Skip to main content

Advertisement

Log in

Recent Research Advances in Renin-Angiotensin-Aldosterone System Receptors

  • Prevention of Hypertension: Public Health Challenges (Y Yano, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The renin-angiotensin-aldosterone system (RAAS) plays important roles in regulating blood pressure and body fluid, which contributes to the pathophysiology of hypertension and cardiovascular/renal diseases. However, accumulating evidence has further revealed the complexity of this signal transduction system, including direct interactions with other receptors and proteins. This review focuses on recent research advances in RAAS with an emphasis on its receptors.

Recent Findings

Both systemically and locally produced angiotensin II (Ang II) bind to Ang II type 1 receptor (AT1R) and elicit strong biological functions. Recent studies have shown that Ang II–induced activation of Ang II type 2 receptor (AT2R) elicits the opposite functions to those of AT1R. However, accumulating evidence has now expanded the components of RAAS, including (pro)renin receptor, angiotensin-converting enzyme 2, angiotensin 1–7, and Mas receptor. In addition, the signal transductions of AT1R and AT2R are regulated by not only Ang II but also its receptor-associated proteins such as AT1R-associated protein and AT2R-interacting protein. Recent studies have indicated that inappropriate activation of local mineralocorticoid receptor contributes to cardiovascular and renal tissue injuries through aldosterone-dependent and -independent mechanisms.

Summary

Since the mechanisms of RAAS signal transduction still remain to be elucidated, further investigations are necessary to explore novel molecular mechanisms of the RAAS, which will provide alternative therapeutic agents other than existing RAAS blockers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52(3):415–72.

    PubMed  Google Scholar 

  2. Padia SH, Carey RM. AT2 receptors: beneficial counter-regulatory role in cardiovascular and renal function. Arch Eur J Physiol. 2013;465(1):99–110. https://doi.org/10.1007/s00424-012-1146-3.

    Article  CAS  Google Scholar 

  3. •• Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98(3):1627–738. https://doi.org/10.1152/physrev.00038.2017This paper summarizes detailed mechanisms of the angiotensin II signal transduction in various tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nishiyama A. Pathophysiological mechanisms of mineralocorticoid receptor-dependent cardiovascular and chronic kidney disease. Hypertens Res. 2019;42(3):293–300. https://doi.org/10.1038/s41440-018-0158-6.

  5. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109(11):1417–27. https://doi.org/10.1172/JCI14276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suzuki F, Hayakawa M, Nakagawa T, Nasir UM, Ebihara A, Iwasawa A, et al. Human prorenin has "gate and handle" regions for its non-proteolytic activation. J Biol Chem. 2003;278(25):22217–22. https://doi.org/10.1074/jbc.M302579200.

    Article  CAS  PubMed  Google Scholar 

  7. Ichihara A, Yatabe MS. The (pro)renin receptor in health and disease. Nat Rev Nephrol. 2019;15:693–712. https://doi.org/10.1038/s41581-019-0160-5.

    Article  PubMed  Google Scholar 

  8. Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G. Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension. 2009;53(6):1077–82. https://doi.org/10.1161/HYPERTENSIONAHA.108.127258.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshikawa A, Aizaki Y, Kusano K, Kishi F, Susumu T, Iida S, et al. The (pro)renin receptor is cleaved by ADAM19 in the Golgi leading to its secretion into extracellular space. Hypertens Res. 2011;34(5):599–605. https://doi.org/10.1038/hr.2010.284.

  10. Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 2007;8(11):917–29. https://doi.org/10.1038/nrm2272.

    Article  CAS  PubMed  Google Scholar 

  11. Ludwig J, Kerscher S, Brandt U, Pfeiffer K, Getlawi F, Apps DK, et al. Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J Biol Chem. 1998;273(18):10939–47. https://doi.org/10.1074/jbc.273.18.10939.

    Article  CAS  PubMed  Google Scholar 

  12. Kanda A, Noda K, Ishida S. ATP6AP2/(pro)renin receptor contributes to glucose metabolism via stabilizing the pyruvate dehydrogenase E1 beta subunit. J Biol Chem. 2015;290(15):9690–700. https://doi.org/10.1074/jbc.M114.626713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peters J. The (pro)renin receptor and its interaction partners. Arch Eur J Physiol. 2017;469(10):1245–56. https://doi.org/10.1007/s00424-017-2005-z.

    Article  CAS  Google Scholar 

  14. •• Buechling T, Bartscherer K, Ohkawara B, Chaudhary V, Spirohn K, Niehrs C, et al. Wnt/Frizzled signaling requires dPRR, the Drosophila homolog of the prorenin receptor. Curr Biol. 2010;20(14):1263–8. https://doi.org/10.1016/j.cub.2010.05.028In this paper, genome-wide screening studies have demonstrated that PRR is an essential component for the regulation of canonical Wnt/β-catenin signaling pathway.

    Article  CAS  PubMed  Google Scholar 

  15. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75. https://doi.org/10.4161/org.4.2.5851.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, et al. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science. 2010;327(5964):459–63. https://doi.org/10.1126/science.1179802.

    Article  CAS  PubMed  Google Scholar 

  17. Hermle T, Guida MC, Beck S, Helmstadter S, Simons M. Drosophila ATP6AP2/VhaPRR functions both as a novel planar cell polarity core protein and a regulator of endosomal trafficking. EMBO J. 2013;32(2):245–59. https://doi.org/10.1038/emboj.2012.323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. • Shibayama Y, Fujimori T, Nguyen G, Hirose T, Totsune K, Ichihara A, et al. (Pro)renin receptor is crucial for Wnt/beta-catenin-dependent genesis of pancreatic ductal adenocarcinoma. Sci Rep. 2015;5:8854. https://doi.org/10.1038/srep08854In this paper, the authors identified aberrant expression of PRR in pancreatic ductal adenocarcinoma (PDAC) tissues. Furthermore, plasma soluble PRR levels were significantly increased in patients with PDAC. Further molecular studies revealed new critical aspects that strongly indicate a potential role of (P)RR in Wnt/β-catenin signaling-dependent genesis of PDAC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arundhathi A, Chuang WH, Chen JK, Wang SE, Shyr YM, Chen JY, et al. Prorenin receptor acts as a potential molecular target for pancreatic ductal adenocarcinoma diagnosis. Oncotarget. 2016;7(34):55437–48. https://doi.org/10.18632/oncotarget.10583.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kouchi M, Shibayama Y, Ogawa D, Miyake K, Nishiyama A, Tamiya T. (Pro)renin receptor is crucial for glioma development via the Wnt/beta-catenin signaling pathway. J Neurosurg. 2017;127(4):819–28. https://doi.org/10.3171/2016.9.JNS16431.

    Article  CAS  PubMed  Google Scholar 

  21. Ohba K, Suzuki T, Nishiyama H, Kaneko K, Hirose T, Totsune K, et al. Expression of (pro)renin receptor in breast cancers and its effect on cancercell proliferation. Biomed Res. 2014;35(2):117–26.

    Article  CAS  Google Scholar 

  22. Beitia M, Solano-Iturri JD, Errarte P, Calvete-Candenas J, Loizate A, Etxezarraga MC, et al. (Pro)renin receptor expression increases throughout the colorectal adenoma-adenocarcinoma sequence and it is associated with worse colorectal cancer prognosis. Cancers (Basel). 2019;11(6):881. https://doi.org/10.3390/cancers11060881.

  23. Wang J, Shibayama Y, Zhang A, Ohsaki H, Asano E, Suzuki Y, et al. (Pro)renin receptor promotes colorectal cancer through the Wnt/beta-catenin signalling pathway despite constitutive pathway component mutations. Br J Cancer. 2019;120(2):229–37. https://doi.org/10.1038/s41416-018-0350-0.

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto H, Kaneko K, Ohba K, Morimoto R, Hirose T, Satoh F, et al. Increased expression of (pro)renin receptor in aldosterone-producing adenomas. Peptides. 2013;49:68–73. https://doi.org/10.1016/j.peptides.2013.08.022.

    Article  CAS  PubMed  Google Scholar 

  25. Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep. 2014;16(6):431. https://doi.org/10.1007/s11906-014-0431-2.

    Article  CAS  PubMed  Google Scholar 

  26. Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci. 2007;112(8):417–28. https://doi.org/10.1042/CS20060342.

    Article  CAS  PubMed  Google Scholar 

  27. Kamo T, Akazawa H, Komuro I. Pleiotropic effects of angiotensin II receptor signaling in cardiovascular homeostasis and aging. Int Heart J. 2015;56(3):249–54. https://doi.org/10.1536/ihj.14-429.

    Article  CAS  PubMed  Google Scholar 

  28. Toth AD, Turu G, Hunyady L, Balla A. Novel mechanisms of G-protein-coupled receptors functions: AT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Pract Res Clin Endocrinol Metab. 2018;32(2):69–82. https://doi.org/10.1016/j.beem.2018.02.003.

    Article  CAS  PubMed  Google Scholar 

  29. Ali MS, Sayeski PP, Dirksen LB, Hayzer DJ, Marrero MB, Bernstein KE. Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J Biol Chem. 1997;272(37):23382–8. https://doi.org/10.1074/jbc.272.37.23382.

    Article  CAS  PubMed  Google Scholar 

  30. Venema RC, Ju H, Venema VJ, Schieffer B, Harp JB, Ling BN, et al. Angiotensin II-induced association of phospholipase Cgamma1 with the G-protein-coupled AT1 receptor. J Biol Chem. 1998;273(13):7703–8. https://doi.org/10.1074/jbc.273.13.7703.

    Article  CAS  PubMed  Google Scholar 

  31. Tamura K, Tanaka Y, Tsurumi Y, Azuma K, Shigenaga A, Wakui H, et al. The role of angiotensin AT1 receptor-associated protein in renin-angiotensin system regulation and function. Curr Hypertens Rep. 2007;9(2):121–7.

    Article  CAS  Google Scholar 

  32. Tamura K, Wakui H, Maeda A, Dejima T, Ohsawa M, Azushima K, et al. The physiology and pathophysiology of a novel angiotensin receptor-binding protein ATRAP/Agtrap. Curr Pharm Des. 2013;19(17):3043–8.

    Article  CAS  Google Scholar 

  33. • Tamura K, Wakui H, Azushima K, Uneda K, Haku S, Kobayashi R, et al. Angiotensin II type 1 receptor binding molecule ATRAP as a possible modulator of renal sodium handling and blood pressure in pathophysiology. Curr Med Chem. 2015;22(28):3210–6 Together with references 31 and 32, these papers summarize physiology and pathophysiology of angiotensin II type 1 receptor-associated protein (ATRAP) in renin-angiotensin system and blood pressure regulation.

    Article  CAS  Google Scholar 

  34. Wakui H, Tamura K, Tanaka Y, Matsuda M, Bai Y, Dejima T, et al. Cardiac-specific activation of angiotensin II type 1 receptor-associated protein completely suppresses cardiac hypertrophy in chronic angiotensin II-infused mice. Hypertension. 2010;55(5):1157–64. https://doi.org/10.1161/HYPERTENSIONAHA.109.147207.

    Article  CAS  PubMed  Google Scholar 

  35. Wakui H, Dejima T, Tamura K, Uneda K, Azuma K, Maeda A, et al. Activation of angiotensin II type 1 receptor-associated protein exerts an inhibitory effect on vascular hypertrophy and oxidative stress in angiotensin II-mediated hypertension. Cardiovasc Res. 2013;100(3):511–9. https://doi.org/10.1093/cvr/cvt225.

    Article  CAS  PubMed  Google Scholar 

  36. Wakui H, Tamura K, Masuda S, Tsurumi-Ikeya Y, Fujita M, Maeda A, et al. Enhanced angiotensin receptor-associated protein in renal tubule suppresses angiotensin-dependent hypertension. Hypertension. 2013;61(6):1203–10. https://doi.org/10.1161/HYPERTENSIONAHA.111.00572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Azushima K, Ohki K, Wakui H, Uneda K, Haku S, Kobayashi R, et al. Adipocyte-specific enhancement of angiotensin II type 1 receptor-associated protein ameliorates diet-induced visceral obesity and insulin resistance. J Am Heart Assoc. 2017;6(3). https://doi.org/10.1161/JAHA.116.004488.

  38. Uneda K, Wakui H, Maeda A, Azushima K, Kobayashi R, Haku S, et al. Angiotensin II type 1 receptor-associated protein regulates kidney aging and lifespan independent of angiotensin. J Am Heart Assoc. 2017;6(8). https://doi.org/10.1161/JAHA.117.006120.

  39. Ohki K, Wakui H, Kishio N, Azushima K, Uneda K, Haku S, et al. Angiotensin II type 1 receptor-associated protein inhibits angiotensin II-induced insulin resistance with suppression of oxidative stress in skeletal muscle tissue. Sci Rep. 2018;8(1):2846. https://doi.org/10.1038/s41598-018-21270-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ohsawa M, Tamura K, Wakui H, Maeda A, Dejima T, Kanaoka T, et al. Deletion of the angiotensin II type 1 receptor-associated protein enhances renal sodium reabsorption and exacerbates angiotensin II-mediated hypertension. Kidney Int. 2014;86(3):570–81. https://doi.org/10.1038/ki.2014.95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maeda A, Tamura K, Wakui H, Dejima T, Ohsawa M, Azushima K, et al. Angiotensin receptor-binding protein ATRAP/Agtrap inhibits metabolic dysfunction with visceral obesity. J Am Heart Assoc. 2013;2(4):e000312. https://doi.org/10.1161/JAHA.113.000312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo DF, Chenier I, Tardif V, Orlov SN, Inagami T. Type 1 angiotensin II receptor-associated protein ARAP1 binds and recycles the receptor to the plasma membrane. Biochem Biophys Res Commun. 2003;310(4):1254–65. https://doi.org/10.1016/j.bbrc.2003.09.154.

    Article  CAS  PubMed  Google Scholar 

  43. •• Horiuchi M, Iwanami J, Mogi M. Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci. 2012;123(4):193–203. https://doi.org/10.1042/CS20110677This paper summarizes mechanisms of angiotensin II receptors-associated proteins that regulate the function of angiotensin II type 1 and type 2 receptors.

    Article  CAS  PubMed  Google Scholar 

  44. Guo DF, Chenier I, Lavoie JL, Chan JS, Hamet P, Tremblay J, et al. Development of hypertension and kidney hypertrophy in transgenic mice overexpressing ARAP1 gene in the kidney. Hypertension. 2006;48(3):453–9. https://doi.org/10.1161/01.HYP.0000230664.32874.52.

    Article  CAS  PubMed  Google Scholar 

  45. Mederle K, Schweda F, Kattler V, Doblinger E, Miyata K, Hocherl K, et al. The angiotensin II AT1 receptor-associated protein Arap1 is involved in sepsis-induced hypotension. Crit Care. 2013;17(4):R130. https://doi.org/10.1186/cc12809.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Doblinger E, Hocherl K, Mederle K, Kattler V, Walter S, Hansen PB, et al. Angiotensin AT1 receptor-associated protein Arap1 in the kidney vasculature is suppressed by angiotensin II. Am J Physiol Renal Physiol. 2012;302(10):F1313–24. https://doi.org/10.1152/ajprenal.00620.2011.

    Article  CAS  PubMed  Google Scholar 

  47. Cook JL, Re RN, de Haro DL, Abadie JM, Peters M, Alam J. The trafficking protein GABARAP binds to and enhances plasma membrane expression and function of the angiotensin II type 1 receptor. Circ Res. 2008;102(12):1539–47. https://doi.org/10.1161/CIRCRESAHA.108.176594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Wang H, Duvernay MT, Zhu S, Wu G. The angiotensin II type 1 receptor C-terminal Lys residues interact with tubulin and modulate receptor export trafficking. PLoS One. 2013;8(2):e57805. https://doi.org/10.1371/journal.pone.0057805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu S, Zhang M, Davis JE, Wu WH, Surrao K, Wang H, et al. A single mutation in helix 8 enhances the angiotensin II type 1a receptor transport and signaling. Cell Signal. 2015;27(12):2371–9. https://doi.org/10.1016/j.cellsig.2015.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Siragy HM, Carey RM. The subtype-2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3′, 5′-monophosphate and AT1 receptor-mediated prostaglandin E2 production in conscious rats. J Clin Invest. 1996;97(8):1978–82. https://doi.org/10.1172/JCI118630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Siragy HM, Jaffa AA, Margolius HS, Carey RM. Renin-angiotensin system modulates renal bradykinin production. Am J Phys. 1996;271(4 Pt 2):R1090–5. https://doi.org/10.1152/ajpregu.1996.271.4.R1090.

    Article  CAS  Google Scholar 

  52. Siragy HM, Carey RM. The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest. 1997;100(2):264–9. https://doi.org/10.1172/JCI119531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Siragy HM, Jaffa AA, Margolius HS. Bradykinin B2 receptor modulates renal prostaglandin E2 and nitric oxide. Hypertension. 1997;29(3):757–62.

    Article  CAS  Google Scholar 

  54. Tsutsumi Y, Matsubara H, Masaki H, Kurihara H, Murasawa S, Takai S, et al. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest. 1999;104(7):925–35. https://doi.org/10.1172/JCI7886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abadir PM, Carey RM, Siragy HM. Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice. Hypertension. 2003;42(4):600–4. https://doi.org/10.1161/01.HYP.0000090323.58122.5C.

    Article  CAS  PubMed  Google Scholar 

  56. You D, Loufrani L, Baron C, Levy BI, Widdop RE, Henrion D. High blood pressure reduction reverses angiotensin II type 2 receptor-mediated vasoconstriction into vasodilation in spontaneously hypertensive rats. Circulation. 2005;111(8):1006–11. https://doi.org/10.1161/01.CIR.0000156503.62815.48.

    Article  CAS  PubMed  Google Scholar 

  57. Moltzer E, Verkuil AV, van Veghel R, Danser AH, van Esch JH. Effects of angiotensin metabolites in the coronary vascular bed of the spontaneously hypertensive rat: loss of angiotensin II type 2 receptor-mediated vasodilation. Hypertension. 2010;55(2):516–22. https://doi.org/10.1161/HYPERTENSIONAHA.109.145037.

    Article  CAS  PubMed  Google Scholar 

  58. Kurisu S, Ozono R, Oshima T, Kambe M, Ishida T, Sugino H, et al. Cardiac angiotensin II type 2 receptor activates the kinin/NO system and inhibits fibrosis. Hypertension. 2003;41(1):99–107. https://doi.org/10.1161/01.hyp.0000050101.90932.14.

    Article  CAS  PubMed  Google Scholar 

  59. Yan X, Price RL, Nakayama M, Ito K, Schuldt AJ, Manning WJ, et al. Ventricular-specific expression of angiotensin II type 2 receptors causes dilated cardiomyopathy and heart failure in transgenic mice. Am J Physiol Heart Circ Physiol. 2003;285(5):H2179–87. https://doi.org/10.1152/ajpheart.00361.2003.

    Article  CAS  PubMed  Google Scholar 

  60. • Xu J, Sun Y, Carretero OA, Zhu L, Harding P, Shesely EG, et al. Effects of cardiac overexpression of the angiotensin II type 2 receptor on remodeling and dysfunction in mice post-myocardial infarction. Hypertension. 2014;63(6):1251–9. https://doi.org/10.1161/HYPERTENSIONAHA.114.03247This paper demonstrates that the beneficial or detrimental effects of angiotensin II type 2 receptor largely depend on the degree of its expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Knowle D, Ahmed S, Pulakat L. Identification of an interaction between the angiotensin II receptor sub-type AT2 and the ErbB3 receptor, a member of the epidermal growth factor receptor family. Regul Pept. 2000;87(1–3):73–82.

    Article  CAS  Google Scholar 

  62. Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price E Jr, Roberts RL, et al. A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J. 2003;22(24):6471–82. https://doi.org/10.1093/emboj/cdg637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fritz RD, Radziwill G. The scaffold protein CNK1 interacts with the angiotensin II type 2 receptor. Biochem Biophys Res Commun. 2005;338(4):1906–12. https://doi.org/10.1016/j.bbrc.2005.10.168.

    Article  CAS  PubMed  Google Scholar 

  64. Pulakat L, Cooper S, Knowle D, Mandavia C, Bruhl S, Hetrick M, et al. Ligand-dependent complex formation between the angiotensin II receptor subtype AT2 and Na+/H+ exchanger NHE6 in mammalian cells. Peptides. 2005;26(5):863–73. https://doi.org/10.1016/j.peptides.2004.12.015.

    Article  CAS  PubMed  Google Scholar 

  65. Kang KH, Park SY, Rho SB, Lee JH. Tissue inhibitor of metalloproteinases-3 interacts with angiotensin II type 2 receptor and additively inhibits angiogenesis. Cardiovasc Res. 2008;79(1):150–60. https://doi.org/10.1093/cvr/cvn072.

    Article  CAS  PubMed  Google Scholar 

  66. Nouet S, Amzallag N, Li JM, Louis S, Seitz I, Cui TX, et al. Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein, ATIP. J Biol Chem. 2004;279(28):28989–97. https://doi.org/10.1074/jbc.M403880200.

    Article  CAS  PubMed  Google Scholar 

  67. Wruck CJ, Funke-Kaiser H, Pufe T, Kusserow H, Menk M, Schefe JH, et al. Regulation of transport of the angiotensin AT2 receptor by a novel membrane-associated Golgi protein. Arterioscler Thromb Vasc Biol. 2005;25(1):57–64. https://doi.org/10.1161/01.ATV.0000150662.51436.14.

    Article  CAS  PubMed  Google Scholar 

  68. Fujita T, Mogi M, Min LJ, Iwanami J, Tsukuda K, Sakata A, et al. Attenuation of cuff-induced neointimal formation by overexpression of angiotensin II type 2 receptor-interacting protein 1. Hypertension. 2009;53(4):688–93. https://doi.org/10.1161/HYPERTENSIONAHA.108.128140.

    Article  CAS  PubMed  Google Scholar 

  69. Min LJ, Mogi M, Iwanami J, Jing F, Tsukuda K, Ohshima K, et al. Angiotensin II type 2 receptor-interacting protein prevents vascular senescence. J Am Soc Hypertens. 2012;6(3):179–84. https://doi.org/10.1016/j.jash.2012.01.006.

  70. Jing F, Mogi M, Min LJ, Ohshima K, Nakaoka H, Tsukuda K, et al. Effect of angiotensin II type 2 receptor-interacting protein on adipose tissue function via modulation of macrophage polarization. PLoS One. 2013;8(4):e60067. https://doi.org/10.1371/journal.pone.0060067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ito S, Asakura M, Liao Y, Min KD, Takahashi A, Shindo K, et al. Identification of the Mtus1 splice variant as a novel inhibitory factor against cardiac hypertrophy. J Am Heart Assoc. 2016;5(7). https://doi.org/10.1161/JAHA.116.003521.

  72. Yaffe MP, Schatz G. Two nuclear mutations that block mitochondrial protein import in yeast. Proc Natl Acad Sci U S A. 1984;81(15):4819–23. https://doi.org/10.1073/pnas.81.15.4819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. • Santos RA, Simoes E, Silva AC, Maric C, Silva DM, Machado RP, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63. https://doi.org/10.1073/pnas.1432869100This is one of the first papers describing that Mas receptor is a receptor for angotensin (1–7) to exert anti-diuretic actions and arterial relaxation response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Passos-Silva DG, Verano-Braga T, Santos RA. Angiotensin-(1-7): beyond the cardio-renal actions. Clin Sci. 2013;124(7):443–56. https://doi.org/10.1042/CS20120461.

    Article  CAS  PubMed  Google Scholar 

  75. Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007;49(1):185–92. https://doi.org/10.1161/01.HYP.0000251865.35728.2f.

    Article  CAS  PubMed  Google Scholar 

  76. Dias-Peixoto MF, Santos RA, Gomes ER, Alves MN, Almeida PW, Greco L, et al. Molecular mechanisms involved in the angiotensin-(1-7)/Mas signaling pathway in cardiomyocytes. Hypertension. 2008;52(3):542–8. https://doi.org/10.1161/HYPERTENSIONAHA.108.114280.

    Article  CAS  PubMed  Google Scholar 

  77. Karnik SS, Singh KD, Tirupula K, Unal H. Significance of angiotensin 1-7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR Review 22. Br J Pharmacol. 2017;174(9):737–53. https://doi.org/10.1111/bph.13742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shimada K, Furukawa H, Wada K, Wei Y, Tada Y, Kuwabara A, et al. Angiotensin-(1-7) protects against the development of aneurysmal subarachnoid hemorrhage in mice. J Cereb Blood Flow Metab. 2015;35(7):1163–8. https://doi.org/10.1038/jcbfm.2015.30.

  79. Ohshima K, Mogi M, Nakaoka H, Iwanami J, Min LJ, Kanno H, et al. Possible role of angiotensin-converting enzyme 2 and activation of angiotensin II type 2 receptor by angiotensin-(1-7) in improvement of vascular remodeling by angiotensin II type 1 receptor blockade. Hypertension. 2014;63(3):e53–9. https://doi.org/10.1161/HYPERTENSIONAHA.113.02426.

    Article  CAS  PubMed  Google Scholar 

  80. Villela DC, Passos-Silva DG, Santos RA. Alamandine: a new member of the angiotensin family. Curr Opin Nephrol Hypertens. 2014;23(2):130–4. https://doi.org/10.1097/01.mnh.0000441052.44406.92.

    Article  CAS  PubMed  Google Scholar 

  81. • Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. 2013;112(8):1104–11. https://doi.org/10.1161/CIRCRESAHA.113.301077This is the first paper that discovers and characterizes a novel component of the renin-angiotensin system, alamandine.

    Article  CAS  PubMed  Google Scholar 

  82. Jesus ICG, Scalzo S, Alves F, Marques K, Rocha-Resende C, Bader M, et al. Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. Am J Physiol Cell Physiol. 2018;314(6):C702–C11. https://doi.org/10.1152/ajpcell.00153.2017.

    Article  CAS  PubMed  Google Scholar 

  83. Tetzner A, Gebolys K, Meinert C, Klein S, Uhlich A, Trebicka J, et al. G-protein-coupled receptor MrgD is a receptor for angiotensin-(1-7) involving adenylyl cyclase, cAMP, and phosphokinase a. Hypertension. 2016;68(1):185–94. https://doi.org/10.1161/HYPERTENSIONAHA.116.07572.

    Article  CAS  PubMed  Google Scholar 

  84. Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240(4854):889–95. https://doi.org/10.1126/science.3283939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stockand JD. New ideas about aldosterone signaling in epithelia. Am J Physiol Renal Physiol. 2002;282(4):F559–76. https://doi.org/10.1152/ajprenal.00320.2001.

    Article  PubMed  Google Scholar 

  86. Rafiq K, Hitomi H, Nakano D, Nishiyama A. Pathophysiological roles of aldosterone and mineralocorticoid receptor in the kidney. J Pharmacol Sci. 2011;115(1):1–7.

    Article  CAS  Google Scholar 

  87. Nishiyama A, Kobori H. Independent regulation of renin-angiotensin-aldosterone system in the kidney. Clin Exp Nephrol. 2018;22(6):1231–9. https://doi.org/10.1007/s10157-018-1567-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shibata H, Itoh H. Mineralocorticoid receptor-associated hypertension and its organ damage: clinical relevance for resistant hypertension. Am J Hypertens. 2012;25(5):514–23. https://doi.org/10.1038/ajh.2011.245.

    Article  CAS  PubMed  Google Scholar 

  89. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science. 1988;242(4878):583–5. https://doi.org/10.1126/science.2845584.

    Article  CAS  PubMed  Google Scholar 

  90. Baker ME, Funder JW, Kattoula SR. Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors. J Steroid Biochem Mol Biol. 2013;137:57–70. https://doi.org/10.1016/j.jsbmb.2013.07.009.

    Article  CAS  PubMed  Google Scholar 

  91. Rafiq K, Nakano D, Ihara G, Hitomi H, Fujisawa Y, Ohashi N, et al. Effects of mineralocorticoid receptor blockade on glucocorticoid-induced renal injury in adrenalectomized rats. J Hypertens. 2011;29(2):290–8.

    Article  CAS  Google Scholar 

  92. Vitellius G, Trabado S, Bouligand J, Delemer B, Lombes M. Pathophysiology of glucocorticoid signaling. Ann Endocrinol. 2018;79(3):98–106. https://doi.org/10.1016/j.ando.2018.03.001.

    Article  Google Scholar 

  93. •• Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14(12):1370–6. https://doi.org/10.1038/nm.1879This paper reveals the aldosterone-independent activation of MR and that the Rac 1-mediated MR activation leads to the kidney damages, suggesting the importance of the therapeutic MR target in the organ-protective effects.

    Article  CAS  PubMed  Google Scholar 

  94. Shibata S, Ishizawa K, Uchida S. Mineralocorticoid receptor as a therapeutic target in chronic kidney disease and hypertension. Hypertens Res. 2017;40(3):221–5. https://doi.org/10.1038/hr.2016.137.

  95. Uddin S, Lekmine F, Sharma N, Majchrzak B, Mayer I, Young PR, et al. The Rac1/p38 mitogen-activated protein kinase pathway is required for interferon alpha-dependent transcriptional activation but not serine phosphorylation of Stat proteins. J Biol Chem. 2000;275(36):27634–40. https://doi.org/10.1074/jbc.M003170200.

    Article  CAS  PubMed  Google Scholar 

  96. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Zhu W, et al. Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. Circ Res. 1999;84(4):458–66. https://doi.org/10.1161/01.res.84.4.458.

    Article  CAS  PubMed  Google Scholar 

  97. Shibata S, Mu S, Kawarazaki H, Muraoka K, Ishizawa K, Yoshida S, et al. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J Clin Invest. 2011;121(8):3233–43. https://doi.org/10.1172/JCI43124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nagase M, Ayuzawa N, Kawarazaki W, Ishizawa K, Ueda K, Yoshida S, et al. Oxidative stress causes mineralocorticoid receptor activation in rat cardiomyocytes: role of small GTPase Rac1. Hypertension. 2012;59(2):500–6. https://doi.org/10.1161/HYPERTENSIONAHA.111.185520.

    Article  CAS  PubMed  Google Scholar 

  99. Ayuzawa N, Nagase M, Ueda K, Nishimoto M, Kawarazaki W, Marumo T, et al. Rac1-mediated activation of mineralocorticoid receptor in pressure overload-induced cardiac injury. Hypertension. 2016;67(1):99–106. https://doi.org/10.1161/HYPERTENSIONAHA.115.06054.

    Article  CAS  PubMed  Google Scholar 

  100. • Ito S, Itoh H, Rakugi H, Okuda Y, Yamakawa S. Efficacy and safety of esaxerenone (CS-3150) for the treatment of essential hypertension: a phase 2 randomized, placebo-controlled, double-blind study. J Hum Hypertens. 2019;33(7):542–51. https://doi.org/10.1038/s41371-019-0207-xThis paper demonstrates that esaxerenone reduces the BP dose-dependently and does not cause sex-hormone-related adverse events.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arai K, Homma T, Morikawa Y, Ubukata N, Tsuruoka H, Aoki K, et al. Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist. Eur J Pharmacol. 2015;761:226–34. https://doi.org/10.1016/j.ejphar.2015.06.015.

    Article  CAS  PubMed  Google Scholar 

  102. Arai K, Tsuruoka H, Homma T. CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist, prevents hypertension and cardiorenal injury in Dahl salt-sensitive hypertensive rats. Eur J Pharmacol. 2015;769:266–73. https://doi.org/10.1016/j.ejphar.2015.11.028.

    Article  CAS  PubMed  Google Scholar 

  103. Arai K, Morikawa Y, Ubukata N, Tsuruoka H, Homma T. CS-3150, a novel nonsteroidal mineralocorticoid receptor antagonist, shows preventive and therapeutic effects on renal injury in Deoxycorticosterone acetate/salt-induced hypertensive rats. J Pharmacol Exp Ther. 2016;358(3):548–57. https://doi.org/10.1124/jpet.116.234765.

    Article  CAS  PubMed  Google Scholar 

  104. Bhuiyan AS, Rafiq K, Kobara H, Masaki T, Nakano D, Nishiyama A. Effect of a novel nonsteroidal selective mineralocorticoid receptor antagonist, esaxerenone (CS-3150), on blood pressure and renal injury in high salt-treated type 2 diabetic mice. Hypertens Res. 2019;42(6):892–902. https://doi.org/10.1038/s41440-019-0211-0.

  105. Li L, Guan Y, Kobori H, Morishita A, Kobara H, Masaki T, et al. Effects of the novel nonsteroidal mineralocorticoid receptor blocker, esaxerenone (CS-3150), on blood pressure and urinary angiotensinogen in low-renin Dahl salt-sensitive hypertensive rats. Hypertens Res. 2019;42(6):769–78. https://doi.org/10.1038/s41440-018-0187-1.

  106. Ito S, Shikata K, Nangaku M, Okuda Y, Sawanobori T. Efficacy and safety of esaxerenone (CS-3150) for the treatment of type 2 diabetes with microalbuminuria: a randomized, double-blind, placebo-controlled, phase II trial. Clin J Am Soc Nephrol. 2019. https://doi.org/10.2215/CJN.14751218.

  107. Itoh H, Ito S, Rakugi H, Okuda Y, Nishioka S. Efficacy and safety of dosage-escalation of low-dosage esaxerenone added to a RAS inhibitor in hypertensive patients with type 2 diabetes and albuminuria: a single-arm, open-label study. Hypertens Res. 2019;42:1572–81. https://doi.org/10.1038/s41440-019-0270-2.

  108. Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Barfacker L, et al. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol. 2014;64(1):69–78. https://doi.org/10.1097/FJC.0000000000000091.

    Article  CAS  PubMed  Google Scholar 

  109. Grune J, Benz V, Brix S, Salatzki J, Blumrich A, Hoft B, et al. Steroidal and nonsteroidal mineralocorticoid receptor antagonists cause differential cardiac gene expression in pressure overload-induced cardiac hypertrophy. J Cardiovasc Pharmacol. 2016;67(5):402–11. https://doi.org/10.1097/FJC.0000000000000366.

    Article  CAS  PubMed  Google Scholar 

  110. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. Jama. 2015;314(9):884–94. https://doi.org/10.1001/jama.2015.10081.

    Article  CAS  PubMed  Google Scholar 

  111. Katayama S, Yamada D, Nakayama M, Yamada T, Myoishi M, Kato M, et al. A randomized controlled study of finerenone versus placebo in Japanese patients with type 2 diabetes mellitus and diabetic nephropathy. J Diabetes Complicat. 2017;31(4):758–65. https://doi.org/10.1016/j.jdiacomp.2016.11.021.

    Article  PubMed  Google Scholar 

  112. Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34(31):2453–63. https://doi.org/10.1093/eurheartj/eht187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Filippatos G, Anker SD, Bohm M, Gheorghiade M, Kober L, Krum H, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J. 2016;37(27):2105–14. https://doi.org/10.1093/eurheartj/ehw132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sato N, Ajioka M, Yamada T, Kato M, Myoishi M, Yamada T, et al. A randomized controlled study of finerenone vs. eplerenone in Japanese patients with worsening chronic heart failure and diabetes and/or chronic kidney disease. Circ J. 2016;80(5):1113–22. https://doi.org/10.1253/circj.CJ-16-0122.

Download references

Acknowledgments

We thank Mitchell Arico from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nishiyama.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Prevention of Hypertension: Public Health Challenges

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azushima, K., Morisawa, N., Tamura, K. et al. Recent Research Advances in Renin-Angiotensin-Aldosterone System Receptors. Curr Hypertens Rep 22, 22 (2020). https://doi.org/10.1007/s11906-020-1028-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-1028-6

Keywords

Navigation