Skip to main content
Log in

Toll-Like Receptors and Opportunities for New Sepsis Therapeutics

  • Sepsis (J Russell, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Serious infection and the patient’s response (sepsis) is a serious health problem that, even today, is associated with a mortality rate of 30 %–50 %. The phases of severe sepsis include an early hyperinflammatory response to pathogens and a late immunosuppressed phase. Toll-like receptors (TLRs) are a family of transmembrane innate immune receptors that play a major role in both phases of sepsis. Here, their physiology and the therapeutic strategies employed to date are reviewed. Currently, there are no approved therapies targeting TLRs, but it is anticipated that in the future, the less-studied TLRs, such as TLR3, TLR7, and TLR9, will evolve therapeutic targets, perhaps predominantly with agonists, versus the usual antagonist strategies. Furthermore, accurately characterizing the stage of sepsis will be essential to directing appropriate therapeutic choices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.

    Article  PubMed  CAS  Google Scholar 

  2. Akira S. Toll-like receptors: lessons from knockout mice. Biochem Soc Trans. 2000;28(5):551–6.

    PubMed  CAS  Google Scholar 

  3. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.

    Article  PubMed  CAS  Google Scholar 

  4. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80.

    Article  PubMed  CAS  Google Scholar 

  5. Jenner RG, Young RA. Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol. 2005;3(4):281–94.

    Article  PubMed  CAS  Google Scholar 

  6. MacCallum DM. Massive induction of innate immune response to Candida albicans in the kidney in a murine intravenous challenge model. FEMS Yeast Res. 2009;9(7):1111–22.

    Article  PubMed  CAS  Google Scholar 

  7. Pandya U, Sinha M, Luxon BA, Watson DA, Niesel DW. Global transcription profiling and virulence potential of Streptococcus pneumoniae after serial passage. Gene. 2009;443(1–2):22–31.

    Article  PubMed  CAS  Google Scholar 

  8. Tang BM, McLean AS, Dawes IW, Huang SJ, Lin RC. Gene-expression profiling of peripheral blood mononuclear cells in sepsis. Crit Care Med. 2009;37(3):882–8.

    Article  PubMed  CAS  Google Scholar 

  9. Polpitiya AD, McDunn JE, Burykin A, Ghosh BK, Cobb JP. Using systems biology to simplify complex disease: immune cartography. Crit Care Med. 2009;37(1 Suppl):S16–21.

    Article  PubMed  Google Scholar 

  10. Russel JA. The current management of septic shock. Minerva Med. 2008;99(5):431–58.

    PubMed  CAS  Google Scholar 

  11. Sutherland AM, Walley KR, Manocha S, Russell JA. The association of interleukin 6 haplotype clades with mortality in critically ill adults. Arch Intern Med. 2005;165(1):75–82.

    Article  PubMed  CAS  Google Scholar 

  12. van der Poll T, Meijers JC. Systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome in sepsis. J Innate Immun. 2(5):379-380.

  13. Adib-Conquy M, Cavaillon JM. Compensatory anti-inflammatory response syndrome. Thromb Haemost. 2009;101(1):36–47.

    PubMed  CAS  Google Scholar 

  14. Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med. 2008;29(4):617–25. viii.

    Article  PubMed  Google Scholar 

  15. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86(6):973–83.

    Article  PubMed  CAS  Google Scholar 

  16. Muzio M, Bosisio D, Polentarutti N, D'Amico G, Stoppacciaro A, Mancinelli R, et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol. 2000;164(11):5998–6004.

    PubMed  CAS  Google Scholar 

  17. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000;18:217–42.

    Article  PubMed  CAS  Google Scholar 

  18. Chong AJ, Shimamoto A, Hampton CR, Takayama H, Spring DJ, Rothnie CL, et al. Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg. 2004;128(2):170–9.

    Article  PubMed  CAS  Google Scholar 

  19. Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease. Nat Immunol. 2004;5(10):975–9.

    Article  PubMed  CAS  Google Scholar 

  20. Abreu MT, Fukata M, Arditi M. TLR signaling in the gut in health and disease. J Immunol. 2005;174(8):4453–60.

    PubMed  CAS  Google Scholar 

  21. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation. 2007;115(12):1599–608.

    Article  PubMed  CAS  Google Scholar 

  22. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.

    Article  PubMed  CAS  Google Scholar 

  23. Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol. 2000;164(2):558–61.

    PubMed  CAS  Google Scholar 

  24. Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem. 2002;277(23):20847–53.

    Article  PubMed  CAS  Google Scholar 

  25. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem. 2002;277(17):15107–12.

    Article  PubMed  CAS  Google Scholar 

  26. Vabulas RM, Wagner H, Schild H. Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol. 2002;270:169–84.

    Article  PubMed  CAS  Google Scholar 

  27. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  28. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195(1):99–111.

    Article  PubMed  CAS  Google Scholar 

  29. Gombos T, Forhecz Z, Pozsonyi Z, Janoskuti L, Prohaszka Z. Interaction of serum 70-kDa heat shock protein levels and HspA1B (+1267) gene polymorphism with disease severity in patients with chronic heart failure. Cell Stress Chaperones. 2008;13(2):199–206.

    Article  PubMed  CAS  Google Scholar 

  30. de Jong PR, Schadenberg AW, Jansen NJ, Prakken BJ. Hsp70 and cardiac surgery: molecular chaperone and inflammatory regulator with compartmentalized effects. Cell Stress Chaperones. 2009;14(2):117–31.

    Article  PubMed  CAS  Google Scholar 

  31. Mathur S, Walley KR, Wang Y, Indrambarya T, Boyd JH. Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circ J. 2011;75(10):2445–52.

    Article  PubMed  CAS  Google Scholar 

  32. Frantz S, Kelly RA, Bourcier T. Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. J Biol Chem. 2001;276(7):5197–203.

    Article  PubMed  CAS  Google Scholar 

  33. Slack JL, Schooley K, Bonnert TP, Mitcham JL, Qwarnstrom EE, Sims JE, et al. Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways. J Biol Chem. 2000;275(7):4670–8.

    Article  PubMed  CAS  Google Scholar 

  34. Akira S, Yamamoto M, Takeda K. Role of adapters in Toll-like receptor signalling. Biochem Soc Trans. 2003;31(Pt 3):637–42.

    PubMed  CAS  Google Scholar 

  35. Palsson-McDermott EM, O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology. 2004;113(2):153–62.

    Article  PubMed  CAS  Google Scholar 

  36. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002;109(Suppl):S81–96.

    Article  PubMed  CAS  Google Scholar 

  37. Kariko K, Weissman D, Welsh FA. Inhibition of toll-like receptor and cytokine signaling–a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab. 2004;24(11):1288–304.

    Article  PubMed  CAS  Google Scholar 

  38. Fan H, Cook JA. Molecular mechanisms of endotoxin tolerance. J Endotoxin Res. 2004;10(2):71–84.

    Article  PubMed  CAS  Google Scholar 

  39. Wald D, Qin J, Zhao Z, Qian Y, Naramura M, Tian L, et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol. 2003;4(9):920–7.

    Article  PubMed  CAS  Google Scholar 

  40. Brint EK, Xu D, Liu H, Dunne A, McKenzie AN, O'Neill LA, et al. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol. 2004;5(4):373–9.

    Article  PubMed  CAS  Google Scholar 

  41. Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med. 2003;197(2):263–8.

    Article  PubMed  Google Scholar 

  42. Janssens S, Burns K, Vercammen E, Tschopp J, Beyaert R. MyD88S, a splice variant of MyD88, differentially modulates NF-kappaB- and AP-1-dependent gene expression. FEBS Lett. 2003;548(1–3):103–7.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang G, Ghosh S. Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem. 2002;277(9):7059–65.

    Article  PubMed  CAS  Google Scholar 

  44. Jiang X, Zhu D, Okagaki P, Lipsky R, Wu X, Banaudha K, et al. N-methyl-D-aspartate and TrkB receptor activation in cerebellar granule cells: an in vitro model of preconditioning to stimulate intrinsic survival pathways in neurons. Ann N Y Acad Sci. 2003;993:134–45. discussion 159-160.

    Article  PubMed  CAS  Google Scholar 

  45. Ha T, Hua F, Liu X, Ma J, McMullen JR, Shioi T, et al. Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism. Cardiovasc Res. 2008;78(3):546–53.

    Article  PubMed  CAS  Google Scholar 

  46. Klaschik S, Tross D, Klinman DM. Inductive and suppressive networks regulate TLR9-dependent gene expression in vivo. J Leukoc Biol. 2009;85(5):788–95.

    Article  PubMed  CAS  Google Scholar 

  47. Tross D, Petrenko L, Klaschik S, Zhu Q, Klinman DM. Global changes in gene expression and synergistic interactions induced by TLR9 and TLR3. Mol Immunol. 2009;46(13):2557–64.

    Article  PubMed  CAS  Google Scholar 

  48. Yeo SJ, Yoon JG, Hong SC, Yi AK. CpG DNA induces self and cross-hyporesponsiveness of RAW264.7 cells in response to CpG DNA and lipopolysaccharide: alterations in IL-1 receptor-associated kinase expression. J Immunol. 2003;170(2):1052–61.

    PubMed  CAS  Google Scholar 

  49. • Mathur S, Walley KR, Boyd JH. The Toll-like receptor 9 ligand CPG-C attenuates acute inflammatory cardiac dysfunction. Shock. 2011;36(5):478–83. This manuscripts details the use of the TLR9 agonist CpG as a therapeutic option for severe acute cardiovascular failure due to both endotoxin and ischemia.

    Article  PubMed  CAS  Google Scholar 

  50. Brun-Buisson C, Doyon F, Carlet J, Dellamonica P, Gouin F, Lepoutre A, et al. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA. 1995;274(12):968–74.

    Article  PubMed  CAS  Google Scholar 

  51. Wang HE, Shapiro NI, Angus DC, Yealy DM. National estimates of severe sepsis in United States emergency departments. Crit Care Med. 2007;35(8):1928–36.

    Article  PubMed  Google Scholar 

  52. Ziegler EJ, McCutchan JA, Fierer J, Glauser MP, Sadoff JC, Douglas H, et al. Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med. 1982;307(20):1225–30.

    Article  PubMed  CAS  Google Scholar 

  53. Angus DC, Birmingham MC, Balk RA, Scannon PJ, Collins D, Kruse JA, et al. E5 murine monoclonal antiendotoxin antibody in gram-negative sepsis: a randomized controlled trial. E5 Study Investigators. JAMA. 2000;283(13):1723–30.

    Article  PubMed  CAS  Google Scholar 

  54. Albertson TE, Panacek EA, MacArthur RD, Johnson SB, Benjamin E, Matuschak GM, et al. Multicenter evaluation of a human monoclonal antibody to Enterobacteriaceae common antigen in patients with Gram-negative sepsis. Crit Care Med. 2003;31(2):419–27.

    Article  PubMed  Google Scholar 

  55. Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol. 2006;117(5):979–87. quiz 988.

    Article  PubMed  CAS  Google Scholar 

  56. Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19(1):24–32.

    Article  PubMed  CAS  Google Scholar 

  57. Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–9.

    Article  PubMed  CAS  Google Scholar 

  58. Ii M, Matsunaga N, Hazeki K, Nakamura K, Takashima K, Seya T, et al. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Mol Pharmacol. 2006;69(4):1288–95.

    Article  PubMed  CAS  Google Scholar 

  59. Yamada M, Ichikawa T, Yamano T, Kikumoto F, Nishikimi Y, Tamura N, et al. Optically active cyclohexene derivative as a new antisepsis agent: an efficient synthesis of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242). Chem Pharm Bull(Tokyo). 2006;54(1):58–62.

    Article  CAS  Google Scholar 

  60. Sha T, Sunamoto M, Kitazaki T, Sato J, Ii M, Iizawa Y. Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model. Eur J Pharmacol. 2007;571(2–3):231–9.

    Article  PubMed  CAS  Google Scholar 

  61. Kawamoto T, Ii M, Kitazaki T, Iizawa Y, Kimura H. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur J Pharmacol. 2008;584(1):40–8.

    Article  PubMed  CAS  Google Scholar 

  62. Kuno M, Nemoto K, Ninomiya N, Inagaki E, Kubota M, Matsumoto T, et al. The novel selective toll-like receptor 4 signal transduction inhibitor tak-242 prevents endotoxaemia in conscious Guinea-pigs. Clin Exp Pharmacol Physiol. 2009;36(5–6):589–93.

    Article  PubMed  CAS  Google Scholar 

  63. Takashima K, Matsunaga N, Yoshimatsu M, Hazeki K, Kaisho T, Uekata M, et al. Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br J Pharmacol. 2009;157(7):1250–62.

    Article  PubMed  CAS  Google Scholar 

  64. •• Rice TW, Wheeler AP, Bernard GR, Vincent JL, Angus DC, Aikawa N, et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit Care Med. 2010;38(8):1685–94. This phase III trial using the small molecule inhibitor of TLR4 signaling TAK-242 failed to demonstrate an effect in septic shock.

    Article  PubMed  CAS  Google Scholar 

  65. Matsunaga N, Tsuchimori N, Matsumoto T, Ii M. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol. 2011;79(1):34–41.

    Article  PubMed  CAS  Google Scholar 

  66. Kaneko K, Ueda R, Kikuchi K, Sano Y, Yoshimura T. Quantitative determination of a potent lipopolysaccharide antagonist, E5564, in rat and dog plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl. 1999;736(1–2):67–75.

    Article  PubMed  CAS  Google Scholar 

  67. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem. 2001;276(13):10229–33.

    Article  PubMed  CAS  Google Scholar 

  68. Lynn M, Rossignol DP, Wheeler JL, Kao RJ, Perdomo CA, Noveck R, et al. Blocking of responses to endotoxin by E5564 in healthy volunteers with experimental endotoxemia. J Infect Dis. 2003;187(4):631–9.

    Article  PubMed  CAS  Google Scholar 

  69. Mullarkey M, Rose JR, Bristol J, Kawata T, Kimura A, Kobayashi S, et al. Inhibition of endotoxin response by e5564, a novel Toll-like receptor 4-directed endotoxin antagonist. J Pharmacol Exp Ther. 2003;304(3):1093–102.

    Article  PubMed  CAS  Google Scholar 

  70. Wong YN, Rossignol D, Rose JR, Kao R, Carter A, Lynn M. Safety, pharmacokinetics, and pharmacodynamics of E5564, a lipid A antagonist, during an ascending single-dose clinical study. J Clin Pharmacol. 2003;43(7):735–42.

    PubMed  Google Scholar 

  71. Rossignol DP, Wasan KM, Choo E, Yau E, Wong N, Rose J, et al. Safety, pharmacokinetics, pharmacodynamics, and plasma lipoprotein distribution of eritoran (E5564) during continuous intravenous infusion into healthy volunteers. Antimicrob Agents Chemother. 2004;48(9):3233–40.

    Article  PubMed  CAS  Google Scholar 

  72. Savov JD, Brass DM, Lawson BL, McElvania-Tekippe E, Walker JK, Schwartz DA. Toll-like receptor 4 antagonist (E5564) prevents the chronic airway response to inhaled lipopolysaccharide. Am J Physiol Lung Cell Mol Physiol. 2005;289(2):L329–37.

    Article  PubMed  CAS  Google Scholar 

  73. Czeslick E, Struppert A, Simm A, Sablotzki A. E5564 (Eritoran) inhibits lipopolysaccharide-induced cytokine production in human blood monocytes. Inflamm Res. 2006;55(11):511–5.

    Article  PubMed  CAS  Google Scholar 

  74. Sutherland AM, Walley KR, Russell JA. Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med. 2005;33(3):638–44.

    Article  PubMed  CAS  Google Scholar 

  75. Wurfel MM, Gordon AC, Holden TD, Radella F, Strout J, Kajikawa O, et al. Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med. 2008;178(7):710–20.

    Article  PubMed  CAS  Google Scholar 

  76. Shaw DM, Sutherland AM, Russell JA, Lichtenstein SV, Walley KR. Novel polymorphism of interleukin-18 associated with greater inflammation after cardiac surgery. Crit Care. 2009;13(1):R9.

    Article  PubMed  Google Scholar 

  77. Nakada TA, Russell JA, Boyd JH, Aguirre-Hernandez R, Thain KR, Thair SA, et al. beta2-Adrenergic receptor gene polymorphism is associated with mortality in septic shock. Am J Respir Crit Care Med. 2010;181(2):143–9.

    Article  PubMed  CAS  Google Scholar 

  78. •• Tidswell M, Tillis W, Larosa SP, Lynn M, Wittek AE, Kao R, et al. Phase 2 trial of eritoran tetrasodium (E5564), a toll-like receptor 4 antagonist, in patients with severe sepsis. Crit Care Med. 2010;38(1):72–83. This manuscript described the results of a large phase II trial using the TLR4 antogonist E5564, showing promising results in the sickest patients (high APACHEII score).

    Article  PubMed  CAS  Google Scholar 

  79. Sprung CL, Caralis PV, Marcial EH, Pierce M, Gelbard MA, Long WM, et al. The effects of high-dose corticosteroids in patients with septic shock. A prospective, controlled study. N Engl J Med. 1984;311(18):1137–43.

    Article  PubMed  CAS  Google Scholar 

  80. Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. The Veterans Administration Systemic Sepsis Cooperative Study Group. N Engl J Med. 1987;317(11):659-665.

  81. Bone RC, Fisher Jr CJ, Clemmer TP, Slotman GJ, Metz CA, Balk RA. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987;317(11):653–8.

    Article  PubMed  CAS  Google Scholar 

  82. Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S, Levy H, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA. 1995;273(12):934–41.

    Article  PubMed  CAS  Google Scholar 

  83. Cohen J, Carlet J. INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-alpha in patients with sepsis. International Sepsis Trial Study Group. Crit Care Med. 1996;24(9):1431–40.

    Article  PubMed  CAS  Google Scholar 

  84. Abraham E, Glauser MP, Butler T, Garbino J, Gelmont D, Laterre PF, et al. p55 Tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. A randomized controlled multicenter trial. Ro 45-2081 Study Group. JAMA. 1997;277(19):1531–8.

    Article  PubMed  CAS  Google Scholar 

  85. Abraham E, Laterre PF, Garbino J, Pingleton S, Butler T, Dugernier T, et al. Lenercept (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase III trial with 1,342 patients. Crit Care Med. 2001;29(3):503–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by Canadian Institutes of Health Research and the National Sanitorium Association. Dr. John H. Boyd is a National Sanitorium Association Scholar and a Michael Smith Foundation for Health Research (MSFHR) Scholar.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, J.H. Toll-Like Receptors and Opportunities for New Sepsis Therapeutics. Curr Infect Dis Rep 14, 455–461 (2012). https://doi.org/10.1007/s11908-012-0273-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-012-0273-5

Keywords

Navigation