Skip to main content

Genetics of Myotonic Dystrophy

  • Chapter
  • First Online:
Myotonic Dystrophy
  • 662 Accesses

Abstract

Myotonic dystrophy (dystrophia myotonica, DM) is the commonest form of muscular dystrophy affecting adults. This multisystem disorder typically affects the skeletal muscle and is characterized by weakness, wasting, and myotonia; other systemic involvement includes ocular, cardiac, endocrine, and central nervous system dysfunction. DM is classified into two main subtypes: type 1 (DM1) and type 2 (DM2) based on mutations in the dystrophia myotonica protein kinase (DMPK) gene and CCHC-type zinc-finger cellular nucleic acid-binding protein (CNBP) formerly known as the zinc finger 9 (ZNF9) gene, respectively. The multisystem phenotype of DM1 and DM2 is due to the presence of expanded repeats and the attendant effects. DM1 occurs due to the persistence of harmful effects of untranslated RNA transcripts of CTG trinucleotide repeat, which are located in the 3′-untranslated region of the DMPK gene on 19q13. DM2 results from the toxic effects of the untranslated RNA transcripts of CCTG tetranucleotide repeat, which are located in the primary intron of the CNBP gene, on chromosome 3q 21.3. A diagnosis of myotonic dystrophy can be made clinically based on presentation with characteristic features and a positive family history. However, molecular genetic testing for an expanded CTG repeat in the DMPK gene is the gold standard for definitive diagnosis of DM1. If DM1 testing is negative, testing for the CCTG repeat in the CNBP gene is then considered appropriate to establish a diagnosis of DM2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNBP:

Cellular nucleic acid-binding protein

DM:

Myotonic dystrophy

DMPK:

Dystrophia myotonica protein kinase

MBNL:

Muscle blind-like

PROMM:

Proximal myotonic myopathy

RNA:

Ribonucleic acid

ZNF9:

Zinc-finger nuclease 9

References

  1. Ranum LPW, Day JW. Myotonic dystrophy: RNA pathogenesis comes into focus. Am J Hum Genet. 2004;74(5):793–804. https://doi.org/10.1086/383590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ho G, Cardamone M, Farrar M. Congenital and childhood myotonic dystrophy: current aspects of disease and future directions. World J Clin Pediatr. 2015;4(4):66–80. https://doi.org/10.5409/wjcp.v4.i4.66.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Udd B, Krahe R, Sarma S, et al. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol. 2012;11(10):891–905. https://doi.org/10.1016/S1474-4422(12)70204-1.

    Article  CAS  PubMed  Google Scholar 

  4. Yenigun VB, Sirito M, Amcheslavky A, et al. (CCUG)n RNA toxicity in a Drosophila model of myotonic dystrophy type 2 (DM2) activates apoptosis. Dis Model Mech. 2017;10(8):993–1003. https://doi.org/10.1242/dmm.026179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thornton CA. Myotonic dystrophy. Neurol Clin. 2014;32(3):705–19., , viii. https://doi.org/10.1016/j.ncl.2014.04.011.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Basil TD Chad DA. Myotonic dystrophy: etiology, clinical features, and diagnosis. https://www.uptodate.com/contents/myotonic-dystrophy-etiology-clinical-features-and-diagnosis. Accessed 24 Aug 2017.

  7. Zhang F, Bodycombe NE, Haskell KM, et al. A flow cytometry-based screen identifies MBNL1 modulators that rescue splicing defects in myotonic dystrophy type I. Hum Mol Genet. 2017;36(16):e24. https://doi.org/10.1093/hmg/ddx190.

    Article  CAS  Google Scholar 

  8. Dalton JC, Ranum LP, Day JW. Myotonic dystrophy type 2. Seattle: University of Washington; 1993. http://www.ncbi.nlm.nih.gov/pubmed/20301639. Accessed 24 Aug 2017.

    Google Scholar 

  9. Fugier C, Klein AF, Hammer C, et al. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med. 2011;17(6):720–5. https://doi.org/10.1038/nm.2374.

    Article  CAS  PubMed  Google Scholar 

  10. Philips AV, Timchenko LT, Cooper TA. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science. 1998;280(5364):737–41. http://www.ncbi.nlm.nih.gov/pubmed/9563950. Accessed 24 Aug 2017.

    Article  CAS  PubMed  Google Scholar 

  11. Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet. 2001;29(1):40–7. https://doi.org/10.1038/ng704.

    Article  CAS  PubMed  Google Scholar 

  12. Charlet BN, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell. 2002;10(1):45–53. https://doi.org/10.1016/S1097-2765(02)00572-5.

    Article  Google Scholar 

  13. Musova Z, Mazanec R, Krepelova A, et al. Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene. Am J Med Genet Part A. 2009;149A(7):1365–74. https://doi.org/10.1002/ajmg.a.32987.

    Article  CAS  PubMed  Google Scholar 

  14. Meola G, Cardani R. Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta. 2015;1852(4):594–606. https://doi.org/10.1016/j.bbadis.2014.05.019.

    Article  CAS  PubMed  Google Scholar 

  15. Mohr J. A study of linkage in man. Copenhagen: Munksgaard; 1954.

    Google Scholar 

  16. O’Brien T, Ball S, Sarfarazi M, Harper PS, Robson EB. Genetic linkage between the loci for myotonic dystrophy and peptidase D. Ann Hum Genet. 1983;47(Pt 2):117–21. http://www.ncbi.nlm.nih.gov/pubmed/6881909. Accessed 24 Aug 2017

    Article  PubMed  Google Scholar 

  17. Davies KE, Jackson J, Williamson R, et al. Linkage analysis of myotonic dystrophy and sequences on chromosome 19 using a cloned complement 3 gene probe. J Med Genet. 1983;20:259–63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1049116/pdf/jmedgene00108-0021.pdf. Accessed 25 Aug 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shaw DJ, Brook JD, Meredith AL, Harley HG, Sarfarazi M, Harper PS. Gene mapping and chromosome 19. J Med Genet. 1986;23(1):2–10. http://www.ncbi.nlm.nih.gov/pubmed/3081724. Accessed 24 Aug 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartlett R, Pericak-Vance M, Yamaoka L, et al. A new probe for the diagnosis of myotonic muscular dystrophy. Science. 1987;235(4796):1648–50. http://science.sciencemag.org/content/235/4796/1648. Accessed 24 Aug 2017

    Article  CAS  PubMed  Google Scholar 

  20. Roses AD, Pericak-Vance MA, Ross DA, Yamaoka L, Bartlett RJ. RFLPs at the D19S19 locus of human chromosome 19 linked to myotonic dystrophy (DM). Nucleic Acids Res. 1986;14(13):5569. http://www.ncbi.nlm.nih.gov/pubmed/3016653. Accessed 24 Aug 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedrich U, Brunner H, Smeets D, Lambermon E, Ropers H-H. Three-point linkage analysis employing C3 and 19cen markers assigns the myotonic dystrophy gene to 19q. Hum Genet. 1987;75(3):291–3. https://doi.org/10.1007/BF00281077.

    Article  CAS  PubMed  Google Scholar 

  22. Brook JD, McCurrach ME, Harley HG, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell. 1992;68(4):799–808. https://doi.org/10.1016/0092-8674(92)90154-5.

    Article  CAS  PubMed  Google Scholar 

  23. Yamagata H, Nakagawa M, Johnson K, Miki T. Further evidence for a major ancient mutation underlying myotonic dystrophy from linkage disequilibrium studies in the Japanese population. J Hum Genet. 1998;43(4):246–9. https://doi.org/10.1007/s100380050082.

    Article  CAS  PubMed  Google Scholar 

  24. De Temmerman N, Sermon K, Seneca S, et al. Intergenerational instability of the expanded CTG repeat in the DMPK gene: studies in human gametes and preimplantation embryos. Am J Hum Genet. 2004;75(2):325–9. https://doi.org/10.1086/422762.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harper PS. Major problems in neurology: myotonic dystrophy. London, UK: WB Saunders; 2001.

    Google Scholar 

  26. Rakocevic-Stojanovic V, Savic D, Pavlovic S, et al. Intergenerational changes of CTG repeat depending on the sex of the transmitting parent in myotonic dystrophy type 1. Eur J Neurol. 2005;12(3):236–7. https://doi.org/10.1111/j.1468-1331.2004.01075.x.

    Article  CAS  PubMed  Google Scholar 

  27. Martorell L, Cobo AM, Baiget M, Naudó M, Poza JJ, Parra J. Prenatal diagnosis in myotonic dystrophy type 1. Thirteen years of experience: implications for reproductive counselling in DM1 families. Prenat Diagn. 2007;27(1):68–72. https://doi.org/10.1002/pd.1627.

    Article  PubMed  Google Scholar 

  28. Moxley RT. The myotonic dystrophies. In: Rosenberg RN, DiMauro S, Paulson HL, Ptacek L NE, editors. The Molecular and Genetic Basis of Neurologic and Psychiatric Disease. Boston, MA: Wolters Kluwer; 2008, pp. 532–541.

    Google Scholar 

  29. Wong LJ, Ashizawa T, Monckton DG, Caskey CT, Richards CS. Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent. Am J Hum Genet. 1995;56:114–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Monckton DG, Wong LI, Ashizawa T, Caskey CT. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum Mol Genet. 1995;4:1–8.

    Article  CAS  PubMed  Google Scholar 

  31. Puymirat J, Giguere Y, Mathieu J, Bouchard J-P. Intergenerational contraction of the CTG repeats in 2 families with myotonic dystrophy type 1. Neurology. 2009;73(24):2126–7. https://doi.org/10.1212/WNL.0b013e3181c677e1.

    Article  PubMed  Google Scholar 

  32. Ashizawa T, Anvret M, Baiget M, et al. Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am J Hum Genet. 1994;54(3):414–23. http://www.ncbi.nlm.nih.gov/pubmed/8116611. Accessed 24 Aug 2017

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Harley HG, Brook JD, Rundle SA, et al. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature. 1992;355(6360):545–6. https://doi.org/10.1038/355545a0.

    Article  CAS  PubMed  Google Scholar 

  34. Aslanidis C, Jansen G, Amemiya C, et al. Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature. 1992;355(6360):548–51. https://doi.org/10.1038/355548a0.

    Article  CAS  PubMed  Google Scholar 

  35. Tsilfidis C, MacKenzie AE, Mettler G, Barceló J, Korneluk RG. Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nat Genet. 1992;1(3):192–5. https://doi.org/10.1038/ng0692-192.

    Article  CAS  PubMed  Google Scholar 

  36. Richards CS, Palomaki GE, Hegde M. Results from an external proficiency testing program: 11 years of molecular genetics testing for myotonic dystrophy type 1. Genet Med. 2016;18(12):1290–4. https://doi.org/10.1038/gim.2016.59.

    Article  CAS  PubMed  Google Scholar 

  37. Theadom A, Rodrigues M, Roxburgh R, et al. Prevalence of muscular dystrophies: a systematic literature review. Neuroepidemiology. 2014;43(3–4):259–68. https://doi.org/10.1159/000369343.

    Article  PubMed  Google Scholar 

  38. Yotova V, Labuda D, Zietkiewicz E, et al. Anatomy of a founder effect: myotonic dystrophy in Northeastern Quebec. Hum Genet. 2005;117(2-3):177–87. https://doi.org/10.1007/s00439-005-1298-8.

    Article  PubMed  Google Scholar 

  39. Pratte A, Prévost C, Puymirat J, Mathieu J. Anticipation in myotonic dystrophy type 1 parents with small CTG expansions. Am J Med Genet Part A. 2015;167(4):708–14. https://doi.org/10.1002/ajmg.a.36950.

    Article  CAS  Google Scholar 

  40. Ricker K, Grimm T, Koch MC, et al. Linkage of proximal myotonic myopathy to chromosome 3q. Neurology. 1999;52(1):170–1. http://www.ncbi.nlm.nih.gov/pubmed/9921867. Accessed 24 Aug 2017

    Article  CAS  PubMed  Google Scholar 

  41. Sun C, Henriksen OA, Tranebjaerg L. Proximal myotonic myopathy: clinical and molecular investigation of a Norwegian family with PROMM. Clin Genet. 1999;56(6):457–61. https://doi.org/10.1034/j.1399-0004.1999.560609.x.

    Article  CAS  PubMed  Google Scholar 

  42. Udd B, Krahe R, Wallgren-Petterson C, Falck B, Kalimo H. Proximal myotonic dystrophy: a family with autosomal dominant muscular dystrophy, cataracts, hearing loss and hypogonadism: heterogeneity of proximal myotonic syndromes? Neuromuscul Disord. 1997;7:217–28.

    Article  CAS  PubMed  Google Scholar 

  43. Thornton CA, Griggs RC, Moxley RT. Myotonic dystrophy with no trinucleotide repeat expansion. Ann Neurol. 1994;35(3):269–72. https://doi.org/10.1002/ana.410350305.

    Article  CAS  PubMed  Google Scholar 

  44. Ranum LPW, Rasmussen PF, Benzow KA, Koob MD, Day JW. Genetic mapping of a second myotonic dystrophy locus. Nat Genet. 1998;19(2):196–8. https://doi.org/10.1038/570.

    Article  CAS  PubMed  Google Scholar 

  45. Day JW, Roelofs R, Leroy B, Pech I, Benzow K, Ranum LP. Clinical and genetic characteristics of a five-generation family with a novel form of myotonic dystrophy (DM2). Neuromuscul Disord. 1999;9(1):19–27. http://www.ncbi.nlm.nih.gov/pubmed/10063831. Accessed 4 Sep 2017

    Article  CAS  PubMed  Google Scholar 

  46. Liquori CL, Ricker K, Moseley ML, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science. 2001;293(5531):864–7. https://doi.org/10.1126/science.1062125.

    Article  CAS  PubMed  Google Scholar 

  47. * 118425 CHLORIDE CHANNEL 1, SKELETAL MUSCLE; CLCN1. http://omim.org/entry/118425#0010.

    Google Scholar 

  48. Mastaglia FL, Harker N, Phillips BA, et al. Dominantly inherited proximal myotonic myopathy and leukoencephalopathy in a family with an incidental CLCN1 mutation. J Neurol Neurosurg Psychiatry. 1998;64(4):543–7. http://www.ncbi.nlm.nih.gov/pubmed/9576553. Accessed 24 Aug 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Day JW, Ricker K, Jacobsen JF, et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology. 2003;60(4):657–64. http://www.ncbi.nlm.nih.gov/pubmed/12601109. Accessed 25 Aug 2017

    Article  CAS  PubMed  Google Scholar 

  50. Bachinski LL, Czernuszewicz T, Ramagli LS, et al. Premutation allele pool in myotonic dystrophy type 2. Neurology. 2009;72(6):490–7. https://doi.org/10.1212/01.wnl.0000333665.01888.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kurosaki T, Ueda S, Ishida T, Abe K, Ohno K, Matsuura T. The Unstable CCTG Repeat Responsible for Myotonic Dystrophy Type 2 Originates from an AluSx Element Insertion into an Early Primate Genome. PLoS One. 2012;7(6):e38379. https://doi.org/10.1371/journal.pone.0038379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dere R, Wells RD. DM2 CCTG•CAGG repeats are crossover hotspots that are more prone to expansions than the DM1 CTG•CAG repeats in Escherichia coli. J Mol Biol. 2006;360(1):21–36. https://doi.org/10.1016/j.jmb.2006.05.012.

    Article  CAS  PubMed  Google Scholar 

  53. Lam SL, Wu F, Yang H, Chi LM. The origin of genetic instability in CCTG repeats. Nucleic Acids Res. 2011;39(14):6260–8. https://doi.org/10.1093/nar/gkr185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schoser BG, Kress W, Walter MC, Halliger-Keller B, Lochmüller H, Ricker K. Homozygosity for CCTG mutation in myotonic dystrophy type 2. Brain. 2004;127(Pt 8):1868–77. Epub 2004 Jul 1

    Article  PubMed  Google Scholar 

  55. Schneider C, Ziegler A, Ricker K, et al. Proximal myotonic myopathy: evidence for anticipation in families with linkage to chromosome 3q. Neurology. 2000;55(3):383–8. http://www.ncbi.nlm.nih.gov/pubmed/10932272. Accessed 4 Sep 2017

    Article  CAS  PubMed  Google Scholar 

  56. Dalton JC, Ranum LPW, Day JW. Myotonic dystrophy type 2. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle WA: University of Washington, Seattle; 2006. https://www.ncbi.nlm.nih.gov/books/NBK1466/.

    Google Scholar 

  57. Udd B, Meola G, Krahe R, et al. Report of the 115th ENMC workshop: DM2/PROMM and other myotonic dystrophies. 3rd Workshop, 14-16 February 2003, Naarden, The Netherlands. Neuromuscul Disord. 2003;13(7-8):589–96. https://doi.org/10.1016/S0960-8966(03)00092-0.

    Article  CAS  PubMed  Google Scholar 

  58. Suominen T, Bachinski LL, Auvinen S, et al. Population frequency of myotonic dystrophy: higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. Eur J Hum Genet. 2011;19(7):776–82. https://doi.org/10.1038/ejhg.2011.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liquori CL, Ikeda Y, Weatherspoon M, et al. Myotonic dystrophy type 2: human founder haplotype and evolutionary conservation of the repeat tract. Am J Hum Genet. 2003;73(4):849–62. https://doi.org/10.1086/378720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bachinski LL, Udd B, Meola G, et al. Confirmation of the type 2 myotonic dystrophy (CCTG)n expansion mutation in patients with proximal myotonic myopathy/proximal myotonic dystrophy of different European origins: a single shared haplotype indicates an ancestral founder effect. Am J Hum Genet. 2003;73(4):835–48. https://doi.org/10.1086/378566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Coenen MJH, Tieleman AA, Schijvenaars MMVAP, et al. Dutch myotonic dystrophy type 2 patients and a North-African DM2 family carry the common European founder haplotype. Eur J Hum Genet. 2011;19(5):567–70. https://doi.org/10.1038/ejhg.2010.233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saito T, Amakusa Y, Kimura T, et al. Myotonic dystrophy type 2 in Japan: ancestral origin distinct from Caucasian families. Neurogenetics. 2008;9(1):61–3. https://doi.org/10.1007/s10048-007-0110-4.

    Article  PubMed  Google Scholar 

  63. Nakayama T, Nakamura H, Oya Y, et al. Clinical and genetic analysis of the first known Asian family with myotonic dystrophy type 2. J Hum Genet. 2014;59(3):129–33. https://doi.org/10.1038/jhg.2013.133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. New nomenclature and DNA testing guidelines for myotonic dystrophy type 1 (DM1). The International Myotonic Dystrophy Consortium (IDMC). Neurology. 2000;54(6):1218–1221. http://www.ncbi.nlm.nih.gov/pubmed/10746587. Accessed 25 Aug 2017.

    Google Scholar 

  65. Savić Pavićević D, Miladinović J, Brkušanin M, et al. Molecular genetics and genetic testing in myotonic dystrophy type 1. Biomed Res Int. 2013;2013:1–13. https://doi.org/10.1155/2013/391821.

    Article  CAS  Google Scholar 

  66. Radvansky J, Ficek A, Kadasi L. Upgrading molecular diagnostics of myotonic dystrophies: Multiplexing for simultaneous characterization of the DMPK and ZNF9 repeat motifs. Mol Cell Probes. 2011;25(4):182–5. https://doi.org/10.1016/j.mcp.2011.04.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Matsuura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsuura, T. (2018). Genetics of Myotonic Dystrophy. In: Takahashi, M., Matsumura, T. (eds) Myotonic Dystrophy. Springer, Singapore. https://doi.org/10.1007/978-981-13-0508-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0508-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0507-8

  • Online ISBN: 978-981-13-0508-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics