is caused by an untranslated CCTG expansion, along with other discoveries on DM1 pathogenesis, indicate that the clinical features common to both diseases are caused by a gain of function RNA mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Steinert H: Myopathologische Beitrage 1. Uber das klinischeund anatomische Bild des Muskelschwunds der Myotoniker. Dtsch Z Nervenheilkd 1909, 37:58–104.

    Article  Google Scholar 

  2. Batten F, Gibb H: Myotonia atrophica. Brain 1909, 32:187–205.

    Article  Google Scholar 

  3. Harper PS: Myotonic Dystrophy, edn 2. London: WB Saunders; 1989.

    Google Scholar 

  4. Fu YH, Pizzuti A, Fenwick RG, et al.: An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 1992, 255:1256–1258.

    Article  PubMed  CAS  Google Scholar 

  5. Buxton J, Shelbourne P, Davies J, et al.: Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 1992, 355:547–548.

    Article  PubMed  CAS  Google Scholar 

  6. Harley HG, Brook JD, Rundle SA, et al.: Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 1992, 355:545–546.

    Article  PubMed  CAS  Google Scholar 

  7. Brook JD, McCurrah ME, Harley HG, et al.: Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 1992, 68:799–808.

    Article  PubMed  CAS  Google Scholar 

  8. Mahadevan M, Tsilfidis C, Sabourin L, et al.: Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 1992, 255:1253–1255.

    Article  PubMed  CAS  Google Scholar 

  9. Boucher CA, King SK, Carey N, et al.: A novel homeodomainencoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat. Hum Mol Genet 1995, 4:1919–1925.

    Article  PubMed  CAS  Google Scholar 

  10. Groenen P, Wieringa B: Expanding complexity in myotonic dystrophy. Bioessays 1998, 20:901–912.

    Article  PubMed  CAS  Google Scholar 

  11. Korade-Mirnics Z, Babitzke P, Hoffman E: Myotonic dystrophy: molecular windows on a complex etiology. Nucleic Acids Res 1998, 26:1363–1368.

    Article  PubMed  CAS  Google Scholar 

  12. Tapscott SJ: Deconstructing myotonic dystrophy. Science 2000, 289:1701–1702.

    Article  PubMed  CAS  Google Scholar 

  13. Thornton CA, Griggs RC, Moxley RT: Myotonic dystrophy with no trinucleotide repeat expansion. Ann Neurol 1994, 35:269–272.

    Article  PubMed  CAS  Google Scholar 

  14. Ricker K, Koch MC, Lehmann-Horn F, et al.: Proximal myotonic myopathy: a new dominant disorder with myotonia, muscle weakness, and cataracts. Neurology 1994, 44:1448–1452.

    PubMed  CAS  Google Scholar 

  15. Liquori C, Ricker K, Moseley ML, et al.: Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001, 293:864–867. The authors report that a second form of myotonic dystrophy (DM) is caused by a CCTG repeat expansion in intron1 of ZNF9. The expansion, which is expressed as part of the unprocessed transcript, accumulates as nuclear RNA foci in affected DM2 muscle. Clinical and molecular parallels between DM1 and DM2 indicate that a gain of function RNA mechanism plays a broader than previously recognized role in the multisystemic features of myotonic dystrophy.

    Article  PubMed  CAS  Google Scholar 

  16. Hoffmann-Radvanyi H, Lavedan C, Rabes JP, et al.: Myotonic dystrophy: absence of CTG enlarged transcript in congenital forms, and low expression of the normal allele. Hum Mol Genet 1993, 2:1263–1266.

    Article  Google Scholar 

  17. Novelli G, Gennarelli M, Zelano G, et al.: Failure in detecting mRNA transcripts from the mutated allele in myotonic dystrophy muscle. Biochem Mol Biol Intl 1993, 29:291–297.

    CAS  Google Scholar 

  18. Jansen G, Groenen PJ, Bachner D, et al.: Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nature Genet 1996, 13:316–324.

    Article  PubMed  CAS  Google Scholar 

  19. Reddy S, Smith DB, Rich MM, et al.: Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nature Genet 1996, 13:325–335.

    Article  PubMed  CAS  Google Scholar 

  20. Otten AD, Tapscott SJ: Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. Proc Natl Acad Sci U S A 1995, 92:5465–5469.

    Article  PubMed  CAS  Google Scholar 

  21. Wang YH, Amirhaeri S, Kang S, Wells RD, Griffith JD: Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 1994, 265:669–671.

    Article  PubMed  CAS  Google Scholar 

  22. Jansen G, Bachner D, Coerwinkel M, et al.: Structural organization and developmental expression pattern of the mouse WD-repeat gene DMR-N9 immediately upstream of the myotonic dystrophy locus. Hum Mol Genet 1995, 4:843–852.

    Article  PubMed  CAS  Google Scholar 

  23. Shaw DJ, McCurrach M, Rundle SA, et al.: Genomic organisation and transcriptional units at the myotonic dystrophy locus. Genomics 1993, 18:673–679.

    Article  PubMed  CAS  Google Scholar 

  24. Junghans RP, Ebralidze A, Tiwari B: Does (CUG)n repeat in DMPK mRNA ‘paint’ chromosome 19 to suppress distant genes to create the diverse phenotype of myotonic dystrophy? A new hypothesis of long-range cis autosomal inactivation. Neurogenetics 2001, 3:59–67.

    Article  PubMed  CAS  Google Scholar 

  25. Klesert TR, Cho DH, Clark JI, et al.: Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy. Nature Genet 2000, 25:105–109. Study demonstrates that Six5 knockout mice develop cataracts at a higher frequency than control mice. Although these murine models appear to support a role for SIX5 in myotonic dystrophy (DM) type 1 patients, the mice develop opaque cataracts located in the center of the lens rather than the distinctive posterior iridescent red and green "Christmas tree" cataracts found in both DM1 and DM2 patients. These comparisons suggest that the Six5 knockout mice may not provide an accurate model of the human DM cataract phenotype.

    Article  PubMed  CAS  Google Scholar 

  26. Sarkar PS, Appukuttan B, Han J, et al.: Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts. Nature Genet 2000, 25:110–114. Study demonstrates that Six5 knockout mice develop cataracts at a higher frequency than control mice (see Klesert et al. [25].

    Article  PubMed  CAS  Google Scholar 

  27. Taneja KL, McCurrach M, Schalling M, Housman D, Singer RH: Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol 1995, 128:995–1002.

    Article  PubMed  CAS  Google Scholar 

  28. Davis BM, McCurrach ME, Taneja KL, Singer RH, Housman DE: Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci U S A 1997, 94:7388–7393.

    Article  PubMed  CAS  Google Scholar 

  29. Timchenko LT, Miller JW, Timchenko NA, et al.: Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acid Res 1996, 24:4407–4414.

    Article  PubMed  CAS  Google Scholar 

  30. Philips AV, Timchenko LT, Cooper TA: Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 1998, 280:737–741.

    Article  PubMed  CAS  Google Scholar 

  31. Lu X, Timchenko NA, Timchenko LT: Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. Hum Mol Genet 1999, 8:53–60.

    Article  PubMed  CAS  Google Scholar 

  32. Miller JW, Urbinati CR, Teng-Umnuay P, et al.: Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. Embo J 2000, 19:4439–4448.

    Article  PubMed  CAS  Google Scholar 

  33. Savkur RS, Philips AV, Cooper TA: Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nature Genet 2001, 29:40–47. The authors demonstrate that alternative splicing of the insulin receptor (IR) pre-mRNA is aberrantly regulated in myotonic dystrophy (DM) type 1 skeletal muscle tissue, resulting in a predominance of the insulin-resistant form. The splicing alteration is mediated by CUG-BP through an intronic sequence element upstream of the alternatively spliced exon 11. Their data support a model in which increased expression of CUG-BP contributes to insulin resistence in DM1 by affecting IR alternative splicing. Aberrant splicing of the IR is thought to underlie an unusual form of insulin resistence in DM1 patients and a predisposition to diabetes.

    Article  PubMed  CAS  Google Scholar 

  34. Monckton DG, Ashizawa T, Siciliano MJ: Murine models for myotonic dystrophy. In Genetic Instabilities and Hereditary Neurological Diseases. Edited by Wells RD, Warren ST: San Diego: Academic Press; 1998:181–193.

    Google Scholar 

  35. Mankodi A, Logigian E, Callahan L, et al.: Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 2000, 289:1769–1773. Myotonic dystrophy (DM) type 1 mouse model providing critical support that the CUG expansion exerts a toxic gain of function effect at the RNA level in skeletal muscle. These investigators demonstrated that expression of an RNA containing 250 CUG repeats in the 3′ UTR of the skeletal muscle actin gene causes myotonia and muscular dystrophy. Because the transgene was only expressed in skeletal muscle, this model does not address whether or not the CUG-containing transcripts play a role in causing other multisystemic features of the disease, including cataracts and cardiac arrhythmias.

    Article  PubMed  CAS  Google Scholar 

  36. Larkin K, Fardaei M: Myotonic dystrophy—a multigene disorder. Brain Res Bull 2001, 56:389–395.

    Article  PubMed  CAS  Google Scholar 

  37. Filippova GN, Thienes CP, Penn BH, et al.: CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nature Genet 2001, 28:335–343. These authors describe previously unrecognized features of the sequence flanking the myotonic dystrophy (DM) type 1 CTG repeat including the presence of matrix attachment regions and binding sites for the zinc finger protein CTCF. These elements may be important in modulating gene expression and differential regulation of genes in the DM1 region. The authors suggest that methylation of the DM1 locus in the congenital form of the disease may disrupt insulator function and lead to higher levels of DMPK expression, which in turn could lead to a more severe disease due to increased accumulation of CUG-containing RNA in the nucleus.

    Article  PubMed  CAS  Google Scholar 

  38. Ranum LPW, Rasmussen P, Benzow K, Koob M, Day JW: Genetic mapping of a second myotonic dystrophy locus. Nature Genet 1998, 19:196–198.

    Article  PubMed  CAS  Google Scholar 

  39. Udd B, Krahe R, Wallgren-Petterson C, Falck B, Kalimo H: Proximal myotonic dystrophy—a family with autosomal dominant muscular dystrophy, cataracts, hearing loss and hypogonadism: heterogeneity of proximal myotonic syndromes? Neuromusc Disord 1997, 7:217–228.

    Article  PubMed  CAS  Google Scholar 

  40. Day JW, Roelofs R, Leroy B, et al.: Clinical and genetic characteristics of a five-generation family with a novel form of myotonic dystrophy (DM2). Neuromusc Disord 1999, 9:19–27.

    Article  PubMed  CAS  Google Scholar 

  41. Ranum LPW, Rasmussen PF, Benzow KA, Koob MD, Day JW: Genetic mapping of a second myotonic dystrophy locus. Nature Genet 1998, 19:196–198.

    Article  PubMed  CAS  Google Scholar 

  42. Ricker K, Grimm T, Koch MC, et al.: Linkage of proximal myotonic myopathy to chromosome 3q. Neurology 1999, 52:170–171.

    PubMed  CAS  Google Scholar 

  43. Ricker K, Koch M, Lehmann-Horn F, et al.: Proximal myotonic myopathy: clinical features of a multisystem disorder similar to myotonic dystrophy. Arch Neurol 1995, 52:25–31.

    PubMed  CAS  Google Scholar 

  44. Day J, Liquori C, Johnson C, Durand A, Ranum L: Myotonic dystrophy type 2 (DM2) in Minnesota. Am J Hum Genet 2000, 67:1850.

    Google Scholar 

  45. Chung MY, Ranum LP, Duvick LA, et al.: Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type 1. Nature Genet 1993, 5:254–258.

    Article  PubMed  CAS  Google Scholar 

  46. Kunst CB, Warren ST: Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 1994, 77:853–861.

    Article  PubMed  CAS  Google Scholar 

  47. Pellizzoni L, Lotti F, Maras B, Pierandrei-Amaldi P: Cellular nucleic acid binding protein binds a conserved region of the 5′ UTR of Xenopus laevis ribosomal protein mRNAs. J Mol Biol 1997, 267:264–275.

    Article  PubMed  CAS  Google Scholar 

  48. Pellizzoni L, Lotti F, Rutjes SA, Pierandrei-Amaldi P: Involvement of the Xenopus laevis Ro60 autoantigen in the alternative interaction of La and CNBP proteins with the 5′UTR of L4 ribosomal protein mRNA. J Mol Biol 1998, 281:593–608.

    Article  PubMed  CAS  Google Scholar 

  49. Amack JD, Paguio AP, Mahadevan MS: Cis and trans effects of the myotonic dystrophy (DM) mutation in a cell culture model. Hum Mol Genet 1999, 8:1975–1984.

    Article  PubMed  CAS  Google Scholar 

  50. Seznec H, Agbulut O, Sergeant N, et al.: Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum Mol Genet 2001, 10:2717–2726. Demonstration that transgenic mice carrying the CTG expansion as part of a 45-Kb fragment carrying the human DMPK gene and flanking sequence develop myotonia and muscle pathology as well as abnormal tau expression in the brain, providing further evidence for a dominant RNA effect in muscle as well as brain.

    Article  PubMed  CAS  Google Scholar 

  51. Fardaei M, Rogers MT, Thorpe HM, et al.: Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet 2002, 11:805–814.

    Article  PubMed  CAS  Google Scholar 

  52. Mankodi A, Takahashi M, Beck C, Cannon S, Thornton CA: Myotonia is associated with loss of transmembrane chloride conductance and aberrant splicing of Clcn1, the skeletal muscle chloride channel, in a transgenic model of myotonic dystrophy (DM1). Am J Hum Genet 2001, 69:A211.

    Google Scholar 

  53. Ranum LPW, Liquori C, Moseley ML, et al.: Myotonic dystrophy type 2 is caused by a CCTG expansion in intron 1 of ZNF9. Am J Hum Genet 2001, 69:A211.

    Google Scholar 

  54. Mankodi A, Urbinati CR, Yuan QP, et al.: Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 2001, 10:2165–2170.

    Article  PubMed  CAS  Google Scholar 

  55. Tapscott SJ, Thornton CA: Reconstructing myotonic dystrophy. Science 2001, 293:816–817.

    Article  PubMed  CAS  Google Scholar 

  56. Koob MD, Moseley ML, Schut LJ, et al.: An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genet 1999, 21:379–384.

    Article  PubMed  CAS  Google Scholar 

  57. Matsuura T, Yamagata T, Burgess DL, et al.: Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nature Genet 2000, 26:191–194.

    Article  PubMed  CAS  Google Scholar 

  58. Amack JD, Mahadevan MS: The myotonic dystrophy expanded CUG repeat tract is necessary but not sufficient to disrupt C2C12 myoblast differentiation. Hum Mol Genet 2001, 10:1879–1887.

    Article  PubMed  CAS  Google Scholar 

  59. Ranum LPW, Day JW: Dominantly inherited, non-coding microsatellite expansion disorders. Curr Opin Genet Dev 2002, 12:266–271.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranum, L.P.W., Day, J.W. Myotonic dystrophy: Clinical and molecular parallels between myotonic dystrophy type 1 and type 2. Curr Neurol Neurosci Rep 2, 465–470 (2002). https://doi.org/10.1007/s11910-002-0074-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-002-0074-6

Keywords

Navigation