Skip to main content

Advertisement

Log in

Antimicrobial Treatment of Serious Gram-Negative Infections in Newborns

  • Pediatric Infectious Diseases (I Brook, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

The choice of antibiotics for serious Gram-negative bacterial infections in the newborn must balance delivery of effective antibiotics to the site(s) of infection with the need to minimize selection of antibiotic resistance. To reduce the risk of selective pressure from large-scale cephalosporin usage, a penicillin–aminoglycoside combination is recommended as empiric therapy for neonatal sepsis. Where Gram-negative sepsis is strongly suspected or proven, a third-generation cephalosporin should ordinarily replace penicillin. Piperacillin-tazobactam can provide better Gram-negative cover than penicillin–aminoglycoside combinations, without the risk of selecting antibiotic resistance seen with cephalosporins, but further clinical studies are required before this approach to empiric therapy can be recommended. For antibiotic-resistant infections, a carbapenem remains the mainstay of treatment. However, rapid emergence and spread of resistance to these antibiotics means that in the future, neonatologists may have to rely on antibiotics such as colistin, whose pharmacokinetics, safety, and clinical efficacy in neonates are not well-defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Diene SM, Rolain JM. Investigation of antibiotic resistance in the genomic era of multidrug-resistant Gram-negative bacilli, especially Enterobacteriaceae, Pseudomonas and Acinetobacter. Expert Rev Anti Infect Ther. 2013;11:277–96.

    Article  CAS  PubMed  Google Scholar 

  2. National Institute for Health and Clinical Excellence. Antibiotics for early-onset neonatal infection. NICE Clinical Guideline 149. Manchester, UK: August 2012. Although this NICE evidence-based guideline relates only to early-onset neonatal sepsis, many of the evidence-based principles of antibiotic prescribing for neonatal sepsis apply to the entire neonatal period.

  3. Johnson PJ. Antibiotic resistance in the NICU. Neonatal Netw. 2012;31:109–14. A useful up-to-date summary of the specific challenges of antibiotic resistance on neonatal intensive care units.

    Article  PubMed  Google Scholar 

  4. Department of Health. Antibiotic Resistance - a Threat to Global Health Security and the Case for Action. Antibiotic Resistance side event held at the 66th World Health Assembly, United Nations, Geneva, 21 May 2013.

  5. Wright AJ, Unger S, Coleman BL, et al. Maternal antibiotic exposure and risk of antibiotic resistance in neonatal early-onset sepsis: a case-cohort study. Pediatr Infect Dis J. 2012;31:1206–8.

    Article  PubMed  Google Scholar 

  6. Lutsar I, Trafojer UM, Heath PT, et al. Meropenem vs standard of care for treatment of late onset sepsis in children of less than 90 days of age: study protocol for a randomised controlled trial. Trials. 2011;12:215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gray J, Patel M. Management of antibiotic resistant infection in the newborn. Arch Dis Child Educ Pract Ed. 2011;96:122–7.

    Article  PubMed  Google Scholar 

  8. Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier of treatment of central nervous system infections. Clin Microbiol Rev. 2010;23:858–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sullins AK, Abdel-Rahman SM. Pharmacokinetics of antibacterial agents in the CSF of children and adolescents. Paediatr Drugs. 2013;15:93–117.

    Article  PubMed  Google Scholar 

  10. Tzialla C, Borghesi A, Perotti GF, et al. Use and misuse of antibiotics in the neonatal intensive care unit. J Matern Fetal Neonatal Med. 2012;25 Suppl 4:35–7.

    PubMed  Google Scholar 

  11. BNF for children 2013-14. www.bnfc.org [Accessed 15 January 2014].

  12. Kaguelidou F, Turner MA, Choonara I, et al. Randomized controlled trials of antibiotics for neonatal infections: a systematic review. Br J Clin Pharmacol. 2013;76:21–9.

    Article  PubMed  Google Scholar 

  13. Darmstadt GL, Batra M, Zaidi AKM. Parenteral antibiotics for the treatment of serious neonatal bacterial infections in developing country settings. Pediatr Infect Dis J. 2009;28:S37–42.

    Article  PubMed  Google Scholar 

  14. Swingle HM, Bucciarelli RL, Ayoub EM. Synergy between penicillins and low concentrations of gentamicin in the killing of group B streptococci. J Infect Dis. 1985;152(3):515–20.

    Article  CAS  PubMed  Google Scholar 

  15. Blaser J. Interactions of antimicrobial combinations in vitro: the relativity of synergism. Scand J Infect Dis Suppl. 1990;74:71–9.

    CAS  PubMed  Google Scholar 

  16. Gould IM, Milne K. In-vitro pharmacodynamic studies of piperacillin/tazobactam with gentamicin and ciprofloxacin. J Antimicrob Chemother. 1997;39(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  17. Blackburn RM, Verlander NQ, Heath PT, et al. The changing antibiotic susceptibility of bloodstream infections in the first month of life: informing antibiotic policies for early- and late-onset neonatal sepsis. Epidemiol Infect 2013; Jul 11:1-9. [Epub ahead of print]. Up-to-date data on antibiotic resistance trends from a national database.

  18. Clark RH, Bloom BT, Spitzer AR, et al. Empiric use of ampicillin and cefotaxime, compared with ampicillin and gentamicin, for neonates at risk for sepsis is associated with an increased risk of neonatal death. Pediatrics. 2006;117:67–74.

    Article  PubMed  Google Scholar 

  19. Haffejee IE. A therapeutic trial of cefotaxime versus penicillin-gentamicin for severe infections in children. J Antimicrob Chemother. 1984;14(Suppl B):147–52.

    Article  PubMed  Google Scholar 

  20. Le J, Nguyen T, Okamoto M, et al. Impact of empiric antibiotic use on development of infections caused by extended-spectrum beta-lactamase bacteria in a neonatal intensive care unit. Pediatr Infect Dis J. 2008;27:314–8.

    Article  PubMed  Google Scholar 

  21. Byrne FM, Wilcox MH. MRSA prevention strategies and current guidelines. Injury. 2011;42 Suppl 5:S3–6.

    Article  PubMed  Google Scholar 

  22. Rao SC, Srinivasjois R, Hagan R, et al. One dose per day compared to multiple doses per day of gentamicin for treatment of suspected or proven sepsis in neonates. Cochrane Database Syst Rev 2011:CD005091.

  23. Vella-Brincat JWA, Begg EJ, Robertshawe BJ, et al. Are gentamicin and/or vancomycin associated with ototoxicity in the neonate? A retrospective audit. Neonatology. 2011;100:186–93.

    Article  CAS  PubMed  Google Scholar 

  24. Johnson RF, Cohen AP, Guo Y, et al. Genetic mutations and aminoglycoside-induced ototoxicity in neonates. Otolaryngol Head Neck Surg. 2010;142:704–7.

    Article  PubMed  Google Scholar 

  25. Byington CL, Rittichier KK, Bassett KE, et al. Serious bacterial infections in febrile infants younger than 90 days of age: the importance of ampicillin-resistant pathogens. Pediatrics. 2003;111:964–8.

    Article  PubMed  Google Scholar 

  26. Shah SS, Ohlsson A, Shah VS. Intraventricular antibiotics for bacterial meningitis in neonates. Cochrane Database Syst Rev 2012;CD004496.

  27. Chonng E, Reynolds J, Shaw J, et al. Results of a two-center, before and after study of piperacillin-tazobactam versus ampicillin and gentamicin as empiric therapy for suspected sepsis at birth in neonates ≤1500 g. J Perinatol. 2013;33:529–32. A large study showing the feasibility of using piperacillin-tazobactam as empiric therapy for neonatal sepsis.

    Article  Google Scholar 

  28. Harris PN, Ferguson JK. Antibiotic therapy for inducible AmpC β-lactamase –producing Gram-negative bacilli: what are the alternatives to carbapenems, quinolones and aminoglycosides? Int J Antimirob Agents. 2012;40:297–305.

    Article  CAS  Google Scholar 

  29. Chen HN, Lee ML, Yu WK, et al. Late-onset Enterobacter cloacae sepsis in very-low-birth-weight neonates: expeience in a medical center. Pediatr Neonatol. 2009;50:3–7.

    Article  PubMed  Google Scholar 

  30. Li Z, Chen Y, Li Q, et al. Population pharmacokinetics of piperacillin/tazobactam in neonates and young infants. Eur J Clin Pharmacol. 2013;69:1223–33.

    Article  CAS  PubMed  Google Scholar 

  31. Leleu G, Kitzis MD, Vallois JM, et al. Different ratios of the piperacillin-tazobactam combination for therapy of experimental meningitis due to Klebsiella pneumonia producing the TEM-3 extended-spectrum β-lactamase. Antimicrob Agents Chemother. 1994;38:195–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.

    Article  CAS  PubMed  Google Scholar 

  33. Tiskumara R, Fakharee SH, Liu CQ, et al. Neonatal infections in Asia. Arch Dis Child Fetal Neonatal Ed. 2009;94:F144–8.

    Article  CAS  PubMed  Google Scholar 

  34. Downie L, Armiento R, Subhi R, et al. Community-acquired neonatal and infant sepsis in developing countries: efficacy of WHO’s currently recommended antibiotics—systematic review and meta-analysis. Arch Dis Child. 2013;98:146–54.

    Article  PubMed  Google Scholar 

  35. Paterson DL. The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis. 2006;43(Suppl2):S43–8.

    Article  PubMed  Google Scholar 

  36. Abdel-Hady H, Hawas S, El-Daker M, et al. Extended-spectrum beta-lactamase producing Klebsiella pneumoniae in neonatal intensive care unit. J Perinatol. 2008;28:685–90.

    Article  CAS  PubMed  Google Scholar 

  37. Guiral E, Bosch J, Vila J, Soto SM. Antimicrobial resistance of Escherichia coli strains causing neonatal sepsis between 1998 and 2008. Chemotherapy. 2012;58:123–8.

    Article  CAS  PubMed  Google Scholar 

  38. Lytsy B, Sandegren L, Tane E, et al. The first major extended-spectrum beta-lactamase outbreak in Scandinavia was caused by clonal spread of a multiresistant Klebsiella pneumoniae producing CTX-M-15. APMIS. 2008;116:302–8. doi:10.1111/j.1600-0463.2008.00922.x.

    Article  CAS  PubMed  Google Scholar 

  39. Pacifici GM, Allegaert K. Clinical pharmacology of carbapenems in neonates. J Chemother. 2013 Jul 19. [Epub ahead of print]

  40. Livermore DM, Tulkens PM. Temocillin revived. J Antimicrob Chemother. 2009;63:243–5.

    Article  CAS  PubMed  Google Scholar 

  41. Magiorakos A-P, Suetens C, Monnet DL, et al. The rise of carbapenem resistance in Europe: just the tip of the iceberg? Antimicrob Resist Infect Control. 2013;2:6.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Livermore DM, Warner M, Mushtaq S, et al. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents. 2011;37:415–9.

    Article  CAS  PubMed  Google Scholar 

  43. Touati A, Achour W, Cherif A, et al. Outbreaks of Acinetobacter baumannii in a neonatal intensive care unit: antimicrobial susceptibility and genotyping analysis. Ann Epidemiol. 2009;19:372–8.

    Article  PubMed  Google Scholar 

  44. McGrath EJ, Chopra T, Abdel-Haq N, et al. An outbreak of carbapenem-resistant Acinetobacter baumannii in a neonatal intensive care unit: investigation and control. Infect Control Hosp Epidemiol. 2011;32:34–41.

    Article  PubMed  Google Scholar 

  45. Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother. 2010;65:1119–25.

    Article  CAS  PubMed  Google Scholar 

  46. Kaguelidou F, Turner MA, Choonara I, et al. Ciprofloxacin use in neonates: a systematic review of the literature. Pediatr Infect Dis J. 2011;30:e29–37.

    Article  PubMed  Google Scholar 

  47. Padari H, Metsvaht T, Kõrgvee LT, et al. Short versus long infusion of meropenem in very-low-birth-weight neonates. Antimicrob Agents Chemother. 2012;56:4760–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lumbiganon P, Kosalaraska P, Teeratakulpisarn J, et al. Carbapenem-resistant Acinetobacter baumanii septicemia and meningitis in a neonate treated with colistin and netilmycin. J Pediatr Infect Dis. 2008;3:283–5.

    Google Scholar 

  49. Zusman O, Avni T, Leibovici L, et al. In vitro synergy of polymyxins and carbapenems: systematic review and meta analysis. Antimicrob Agents Chemother 2013 Aug 5 (Epub ahead of print].

  50. Celik IH, Oguz SS, Demirel G, et al. Outcome of ventilator-associated pneumonia due to multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa treated with aerosolized colistin in neonates: a retrospective chart review. Eur J Pediatr. 2012;171:311–6.

    Article  PubMed  Google Scholar 

  51. Markantonis SL, Markou N, Fousteri M, et al. Penetration of colistin into cerebrospinal fluid. Antimicrob Agents Chemother. 2009;53:4907–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Dalgic N, Ceylan Y, Sancar M, et al. Successful treatment of multidrug-resistant Acinetobacter baumannii ventriculitis with intravenous and intraventriculr colistin. Ann Trop Paediatr. 2009;29:141–7.

    Article  CAS  PubMed  Google Scholar 

  53. Östholm Balkhed Å, Tärnberg M, Monstein HJ, et al. High frequency of co-resistance in CTX-M-producing Escherichia coli to non-beta-lactam antibiotics, with the exceptions of amikacin, nitrofurantoin, colistin, tigecycline, and fosfomycin, in a county of Sweden. Scand J Infect Dis. 2013;45:271–8.

    Article  PubMed  Google Scholar 

  54. Karageorgopoulos DE, Wang R, Yu XH, et al. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother. 2012;67:255–68.

    Article  CAS  PubMed  Google Scholar 

  55. Traunmüller F, Popovic M, Konz KH, et al. A reappraisal of current dosing strategies for intravenous fosfomycin in children and neonates. Clin Pharmacokinet. 2011;50:493–503. Provides evidence-based guidance on the use of fosfomycin in neonates.

    Article  PubMed  Google Scholar 

  56. Ray L, Levasseur K, Nicolau DP, et al. Cerebral spinal fluid penetration of tigecycline in a patient with Acinetobacter baumannii cerebritis. Ann Pharmacother. 2010;44:582–6.

    Article  PubMed  Google Scholar 

  57. Doan TL, Fung HB, Mehta D, et al. Tigecycline: a glycylcyline antimicrobial agent. Clin Ther. 2006;28:1079–106.

    Article  CAS  PubMed  Google Scholar 

  58. Gould IM, Bal AM. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence. 2013;4:185–91. A useful review of new antibiotics in the pipeline.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

James Gray has no conflicts of interest. Hirminder Ubhi has no conflicts of interest. Philip Milner has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Gray.

Additional information

This article is part of the Topical Collection on Pediatric Infectious Diseases

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, J.W., Ubhi, H. & Milner, P. Antimicrobial Treatment of Serious Gram-Negative Infections in Newborns. Curr Infect Dis Rep 16, 400 (2014). https://doi.org/10.1007/s11908-014-0400-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-014-0400-6

Keywords

Navigation