Skip to main content
Log in

Hsp70 and cardiac surgery: molecular chaperone and inflammatory regulator with compartmentalized effects

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Open heart surgery is a unique model to study the interplay between cellular injury, regulation of inflammatory responses and tissue repair. Stress-inducible heat shock protein 70-kDa (Hsp70) provides a molecular link between these events. In addition to molecular chaperoning, Hsp70 exerts modulatory effects on endothelial cells and leukocytes involved in inflammatory networks. Hsp70 residing in the intracellular compartment is part of an inhibitory feedback loop that acts on nuclear factor kappaB (NF-κB). In contrast, extracellular Hsp70 is recognized by multiple germline-encoded immune receptors, e.g., Toll-like receptor (TLR) 2, TLR4, LOX-1, CD91, CD94, CCR5 and CD40. Hsp70 is thereby able to enhance chemotaxis, phagocytosis and cytolytic activity of innate immune cells and stimulate antigen-specific responses. These apparent contradictory pro- and anti-inflammatory effects of endogenous Hsp70 in the context of cardiac surgery are still not fully understood. An all-embracing model of the compartmentalized effects of endogenous Hsp70 in the orchestration of inflammatory responses in cardiac surgery is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACC:

aortic cross-clamping

APC:

antigen-presenting cells

CPB:

cardiopulmonary bypass

HSP:

heat shock proteins

IL-1:

interleukin-1

IFN-γ:

interferon-gamma

MHC:

major histocompatibility complex

NF-κB:

nuclear factor kappa B

SIRS:

systemic inflammatory response syndrome

TGF-β:

transforming growth factor-beta

TLR:

toll-like receptor

TNF-α:

tumor necrosis factor-alpha

References

  • Adrie C, Pinsky MR (2000) The inflammatory balance in human sepsis. Intensive Care Med 26:364–375 doi:10.1007/s001340051169

    PubMed  CAS  Google Scholar 

  • Afzal AR, Mandal K, Nyamweya S, Foteinos G, Poloniecki J, Camm AJ, Jahangiri M, Xu Q (2007) Association of Met439Thr substitution in heat shock protein 70 gene with postoperative atrial fibrillation and serum HSP70 protein levels. Cardiology 110:45–52 doi:10.1159/000109406

    PubMed  Google Scholar 

  • Ahn SG, Liu PC, Klyachko K, Morimoto RI, Thiele DJ (2001) The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress. Genes Dev 15:2134–2145 doi:10.1101/gad.894801

    PubMed  CAS  Google Scholar 

  • Ammirante M, Rosati A, Gentilella A et al (2008) The activity of hsp90 alpha promoter is regulated by NF-kappa B transcription factors. Oncogene 27:1175–1178 doi:10.1038/sj.onc.1210716

    PubMed  CAS  Google Scholar 

  • Aosai F, Rodriguez Pena MS, Mun HS et al (2006) Toxoplasma gondii-derived heat shock protein 70 stimulates maturation of murine bone marrow-derived dendritic cells via toll-like receptor 4. Cell Stress Chaperones 11:13–22 doi:1466-1268(2001)006<0093:ROPSAH>2.0.CO;2/CSC-138R.1

    PubMed  CAS  Google Scholar 

  • Archbold RA, Curzen NP (2003) Off-pump coronary artery bypass graft surgery: the incidence of postoperative atrial fibrillation. Heart 89:1134–1137 doi:10.1136/heart.89.10.1134

    PubMed  CAS  Google Scholar 

  • Arispe N, Doh M, Simakova O, Kurganov B De Maio A (2004) Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18:1636–1645 doi:10.1096/fj.04-2088com

    PubMed  CAS  Google Scholar 

  • Asea A (2007) Mechanisms of HSP72 release. J Biosci 32:579–584 doi:10.1007/s12038-007-0057-5

    PubMed  CAS  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442 doi:10.1038/74697

    PubMed  CAS  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034 doi:10.1074/jbc.M200497200

    PubMed  CAS  Google Scholar 

  • Bartling B, Hilgefort C, Friedrich I, Silber RE, Simm A (2003) Cardio-protective determinants are conserved in aged human myocardium after ischemic preconditioning. FEBS Lett 555:539–544 doi:10.1016/S0014-5793(03)01342-5

    PubMed  CAS  Google Scholar 

  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546 doi:10.1093/intimm/12.11.1539

    PubMed  CAS  Google Scholar 

  • Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313 doi:10.1016/S1074-7613(01)00111-X

    PubMed  CAS  Google Scholar 

  • Bausero MA, Gastpar R, Multhoff G, Asea A (2005) Alternative mechanism by which IFN-gamma enhances tumor recognition: Active release of heat shock protein 72. J Immunol 175:2900–2912

    PubMed  CAS  Google Scholar 

  • Bausinger H, Lipsker D, Ziylan U et al (2002) Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol 32:3708–3713. doi:10.1002/1521-4141(200212)32:12<3708::AID-IMMU3708>3.0.CO;2-C

    PubMed  CAS  Google Scholar 

  • Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285 doi:10.1083/jcb.200208083

    PubMed  CAS  Google Scholar 

  • Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    PubMed  CAS  Google Scholar 

  • Bethke K, Staib F, Distler M, Schmitt U, Jonuleit H, Enk AH, Galle PR, Heike M (2002) Different efficiency of heat shock proteins (HSP) to activate human monocytes and dendritic cells: Superiority of HSP60. J Immunol 169:6141–6148

    PubMed  CAS  Google Scholar 

  • Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK (1997) Heat shock protein–peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186:1315–1322 doi:10.1084/jem.186.8.1315

    PubMed  CAS  Google Scholar 

  • Borgermann J, Flohe S, Scheubel RJ, Kuss O, Simm A, Schade FU, Friedrich I (2007) Regulation of cytokine synthesis in cardiac surgery: role of extracorporeal circuit and humoral mediators in vivo and in vitro. Inflamm Res 56:126–132 doi:10.1007/s00011-006-6152-5

    PubMed  CAS  Google Scholar 

  • Boshoff T, Lombard F, Eiselen R, Bornman JJ, Bachelet M, Polla BS, Bornman L (2000) Differential basal synthesis of Hsp70/Hsc70 contributes to interindividual variation in Hsp70/Hsc70 inducibility. Cell Mol Life Sci 57:1317–1325 doi:10.1007/PL00000768

    PubMed  CAS  Google Scholar 

  • Bourbon A, Vionnet M, Leprince P, Vaissier E, Copeland J, McDonagh P, Debre P, Gandjbakhch I (2004) The effect of methylprednisolone treatment on the cardiopulmonary bypass-induced systemic inflammatory response. Eur J Cardiothorac Surg 26:932–938 doi:10.1016/j.ejcts.2004.07.044

    PubMed  CAS  Google Scholar 

  • Bowers DJ, Calvano JE, Alvarez SM, Coyle SM, Macor MA, Kumar A, Calvano SE, Lowry SF (2006) Polymorphisms of heat shock protein-70 (HSPA1B and HSPA1L loci) do not influence infection or outcome risk in critically ill surgical patients. Shock 25:117–122 doi:10.1097/01.shk.0000190826.36406.27

    PubMed  CAS  Google Scholar 

  • Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, Spallek R, Singh M, Arditi M (2005) Mycobacterium tuberculosis heat shock proteins use diverse toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem 280:20961–20967 doi:10.1074/jbc.M411379200

    PubMed  CAS  Google Scholar 

  • Campisi J, Leem TH, Fleshner M (2003) Stress-induced extracellular Hsp72 is a functionally significant danger signal to the immune system. Cell Stress Chaperones 8:272–286. doi:10.1379/1466-1268(2003)008<0272:SEHIAF>2.0.CO;2

    PubMed  CAS  Google Scholar 

  • Carlet J, Cohen J, Calandra T, Opal SM, Masur H (2008) Sepsis: time to reconsider the concept. Crit Care Med 36:964–966

    Article  PubMed  Google Scholar 

  • Castellino F, Boucher PE, Eichelberg K, Mayhew M, Rothman JE, Houghton AN, Germain RN (2000) Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med 191:1957–1964 doi:10.1084/jem.191.11.1957

    PubMed  CAS  Google Scholar 

  • Cavaillon JM, Adrie C, Fitting C, Adib-Conquy M (2005) Reprogramming of circulatory cells in sepsis and SIRS. J Endotoxin Res 11:311–320

    PubMed  CAS  Google Scholar 

  • Chan JY, Ou CC, Wang LL, Chan SH (2004) Heat shock protein 70 confers cardiovascular protection during endotoxemia via inhibition of nuclear factor-kappaB activation and inducible nitric oxide synthase expression in the rostral ventrolateral medulla. Circulation 110:3560–3566 doi:10.1161/01.CIR.0000143082.63063.33

    PubMed  CAS  Google Scholar 

  • Chaney MA (2002) Corticosteroids and cardiopulmonary bypass: a review of clinical investigations. Chest 121:921–931 doi:10.1378/chest.121.3.921

    PubMed  CAS  Google Scholar 

  • Chase MA, Wheeler DS, Lierl KM, Hughes VS, Wong HR, Page K (2007) Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4- and NF-kappaB-dependent mechanism. J Immunol 179:6318–6324

    PubMed  CAS  Google Scholar 

  • Chen H, Wu Y, Zhang Y et al (2006) Hsp70 inhibits lipopolysaccharide-induced NF-kappaB activation by interacting with TRAF6 and inhibiting its ubiquitination. FEBS Lett 580:3145–3152 doi:10.1016/j.febslet.2006.04.066

    PubMed  CAS  Google Scholar 

  • Cremer J, Martin M, Redl H et al (1996) Systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg 61:1714–1720 doi:10.1016/0003-4975(96)00055-0

    PubMed  CAS  Google Scholar 

  • Currie RW, Karmazyn M, Kloc M, Mailer K (1988) Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res 63:543–549

    PubMed  CAS  Google Scholar 

  • Delneste Y, Magistrelli G, Gauchat J et al (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17:353–362 doi:10.1016/S1074-7613(02)00388-6

    PubMed  CAS  Google Scholar 

  • Demidov ON, Tyrenko VV, Svistov AS, Komarova YY, Karpishenko AI, Margulis BA, Shevchenko YL (1999) Heat shock proteins in cardiosurgery patients. Eur J Cardiothorac Surg 16:444–449 doi:10.1016/S1010-7940(99)00291-2

    PubMed  CAS  Google Scholar 

  • Dobbin CA, Smith NC, Johnson AM (2002) Heat shock protein 70 is a potential virulence factor in murine toxoplasma infection via immunomodulation of host NF-kappa B and nitric oxide. J Immunol 169:958–965

    PubMed  CAS  Google Scholar 

  • Dybdahl B, Wahba A, Lien E et al (2002) Inflammatory response after open heart surgery: Release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 105:685–690 doi:10.1161/hc0602.103617

    PubMed  CAS  Google Scholar 

  • Dybdahl B, Wahba A, Haaverstad R, Kirkeby-Garstad I, Kierulf P, Espevik T, Sundan A (2004) On-pump versus off-pump coronary artery bypass grafting: more heat-shock protein 70 is released after on-pump surgery. Eur J Cardiothorac Surg 25:985–992 doi:10.1016/j.ejcts.2004.03.002

    PubMed  Google Scholar 

  • Dybdahl B, Slordahl SA, Waage A, Kierulf P, Espevik T, Sundan A (2005) Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart 91:299–304 doi:10.1136/hrt.2003.028092

    PubMed  CAS  Google Scholar 

  • El Azab SR, Rosseel PM, de Lange JJ, Groeneveld AB, van Strik R, van Wijk EM, Scheffer GJ (2002) Dexamethasone decreases the pro- to anti-inflammatory cytokine ratio during cardiac surgery. Br J Anaesth 88:496–501 doi:10.1093/bja/88.4.496

    PubMed  Google Scholar 

  • El Mezayen R, El Gazzar M, Seeds MC, McCall CE, Dreskin SC, Nicolls MR (2007) Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin. Immunol Lett 111:36–44 doi:10.1016/j.imlet.2007.04.011

    PubMed  Google Scholar 

  • Elsner L, Muppala V, Gehrmann M et al (2007) The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands. J Immunol 179:5523–5533

    PubMed  CAS  Google Scholar 

  • Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20:123–137 doi:10.1016/j.blre.2005.10.001

    PubMed  CAS  Google Scholar 

  • Feinstein DL, Galea E, Aquino DA, Li GC, Xu H, Reis DJ (1996) Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem 271:17724–17732 doi:10.1074/jbc.271.46.29489

    PubMed  CAS  Google Scholar 

  • Fillinger MP, Rassias AJ, Guyre PM et al (2002) Glucocorticoid effects on the inflammatory and clinical responses to cardiac surgery. J Cardiothorac Vasc Anesth 16:163–169 doi:10.1053/jcan.2002.31057

    PubMed  Google Scholar 

  • Ganter MT, Ware LB, Howard M, Roux J, Gartland B, Matthay MA, Fleshner M, Pittet JF (2006) Extracellular heat shock protein 72 is a marker of the stress protein response in acute lung injury. Am J Physiol Lung Cell Mol Physiol 291:L354–L361 doi:10.1152/ajplung.00405.2005

    PubMed  CAS  Google Scholar 

  • Gao B, Tsan MF (2003) Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J Biol Chem 278:174–179 doi:10.1074/jbc.M208742200

    PubMed  CAS  Google Scholar 

  • Gastpar R, Gross C, Rossbacher L, Ellwart J, Riegger J, Multhoff G (2004) The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J Immunol 172:972–980

    PubMed  CAS  Google Scholar 

  • Giannessi D, Caselli C, Vitale RL, Crucean A, Murzi B, Ry SD, Vanini V, Biagini A (2003) A possible cardioprotective effect of heat shock proteins during cardiac surgery in pediatric patients. Pharmacol Res 48:519–529 doi:10.1016/S1043-6618(03)00193-2

    PubMed  CAS  Google Scholar 

  • Gross C, Hansch D, Gastpar R, Multhoff G (2003a) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384:267–279 doi:10.1515/BC.2003.030

    PubMed  CAS  Google Scholar 

  • Gross C, Schmidt-Wolf IG, Nagaraj S, Gastpar R, Ellwart J, Kunz-Schughart LA, Multhoff G (2003b) Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones 8:348–360. doi:10.1379/1466-1268(2003)008<0348:HSPRIA>2.0.CO;2

    PubMed  CAS  Google Scholar 

  • Gupta S, Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 292:H3052–H3056 doi:10.1152/ajpheart.01355.2006

    PubMed  CAS  Google Scholar 

  • Hadley JS, Wang JE, Michaels LC, Dempsey CM, Foster SJ, Thiemermann C, Hinds CJ (2007) Alterations in inflammatory capacity and TLR expression on monocytes and neutrophils after cardiopulmonary bypass. Shock 27:466–473 doi:10.1097/01.shk.0000245033.69977.c5

    PubMed  CAS  Google Scholar 

  • Halonen J, Halonen P, Jarvinen O et al (2007) Corticosteroids for the prevention of atrial fibrillation after cardiac surgery: a randomized controlled trial. JAMA 297:1562–1567 doi:10.1001/jama.297.14.1562

    PubMed  CAS  Google Scholar 

  • Hambsch J, Osmancik P, Bocsi J, Schneider P, Tarnok A (2002) Neutrophil adhesion molecule expression and serum concentration of soluble adhesion molecules during and after pediatric cardiovascular surgery with or without cardiopulmonary bypass. Anesthesiology 96:1078–1085 doi:10.1097/00000542-200205000-00009

    PubMed  CAS  Google Scholar 

  • Hamilton KL, Gupta S, Knowlton AA (2004) Estrogen and regulation of heat shock protein expression in female cardiomyocytes: Cross-talk with NF kappa B signaling. J Mol Cell Cardiol 36:577–584 doi:10.1016/j.yjmcc.2004.02.005

    PubMed  CAS  Google Scholar 

  • Hampton CR, Shimamoto A, Rothnie CL, Griscavage-Ennis J, Chong A, Dix DJ, Verrier ED, Pohlman TH (2003) HSP70.1 and -70.3 are required for late-phase protection induced by ischemic preconditioning of mouse hearts. Am J Physiol Heart Circ Physiol 285:H866–H874

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Sawa Y, Fukuyama N, Nakazawa H, Matsuda H (2002) Preoperative glutamine administration induces heat-shock protein 70 expression and attenuates cardiopulmonary bypass-induced inflammatory response by regulating nitric oxide synthase activity. Circulation 106:2601–2607 doi:10.1161/01.CIR.0000035651.72240.07

    PubMed  CAS  Google Scholar 

  • Hearse DJ (1998) Myocardial protection during ischemia and reperfusion. Mol Cell Biochem 186:177–184 doi:10.1023/A:1006808507605

    PubMed  CAS  Google Scholar 

  • Hiesmayr MJ, Spittler A, Lassnigg A et al (1999) Alterations in the number of circulating leucocytes, phenotype of monocyte and cytokine production in patients undergoing cardiothoracic surgery. Clin Exp Immunol 115:315–323 doi:10.1046/j.1365-2249.1999.00801.x

    PubMed  CAS  Google Scholar 

  • Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61 doi:10.1097/00125817-200203000-00002

    Article  PubMed  CAS  Google Scholar 

  • Hutter MM, Sievers RE, Barbosa V, Wolfe CL (1994) Heat-shock protein induction in rat hearts. A direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation 89:355–360

    PubMed  CAS  Google Scholar 

  • Hutter JJ, Mestril R, Tam EK, Sievers RE, Dillmann WH, Wolfe CL (1996) Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 94:1408–1411

    PubMed  CAS  Google Scholar 

  • Ito Y, Ando A, Ando H, Ando J, Saijoh Y, Inoko H, Fujimoto H (1998) Genomic structure of the spermatid-specific hsp70 homolog gene located in the class III region of the major histocompatibility complex of mouse and man. J Biochem 124:347–353

    PubMed  CAS  Google Scholar 

  • Jansen NJ, van Oeveren W, van den Broek L et al (1991) Inhibition by dexamethasone of the reperfusion phenomena in cardiopulmonary bypass. J Thorac Cardiovasc Surg 102:515–525

    PubMed  CAS  Google Scholar 

  • Jansen NJ, van Oeveren W, Gu YJ, van Vliet MH, Eijsman L, Wildevuur CR (1992) Endotoxin release and tumor necrosis factor formation during cardiopulmonary bypass. Ann Thorac Surg 54:744–747 discussion 747–748

    Article  PubMed  CAS  Google Scholar 

  • Jayakumar J, Suzuki K, Khan M et al (2000) Gene therapy for myocardial protection: transfection of donor hearts with heat shock protein 70 gene protects cardiac function against ischemia–reperfusion injury. Circulation 102:III302–III306

    PubMed  CAS  Google Scholar 

  • Jayakumar J, Suzuki K, Sammut IA et al (2001) Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia–reperfusion injury. Circulation 104:I303–I307 doi:10.1161/hc37t1.094932

    PubMed  CAS  Google Scholar 

  • Kalawski R, Bugajski P, Smielecki J, Wysocki H, Olszewski R, More R, Sheridan DJ, Siminiak T (1998) Soluble adhesion molecules in reperfusion during coronary bypass grafting. Eur J Cardiothorac Surg 14:290–295 doi:10.1016/S1010-7940(98)00197-3

    PubMed  CAS  Google Scholar 

  • Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML (1999) T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20:561–567 doi:10.1016/S0167-5699(99)01547-9

    PubMed  CAS  Google Scholar 

  • Kimura F, Itoh H, Ambiru S et al (2004) Circulating heat-shock protein 70 is associated with postoperative infection and organ dysfunction after liver resection. Am J Surg 187:777–784 doi:10.1016/j.amjsurg.2003.08.029

    PubMed  CAS  Google Scholar 

  • Kustanova GA, Murashev AN, Karpov VL, Margulis BA, Guzhova IV, Prokhorenko IR, Grachev SV, Evgen'ev MB (2006) Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell Stress Chaperones 11:276–286 doi:10.1379/CSC-195R.1

    PubMed  CAS  Google Scholar 

  • Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355 doi:10.1074/jbc.M502017200

    PubMed  CAS  Google Scholar 

  • Latchman DS (2001) Heat shock proteins and cardiac protection. Cardiovasc Res 51:637–646 doi:10.1016/S0008-6363(01)00354-6

    PubMed  CAS  Google Scholar 

  • Lau SS, Griffin TM, Mestril R (2000) Protection against endotoxemia by HSP70 in rodent cardiomyocytes. Am J Physiol Heart Circ Physiol 278:H1439–H1445

    PubMed  CAS  Google Scholar 

  • Lee MS, Kim YJ (2007) Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem 76:447–480 doi:10.1146/annurev.biochem.76.060605.122847

    PubMed  CAS  Google Scholar 

  • Lee KH, Lee CT, Kim YW, Han SK, Shim YS, Yoo CG (2005) Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the IkappaB/NF-kappaB cascade by facilitating IkappaB kinase renaturation and blocking its further denaturation. Exp Cell Res 307:276–284 doi:10.1016/j.yexcr.2005.03.014

    PubMed  CAS  Google Scholar 

  • Lepore DA, Knight KR, Anderson RL, Morrison WA (2001) Role of priming stresses and Hsp70 in protection from ischemia–reperfusion injury in cardiac and skeletal muscle. Cell Stress Chaperones 6:93–96. doi:10.1379/1466-1268(2001)006<0093:ROPSAH>2.0.CO;2

    PubMed  CAS  Google Scholar 

  • Li G, Chen S, Lu E, Li Y (1999) Ischemic preconditioning improves preservation with cold blood cardioplegia in valve replacement patients. Eur J Cardiothorac Surg 15:653–657 doi:10.1016/S1010-7940(99)00070-6

    PubMed  CAS  Google Scholar 

  • Liakopoulos OJ, Schmitto JD, Kazmaier S, Brauer A, Quintel M, Schoendube FA, Dorge H (2007) Cardiopulmonary and systemic effects of methylprednisolone in patients undergoing cardiac surgery. Ann Thorac Surg 84:110–118; discussion 118–119. doi:10.1016/j.athoracsur.2007.01.003

    PubMed  Google Scholar 

  • Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33:177–182 doi:10.1038/ng1071

    PubMed  CAS  Google Scholar 

  • Malagon I, Hogenbirk K, van Pelt J, Hazekamp MG, Bovill JG (2005) Effect of dexamethasone on postoperative cardiac troponin T production in pediatric cardiac surgery. Intensive Care Med 31:1420–1426 doi:10.1007/s00134-005-2788-9

    PubMed  Google Scholar 

  • Mandal K, Torsney E, Poloniecki J, Camm AJ, Xu Q, Jahangiri M (2005) Association of high intracellular, but not serum, heat shock protein 70 with postoperative atrial fibrillation. Ann Thorac Surg 79:865–871; discussion 871. doi:10.1016/j.athoracsur.2004.08.018

    PubMed  Google Scholar 

  • Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95:1446–1456 doi:10.1172/JCI117815

    PubMed  CAS  Google Scholar 

  • Marti-Carvajal A, Salanti G, Cardona AF (2008) Human recombinant activated protein C for severe sepsis. Cochrane Database Syst Rev (1):CD004388

  • Massa C, Melani C, Colombo MP (2005) Chaperon and adjuvant activity of hsp70: Different natural killer requirement for cross-priming of chaperoned and bystander antigens. Cancer Res 65:7942–7949

    PubMed  CAS  Google Scholar 

  • Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045

    PubMed  CAS  Google Scholar 

  • Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305 doi:10.1126/science.1071059

    PubMed  CAS  Google Scholar 

  • McBride WT, Armstrong MA, Gilliland H, McMurray TJ (1996) The balance of pro and anti-inflammatory cytokines in plasma and bronchoalveolar lavage (BAL) at paediatric cardiac surgery. Cytokine 8:724–729 doi:10.1006/cyto.1996.0096

    PubMed  CAS  Google Scholar 

  • McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528 doi:10.1074/jbc.273.13.7523

    PubMed  CAS  Google Scholar 

  • Millar DG, Garza KM, Odermatt B, Elford AR, Ono N, Li Z, Ohashi PS (2003) Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med 9:1469–1476 doi:10.1038/nm962

    PubMed  CAS  Google Scholar 

  • Millo JL, Schultz MJ, Williams C, Weverling GJ, Ringrose T, Mackinlay CI, van der Poll T, Garrard CS (2004) Compartmentalisation of cytokines and cytokine inhibitors in ventilator-associated pneumonia. Intensive Care Med 30:68–74 doi:10.1007/s00134-003-2060-0

    PubMed  Google Scholar 

  • Morariu AM, Loef BG, Aarts LP, Rietman GW, Rakhorst G, van Oeveren W, Epema AH (2005) Dexamethasone: benefit and prejudice for patients undergoing on-pump coronary artery bypass grafting: a study on myocardial, pulmonary, renal, intestinal, and hepatic injury. Chest 128:2677–2687 doi:10.1378/chest.128.4.2677

    PubMed  CAS  Google Scholar 

  • Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R (1997) Heat shock protein 72 on tumor cells: A recognition structure for natural killer cells. J Immunol 158:4341–4350

    PubMed  CAS  Google Scholar 

  • Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, Hiddemann W (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6:337–344. doi:10.1379/1466-1268(2001)006<0337:AMHPSN>2.0.CO;2

    PubMed  CAS  Google Scholar 

  • Mycko MP, Cwiklinska H, Szymanski J et al (2004) Inducible heat shock protein 70 promotes myelin autoantigen presentation by the HLA class II. J Immunol 172:202–213

    PubMed  CAS  Google Scholar 

  • Nathan N, Preux PM, Feiss P, Denizot Y (2000) Plasma interleukin-4, interleukin-10, and interleukin-13 concentrations and complications after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 14:156–160 doi:10.1016/S1053-0770(00)90010-7

    PubMed  CAS  Google Scholar 

  • Oehler R, Pusch E, Zellner M et al (2001) Cell type-specific variations in the induction of hsp70 in human leukocytes by feverlike whole body hyperthermia. Cell Stress Chaperones 6:306–315. doi:10.1379/1466-1268(2001)006<0306:CTSVIT>2.0.CO;2

    PubMed  CAS  Google Scholar 

  • Oishi Y, Taniguchi K, Matsumoto H, Ishihara A, Ohira Y, Roy RR (2002) Muscle type-specific response of HSP60, HSP72, and HSC73 during recovery after elevation of muscle temperature. J Appl Physiol 92:1097–1103

    PubMed  CAS  Google Scholar 

  • Okubo S, Wildner O, Shah MR, Chelliah JC, Hess ML, Kukreja RC (2001) Gene transfer of heat-shock protein 70 reduces infarct size in vivo after ischemia/reperfusion in the rabbit heart. Circulation 103:877–881

    PubMed  CAS  Google Scholar 

  • Palatianos GM, Balentine G, Papadakis EG, Triantafillou CD, Vassili MI, Lidoriki A, Dinopoulos A, Astras GM (2004) Neutrophil depletion reduces myocardial reperfusion morbidity. Ann Thorac Surg 77:956–961 doi:10.1016/j.athoracsur.2003.10.004

    PubMed  Google Scholar 

  • Park KJ, Gaynor RB, Kwak YT (2003) Heat shock protein 27 association with the I kappa B kinase complex regulates tumor necrosis factor alpha-induced NF-kappa B activation. J Biol Chem 278:35272–35278 doi:10.1074/jbc.M305095200

    PubMed  CAS  Google Scholar 

  • Plumier JC, Ross BM, Currie RW, Angelidis CE, Kazlaris H, Kollias G, Pagoulatos GN (1995) Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest 95:1854–1860 doi:10.1172/JCI117865

    PubMed  CAS  Google Scholar 

  • Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    PubMed  CAS  Google Scholar 

  • Prondzinsky R, Knupfer A, Loppnow H et al (2005) Surgical trauma affects the proinflammatory status after cardiac surgery to a higher degree than cardiopulmonary bypass. J Thorac Cardiovasc Surg 129:760–766 doi:10.1016/j.jtcvs.2004.07.052

    PubMed  Google Scholar 

  • Quintana FJ, Cohen IR (2005) Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol 175:2777–2782

    PubMed  CAS  Google Scholar 

  • Rafiee P, Shi Y, Pritchard KA Jr et al (2003) Cellular redistribution of inducible Hsp70 protein in the human and rabbit heart in response to the stress of chronic hypoxia: Role of protein kinases. J Biol Chem 278:43636–43644 doi:10.1074/jbc.M212993200

    PubMed  CAS  Google Scholar 

  • Ran R, Lu A, Zhang L et al (2004) Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev 18:1466–1481 doi:10.1101/gad.1188204

    PubMed  CAS  Google Scholar 

  • Rico AI, Girones N, Fresno M, Alonso C, Requena JM (2002) The heat shock proteins, Hsp70 and Hsp83, of leishmania infantum are mitogens for mouse B cells. Cell Stress Chaperones 7:339–346. doi:10.1379/1466-1268(2002)007<0339:THSPHA>2.0.CO;2

    PubMed  CAS  Google Scholar 

  • Rivera-Chavez FA, Wheeler H, Lindberg G, Munford RS, O'Keefe GE (2003) Regional and systemic cytokine responses to acute inflammation of the vermiform appendix. Ann Surg 237:408–416 doi:10.1097/00000658-200303000-00016

    PubMed  Google Scholar 

  • Robertson-Malt S, Afrane B, El Barbary M (2007) Prophylactic steroids for pediatric open heart surgery. Cochrane Database Syst Rev (4): CD005550

  • Rothenburger M, Tjan TD, Schneider M et al (2003) The impact of the pro- and anti-inflammatory immune response on ventilation time after cardiac surgery. Cytometry B Clin Cytom 53:70–74 doi:10.1002/cyto.b.10027

    PubMed  Google Scholar 

  • Rubens FD, Nathan H, Labow R, Williams KS, Wozny D, Karsh J, Ruel M, Mesana T (2005) Effects of methylprednisolone and a biocompatible copolymer circuit on blood activation during cardiopulmonary bypass. Ann Thorac Surg 79:655–665 doi:10.1016/j.athoracsur.2004.07.044

    PubMed  Google Scholar 

  • Sablotzki A, Friedrich I, Muhling J, Dehne MG, Spillner J, Silber RE, Czeslik E (2002) The systemic inflammatory response syndrome following cardiac surgery: Different expression of proinflammatory cytokines and procalcitonin in patients with and without multiorgan dysfunctions. Perfusion 17:103–109 doi:10.1191/0267659102pf543oa

    PubMed  Google Scholar 

  • Saito K, Dai Y, Ohtsuka K (2005) Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Exp Cell Res 310:229–236 doi:10.1016/j.yexcr.2005.07.014

    PubMed  CAS  Google Scholar 

  • Satoh M, Shimoda Y, Akatsu T, Ishikawa Y, Minami Y, Nakamura M (2006) Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte toll signal in patients with heart failure after acute myocardial infarction. Eur J Heart Fail 8:810–815 doi:10.1016/j.ejheart.2006.03.004

    PubMed  CAS  Google Scholar 

  • Schmitt JP, Schunkert H, Birnbaum DE, Aebert H (2002) Kinetics of heat shock protein 70 synthesis in the human heart after cold cardioplegic arrest. Eur J Cardiothorac Surg 22:415–420 doi:10.1016/S1010-7940(02)00327-5

    PubMed  CAS  Google Scholar 

  • Schroder O, Schulte KM, Ostermann P, Roher HD, Ekkernkamp A, Laun RA (2003) Heat shock protein 70 genotypes HSPA1B and HSPA1L influence cytokine concentrations and interfere with outcome after major injury. Crit Care Med 31:73–79 doi:10.1097/00003246-200301000-00011

    PubMed  Google Scholar 

  • Shaw AD, Stafford-Smith M, White WD et al (2008) The effect of aprotinin on outcome after coronary-artery bypass grafting. N Engl J Med 358:784–793 doi:10.1056/NEJMoa0707768

    PubMed  CAS  Google Scholar 

  • Shi Y, Tu Z, Tang D, Zhang H, Liu M, Wang K, Calderwood SK, Xiao X (2006) The inhibition of LPS-induced production of inflammatory cytokines by HSP70 involves inactivation of the NF-kappaB pathway but not the MAPK pathways. Shock 26:277–284 doi:10.1097/01.shk.0000223134.17877.ad

    PubMed  CAS  Google Scholar 

  • Singh R, Kolvraa S, Bross P, Jensen UB, Gregersen N, Tan Q, Knudsen C, Rattan SI (2006) Reduced heat shock response in human mononuclear cells during aging and its association with polymorphisms in HSP70 genes. Cell Stress Chaperones 11:208–215 doi:10.1379/CSC-184R.1

    PubMed  CAS  Google Scholar 

  • Singleton KD, Wischmeyer PE (2006) Effects of HSP70.1/3 gene knockout on acute respiratory distress syndrome and the inflammatory response following sepsis. Am J Physiol Lung Cell Mol Physiol 290:L956–L961 doi:10.1152/ajplung.00466.2005

    PubMed  CAS  Google Scholar 

  • Singleton KD, Serkova N, Beckey VE, Wischmeyer PE (2005) Glutamine attenuates lung injury and improves survival after sepsis: role of enhanced heat shock protein expression. Crit Care Med 33:1206–1213 doi:10.1097/01.CCM.0000166357.10996.8A

    PubMed  CAS  Google Scholar 

  • Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425 doi:10.1146/annurev.immunol.20.100301.064801

    PubMed  CAS  Google Scholar 

  • St Rammos K, Koullias GJ, Hassan MO, Argyrakis NP, Voucharas CG, Scarupa SJ, Cowte TG (2002) Low preoperative HSP70 atrial myocardial levels correlate significantly with high incidence of postoperative atrial fibrillation after cardiac surgery. Cardiovasc Surg 10:228–232 doi:10.1016/S0967-2109(01)00138-7

    PubMed  Google Scholar 

  • Storti S, Vittorini S, Iascone MR et al (2003) Analysis of the variation in the hsp70–1 and hsp90alpha mRNA expression in human myocardial tissue that has undergone surgical stress. Cell Stress Chaperones 8:18–25. doi:10.1379/1466-1268(2003)8<18:AOTVIT>2.0.CO;2

    PubMed  CAS  Google Scholar 

  • Suzuki K, Murtuza B, Sammut IA et al (2002) Heat shock protein 72 enhances manganese superoxide dismutase activity during myocardial ischemia–reperfusion injury, associated with mitochondrial protection and apoptosis reduction. Circulation 106:I270–I276

    PubMed  Google Scholar 

  • Szerafin T, Hoetzenecker K, Hacker S et al (2008) Heat shock proteins 27, 60, 70, 90alpha, and 20S proteasome in on-pump versus off-pump coronary artery bypass graft patients. Ann Thorac Surg 85:80–87 doi:10.1016/j.athoracsur.2007.06.049

    PubMed  Google Scholar 

  • Taggart DP, Bakkenist CJ, Biddolph SC, Graham AK, McGee JO (1997) Induction of myocardial heat shock protein 70 during cardiac surgery. J Pathol 182:362–366 doi:10.1002/(SICI)1096-9896(199707)182:3<362::AID-PATH879>3.0.CO;2-C

    PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9 doi:10.1016/j.smim.2003.10.003

    PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Xiao W, Wang H, Calderwood SK, Xiao X (2007) The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol 179:1236–1244

    PubMed  CAS  Google Scholar 

  • Tarnok A, Hambsch J, Emmrich F, Sack U, van Son J, Bellinghausen W, Borte M, Schneider P (1999) Complement activation, cytokines, and adhesion molecules in children undergoing cardiac surgery with or without cardiopulmonary bypass. Pediatr Cardiol 20:113–125 doi:10.1007/s002469900417

    PubMed  CAS  Google Scholar 

  • Temple SE, Cheong KY, Ardlie KG, Sayer D, Waterer GW (2004) The septic shock associated HSPA1B1267 polymorphism influences production of HSPA1A and HSPA1B. Intensive Care Med 30:1761–1767 doi:10.1007/s00134-004-2359-5

    PubMed  Google Scholar 

  • Theriault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK (2005) Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 579:1951–1960 doi:10.1016/j.febslet.2005.02.046

    PubMed  CAS  Google Scholar 

  • Tobian AA, Canaday DH, Harding CV (2004) Bacterial heat shock proteins enhance class II MHC antigen processing and presentation of chaperoned peptides to CD4+ T cells. J Immunol 173:5130–5137

    PubMed  CAS  Google Scholar 

  • Tomic V, Russwurm S, Moller E et al (2005) Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting. Circulation 112:2912–2920

    PubMed  CAS  Google Scholar 

  • Trost SU, Omens JH, Karlon WJ, Meyer M, Mestril R, Covell JW, Dillmann WH (1998) Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J Clin Invest 101:855–862 doi:10.1172/JCI265

    PubMed  CAS  Google Scholar 

  • Tsan MF, Gao B (2004) Endogenous ligands of toll-like receptors. J Leukoc Biol 76:514–519 doi:10.1189/jlb.0304127

    PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112 doi:10.1074/jbc.M111204200

    PubMed  CAS  Google Scholar 

  • Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K, Libert C (2002) HSP70 protects against TNF-induced lethal inflammatory shock. Immunity 16:685–695 doi:10.1016/S1074-7613(02)00310-2

    PubMed  Google Scholar 

  • Vega VL, Rodriguez-Silva M, Frey T et al (2008) Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 180:4299–4307

    PubMed  CAS  Google Scholar 

  • Wang S, Diller KR, Aggarwal SJ (2003) Kinetics study of endogenous heat shock protein 70 expression. J Biomech Eng 125:794–797 doi:10.1115/1.1632522

    PubMed  Google Scholar 

  • Wang R, Kovalchin JT, Muhlenkamp P, Chandawarkar RY (2006) Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood 107:1636–1642 doi:10.1182/blood-2005-06-2559

    PubMed  CAS  Google Scholar 

  • Waterer GW, ElBahlawan L, Quasney MW, Zhang Q, Kessler LA, Wunderink RG (2003) Heat shock protein 70–2+1267 AA homozygotes have an increased risk of septic shock in adults with community-acquired pneumonia. Crit Care Med 31:1367–1372 doi:10.1097/01.CCM.0000063088.86079.03

    PubMed  CAS  Google Scholar 

  • Weiss YG, Bromberg Z, Raj N, Raphael J, Goloubinoff P, Ben-Neriah Y, Deutschman CS (2007) Enhanced heat shock protein 70 expression alters proteasomal degradation of IkappaB kinase in experimental acute respiratory distress syndrome. Crit Care Med 35:2128–2138 doi:10.1097/01.CCM.0000278915.78030.74

    PubMed  CAS  Google Scholar 

  • Wheeler DS, Fisher LE Jr, Catravas JD, Jacobs BR, Carcillo JA, Wong HR (2005) Extracellular hsp70 levels in children with septic shock. Pediatr Crit Care Med 6:308–311 doi:10.1097/01.PCC.0000161075.97355.2E

    PubMed  Google Scholar 

  • Whittall T, Wang Y, Younson J, Kelly C, Bergmeier L, Peters B, Singh M, Lehner T (2006) Interaction between the CCR5 chemokine receptors and microbial HSP70. Eur J Immunol 36:2304–2314 doi:10.1002/eji.200635953

    PubMed  CAS  Google Scholar 

  • Williams RS, Benjamin IJ (2000) Protective responses in the ischemic myocardium. J Clin Invest 106:813–818 doi:10.1172/JCI11205

    PubMed  CAS  Google Scholar 

  • Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18:5943–5952 doi:10.1093/emboj/18.21.5943

    PubMed  CAS  Google Scholar 

  • Yamashita N, Hoshida S, Nishida M, Igarashi J, Aoki K, Hori M, Kuzuya T, Tada M (1997) Time course of tolerance to ischemia-reperfusion injury and induction of heat shock protein 72 by heat stress in the rat heart. J Mol Cell Cardiol 29:1815–1821 doi:10.1006/jmcc.1997.0416

    PubMed  CAS  Google Scholar 

  • Yared JP, Bakri MH, Erzurum SC, Moravec CS, Laskowski DM, Van Wagoner DR, Mascha E, Thornton J (2007) Effect of dexamethasone on atrial fibrillation after cardiac surgery: Prospective, randomized, double-blind, placebo-controlled trial. J Cardiothorac Vasc Anesth 21:68–75 doi:10.1053/j.jvca.2005.10.014

    PubMed  CAS  Google Scholar 

  • Ye Z, Gan YH (2007) Flagellin contamination of recombinant heat shock protein 70 is responsible for its activity on T cells. J Biol Chem 282:4479–4484 doi:10.1074/jbc.M606802200

    PubMed  CAS  Google Scholar 

  • Yoo CG, Lee S, Lee CT, Kim YW, Han SK, Shim YS (2000) Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through preventing I kappa B kinase activation in respiratory epithelial cells. J Immunol 164:5416–5423

    PubMed  CAS  Google Scholar 

  • Zhao Y, Wang W, Qian L (2007) Hsp70 may protect cardiomyocytes from stress-induced injury by inhibiting fas-mediated apoptosis. Cell Stress Chaperones 12:83–95 doi:10.1379/CSC-231R.1

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

B.J.P. is supported by Grants from the Dutch Organization for Scientific Research (NWO VIDI innovation grant), the 5th European Framework Grant ‘hsp for therapy’ and the Dutch Arthritis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berent J. Prakken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jong, P.R., Schadenberg, A.W.L., Jansen, N.J.G. et al. Hsp70 and cardiac surgery: molecular chaperone and inflammatory regulator with compartmentalized effects. Cell Stress and Chaperones 14, 117–131 (2009). https://doi.org/10.1007/s12192-008-0066-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-008-0066-9

Keywords

Navigation