Skip to main content

Advertisement

Log in

The Influence of Dietary Salt Beyond Blood Pressure

  • Blood Pressure Monitoring and Management (J Cockcroft, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Excess sodium from dietary salt (NaCl) is linked to elevations in blood pressure (BP). However, salt sensitivity of BP varies widely between individuals and there are data suggesting that salt adversely affects target organs, irrespective of BP.

Recent Findings

High dietary salt has been shown to adversely affect the vasculature, heart, kidneys, skin, brain, and bone. Common mediators of the target organ dysfunction include heightened inflammation and oxidative stress. These physiological alterations may contribute to disease development over time. Despite the adverse effects of salt on BP and several organ systems, there is controversy surrounding lower salt intakes and cardiovascular outcomes.

Summary

Our goal here is to review the physiology contributing to BP-independent effects of salt and address the controversy around lower salt intakes and cardiovascular outcomes. We will also address the importance of background diet in modulating the effects of dietary salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BP:

Blood pressure

BMC:

Bone mineral content

BMD:

Bone mineral density

CV:

Cardiovascular

CSF:

Cerebrospinal fluid

CRIC :

Chronic Renal Insufficiency Cohort

ENaC:

Epithelial sodium channel

DASH:

Dietary approaches to stop hypertension

LV:

Left ventricle

NO:

Nitric oxide

O2 - :

Superoxide

ONOO- :

Peroxynitrate

OVLT:

Organum vasculosum of the lamina terminalis

PURE:

Prospective Urban Rural Epidemiology

RCTs:

Randomized clinical trials

RAAS:

Renin angiotensin aldosterone system

RVLM:

Rostral ventrolateral medulla

Na+ :

Sodium

SOD:

Superoxide dismutase

SNA:

Sympathetic nerve activity

TOHP:

Trials of Hypertension Prevention

VEGF:

Vascular endothelial growth factor

24hU-Na+ :

24-h urinary sodium excretion

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Quader Z, Zhao L, Gillespie C, Cogswell M, Terry A, Moshfegh A, et al. Sodium intake among persons aged ≥2 years — United States, 2013–2014. MMWR Morb Mortal Wkly. 2017;66(12):324–238 These are the most recent sodium consumption data published by the Centers for Disease Control and Prevention.

    Google Scholar 

  2. Bailey RL, Parker EA, Rhodes DG, Goldman JD, Clemens JC, Moshfegh AJ, et al. Estimating sodium and potassium intakes and their ratio in the American diet: data from the 2011-2012 NHANES. J Nutr. 2016.

  3. Appel LJ, Frohlich ED, Hall JE, Pearson TA, Sacco RL, Seals DR, et al. The importance of population-wide sodium reduction as a means to prevent cardiovascular disease and stroke: a call to action from the American Heart Association. Circulation. 2011;123(10):1138–43.

    PubMed  Google Scholar 

  4. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3–10.

    CAS  PubMed  Google Scholar 

  5. Cook NR, Appel LJ, Whelton PK. Lower levels of sodium intake and reduced cardiovascular risk. Circulation. 2014;129(9):981–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. Bmj. 2013;346:f1325.

    PubMed  Google Scholar 

  7. Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2017;4(Cd004022).

  8. Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ. 2013;346.

    PubMed  PubMed Central  Google Scholar 

  9. • Mente A, O'Donnell M, Rangarajan S, McQueen M, Dagenais G, Wielgosz A, et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community- level prospective epidemiological cohort study. Lancet. 2018;392(10146):496–506 The most recent dietary sodium study from the Prospective Urban Rural Epidemiology cohort. Although this study has been criticized for using spot urine samples to derive conclusions, sodium intake was associated with cardiovascular disease and strokes only in communities where mean intake was greater than 5000 mg/day. Overall, mean sodium intake and major cardiovascular events showed significant deviations from linearity due to a significant inverse association in the lowest tertile of sodium intake; thus, this study contributed to the controversy surround low sodium intake.

    PubMed  Google Scholar 

  10. Mente A, O’Donnell M, Rangarajan S, Dagenais G, Lear S, McQueen M, et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet. 2016;388(10043):465–75.

    CAS  PubMed  Google Scholar 

  11. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerova J, Richart T, et al. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. Jama. 2011;305(17):1777–85.

    CAS  PubMed  Google Scholar 

  12. O'Donnell M, Mente A, Yusuf S. Sodium intake and cardiovascular health. Circ Res. 2015;116(6):1046–57.

    CAS  PubMed  Google Scholar 

  13. Harnack LJ, Cogswell ME, Shikany JM, Gardner CD, Gillespie C, Loria CM, et al. Sources of sodium in US adults from 3 geographic regions. Circulation. 2017;135(19):1775–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lenda DM, Boegehold MA. Effect of a high-salt diet on oxidant enzyme activity in skeletal muscle microcirculation. Am J Physiol Heart Circ Physiol. 2002;282(2):H395–402.

    CAS  PubMed  Google Scholar 

  15. Nurkiewicz TR, Boegehold MA. High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. Am J Phys Regul Integr Comp Phys. 2007;292(4):R1550–6.

    CAS  Google Scholar 

  16. •• Guers JJ, Kasecky-Lardner L, Farquhar WB, Edwards DG, Lennon SL. Voluntary wheel running prevents salt-induced endothelial dysfunction: role of oxidative stress. J Appl Physiol. 1985;2018 Our group recently presented data suggesting that voluntary wheel running can prevent impairments in endothelium-dependent relaxation in the femoral artery of rats fed a high-salt diet. These findings appear to be independent of blood pressure and mediated through a decrease in expression of NADPH oxidases and an increase of superoxide dismutase as a result of physical activity.

  17. Matthews EL, Brian MS, Ramick MG, Lennon-Edwards S, Edwards DG, Farquhar WB. High dietary sodium reduces brachial artery flow-mediated dilation in humans with salt-sensitive and salt-resistant blood pressure. J Appl Physiol. 2015;118(12):1510–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lennon-Edwards S, Ramick MG, Matthews EL, Brian MS, Farquhar WB, Edwards DG. Salt loading has a more deleterious effect on flow-mediated dilation in salt-resistant men than women. Nutr Metab Cardiovasc Dis. 2014;24(9):990–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tzemos N, Lim PO, Wong S, Struthers AD, MacDonald TM. Adverse cardiovascular effects of acute salt loading in young normotensive individuals. Hypertension. 2008;51(6):1525–30.

    CAS  PubMed  Google Scholar 

  20. Jablonski KL, Racine ML, Geolfos CJ, Gates PE, Chonchol M, McQueen MB, et al. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure. J Am Coll Cardiol. 2013;61(3):335–43.

    CAS  PubMed  Google Scholar 

  21. Muth BJ, Brian MS, Chirinos JA, Lennon SL, Farquhar WB, Edwards DG. Central systolic blood pressure and aortic stiffness response to dietary sodium in young and middle-aged adults. J Am Soc Hypertens. 2017;11(10):627–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dickinson KM, Clifton PM, Keogh JB. A reduction of 3 g/day from a usual 9 g/day salt diet improves endothelial function and decreases endothelin-1 in a randomised cross_over study in normotensive overweight and obese subjects. Atherosclerosis. 2014;233(1):32–8.

    CAS  PubMed  Google Scholar 

  23. Eisenach JH, Gullixson LR, Kost SL, Joyner MJ, Turner ST, Nicholson WT. Sex differences in salt sensitivity to nitric oxide dependent vasodilation in healthy young adults. J Appl Physiol (1985). 2012;112(6):1049–53.

    CAS  Google Scholar 

  24. Greaney JL, DuPont JJ, Lennon-Edwards SL, Sanders PW, Edwards DG, Farquhar WB. Dietary sodium loading impairs microvascular function independent of blood pressure in humans: role of oxidative stress. J Physiol. 2012;590(21):5519–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cavka A, Jukic I, Ali M, Goslawski M, Bian JT, Wang E, et al. Short-term high salt intake reduces brachial artery and microvascular function in the absence of changes in blood pressure. J Hypertens. 2016;34(4):676–84.

    CAS  PubMed  Google Scholar 

  26. D'Elia L, Galletti F, La Fata E, Sabino P, Strazzullo P. Effect of dietary sodium restriction on arterial stiffness: systematic review and meta-analysis of the randomized controlled trials. J Hypertens. 2018;36(4):734–43.

    CAS  PubMed  Google Scholar 

  27. Dickinson KM, Clifton PM, Burrell LM, Barrett PH, Keogh JB. Postprandial effects of a high salt meal on serum sodium, arterial stiffness, markers of nitric oxide production and markers of endothelial function. Atherosclerosis. 2014;232(1):211–6.

    CAS  PubMed  Google Scholar 

  28. Dickinson KM, Clifton PM, Keogh JB. Endothelial function is impaired after a high-salt meal in healthy subjects. Am J Clin Nutr. 2011;93(3):500–5.

    CAS  PubMed  Google Scholar 

  29. Lenda DM, Sauls BA, Boegehold MA. Reactive oxygen species may contribute to reduced endothelium-dependent dilation in rats fed high salt. Am J Physiol Heart Circ Physiol. 2000;279(1):H7–h14.

    CAS  PubMed  Google Scholar 

  30. Edwards DG, Farquhar WB. Vascular effects of dietary salt. Curr Opin Nephrol Hypertens. 2015;24(1):8–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sessa WC. eNOS at a glance. J Cell Sci. 2004;117(Pt 12):2427–9.

    CAS  PubMed  Google Scholar 

  32. Wray DW, Witman MA, Ives SJ, McDaniel J, Trinity JD, Conklin JD, et al. Does brachial artery flow-mediated vasodilation provide a bioassay for NO? Hypertension. 2013;62(2):345–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Loscalzo J. The identification of nitric oxide as endothelium-derived relaxing factor. Circ Res. 2013;113(2):100–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Durand MJ, Lombard JH. Low-dose angiotensin II infusion restores vascular function in cerebral arteries of high salt–fed rats by increasing copper/zinc superoxide dimutase expression. Am J Hypertens. 2013;26(6):739–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin JV, Liberati DM, Diebel LN. Excess sodium is deleterious on endothelial and glycocalyx barrier function: a microfluidic study. J Trauma Acute Care Surg. 2018;85(1):128–34.

    CAS  PubMed  Google Scholar 

  36. Tasevska I, Enhörning S, Burri P, Melander O. High salt intake increases copeptin but salt sensitivity is associated with fluid induced reduction of copeptin in women. Int J Hypertens. 2014;2014:1–5.

    Google Scholar 

  37. Spinelli L, Golino P, Piscione F, Chiariello M, Focaccio A, Ambrosio G, et al. Effects of oral salt load on arginine-vasopressin secretion in normal subjects. Ann Clin Lab Sci. 1987;17(5):350–7.

    CAS  PubMed  Google Scholar 

  38. Henderson KK, Byron KL. Vasopressin-induced vasoconstriction: two concentration- dependent signaling pathways. J Appl Physiol. 2007;102(4):1402–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Vranish JR, Holwerda SW, Young BE, Credeur DP, Patik JC, Barbosa TC, et al. Exaggerated vasoconstriction to spontaneous bursts of muscle sympathetic nerve activity in healthy young black men. Hypertension. 2018;71(1):192–8.

    CAS  PubMed  Google Scholar 

  40. •• Babcock MC, Robinson AT, Migdal KU, Watso JC, Wenner MM, Stocker SD, et al. Reducing dietary sodium to 1000 mg per day reduces neurovascular transduction without stimulating sympathetic outflow. Hypertension. 2019;73(3):587–93 We demonstrated that low (1000 mg/day) vs recommended (2300 mg/day) sodium does not influence resting sympathetic nerve activity but the low-sodium diet did reduce sympathetic vascular transduction.

    CAS  PubMed  Google Scholar 

  41. • Hall JE. Kidney dysfunction mediates salt-induced increases in blood pressure. Circulation. 2016;133(9):894–906 Kidney dysfunction, characterized by impaired pressure natriuresis, has been demonstrated in experimental models and human salt-sensitive hypertension. Mechanisms contributing to abnormalities of kidney function that lead to increased NaCl reabsorption decreased glomerular capillary filtration coefficient or cause nephron injury/loss are discussed in this review.

    PubMed  PubMed Central  Google Scholar 

  42. •• Wenner MM, Paul EP, Robinson AT, Rose WC, Farquhar WB. Acute NaCl loading reveals a higher blood pressure for a given serum sodium level in black compared to white adults. Front Physiol. 2018;9 We recently demonstrated black individuals exhibit augmented serum sodium to an acute hypertonic saline load and greater blood pressure responsiveness to a given serum sodium.

  43. Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Ren Physiol. 2017;313(2):F135–f40.

    CAS  Google Scholar 

  44. Pavlov TS, Levchenko V, O'Connor PM, Ilatovskaya DV, Palygin O, Mori T, et al. Deficiency of renal cortical EGF increases ENaC activity and contributes to salt-sensitive hypertension. J Am Soc Nephrol. 2013;24(7):1053–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chakraborty S, Galla S, Cheng X, Yeo JY, Mell B, Singh V, et al. Salt-responsive metabolite, beta-hydroxybutyrate, attenuates hypertension. Cell Rep. 2018;25(3):677–89.e4.

    CAS  PubMed  Google Scholar 

  46. Farquhar WB, Edwards DG, Jurkovitz CT, Weintraub WS. Dietary sodium and health: more than just blood pressure. J Am Coll Cardiol. 2015;65(10):1042–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Frame AA, Wainford RD. Mechanisms of altered renal sodium handling in age-related hypertension. Am J Physiol Ren Physiol. 2018;315(1):F1–f6.

    CAS  Google Scholar 

  48. Gomes AC, Falcao-Pires I, Pires AL, Bras-Silva C, Leite-Moreira AF. Rodent models of heart failure: an updated review. Heart Fail Rev. 2013;18(2):219–49.

    CAS  PubMed  Google Scholar 

  49. van der Westhuizen B, Schutte AE, Gafane-Matemane LF, Kruger R. Left ventricular mass independently associates with 24-hour sodium excretion in young masked hypertensive adults: the African-PREDICT study. Int J Cardiol. 2019;276:218–23.

    PubMed  Google Scholar 

  50. Aronow WS. Hypertension and left ventricular hypertrophy. Ann Transl Med. 2017;5(15).

    PubMed  PubMed Central  Google Scholar 

  51. Jin Y, Kuznetsova T, Maillard M, Richart T, Thijs L, Bochud M, et al. Independent relations of left ventricular structure with the 24-hour urinary excretion of sodium and aldosterone. Hypertension. 2009;54(3):489–95.

    CAS  PubMed  Google Scholar 

  52. du Cailar G, Fesler P, Ribstein J, Mimran A. Dietary sodium, aldosterone, and left ventricular mass changes during long-term inhibition of the renin-angiotensin system. Hypertension. 2010;56(5):865–70.

    PubMed  Google Scholar 

  53. Haring B, Wang W, Lee ET, Jhamnani S, Howard BV, Devereux RB. Effect of dietary sodium and potassium intake on left ventricular diastolic function and mass in adults</=40 years (from the Strong Heart Study). Am J Cardiol. 2015;115(9):1244–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cobb LK, Anderson CA, Elliott P, Hu FB, Liu K, Neaton JD, et al. Methodological issues in cohort studies that relate sodium intake to cardiovascular disease outcomes: a science advisory from the American Heart Association. Circulation. 2014;129(10):1173–86.

    CAS  PubMed  Google Scholar 

  55. •• Selvarajah V, Connolly K, McEniery C, Wilkinson I. Skin sodium and hypertension: a paradigm shift? Curr Hypertens Rep. 2018;20(11) One of two excellent recent reviews that summarize studies demonstrating observations of sodium storage in the skin as a means to buffer free extracellular Na+. Also discussed is the role downstream of macrophage modulation of the extracellular matrix and lymphatics network, suggesting complex extrarenal regulatory mechanisms that contribute to electrolyte homeostasis in the body.

  56. •• Wiig H, Luft FC, Titze JM. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol (Oxford). 2018;222(3) Second of two excellent recent reviews that summarize studies demonstrating observations of sodium storage in the skin as a means to buffer free extracellular Na+. Also discussed is the role downstream of macrophage modulation of the extracellular matrix and lymphatics network, suggesting complex extrarenal regulatory mechanisms that contribute to electrolyte homeostasis in the body.

    Google Scholar 

  57. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15(5):545–52.

    CAS  PubMed  Google Scholar 

  58. Machnik A, Dahlmann A, Kopp C, Goss J, Wagner H, van Rooijen N, et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension. 2010;55(3):755–61.

    CAS  PubMed  Google Scholar 

  59. Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T, et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Invest. 2017;127(5):1944–59.

    PubMed  PubMed Central  Google Scholar 

  60. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Foss JD, Kirabo A, Harrison DG. Do high-salt microenvironments drive hypertensive inflammation? Am J Phys Regul Integr Comp Phys. 2017;312:R1–4.

    Google Scholar 

  62. Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Muller DN, et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013;61(3):635–40.

    CAS  PubMed  Google Scholar 

  63. Kopp C, Linz P, Maier C, Wabel P, Hammon M, Nagel AM, et al. Elevated tissue sodium deposition in patients with type 2 diabetes on hemodialysis detected by (23) Na magnetic resonance imaging. Kidney Int. 2018;93(5):1191–7.

    CAS  PubMed  Google Scholar 

  64. Crescenzi R, Marton A, Donahue PMC, Mahany HB, Lants SK, Wang P, et al. Tissue sodium content is elevated in the skin and subcutaneous adipose tissue in women with lipedema. Obesity (Silver Spring). 2018;26(2):310–7.

    CAS  Google Scholar 

  65. Schneider MP, Raff U, Kopp C, Scheppach JB, Toncar S, Wanner C, et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J Am Soc Nephrol. 2017;28(6):1867–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. •• Selvarajah V, Maki-Petaja KM, Pedro L, SFA B, Burling K, Goodhart AK, et al. Novel mechanism for buffering dietary salt in humans: effects of salt loading on skin sodium, vascular endothelial growth factor c, and blood pressure. Hypertension. 2017;70(5):930–7 The findings of this study suggest that the skin sodium deposition may buffer dietary sodium; however, this relation between dietary sodium and skin sodium may be influenced by sex. Only male participants exhibited an increase in skin sodium following a high-salt diet.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Perry IJ, Beevers DG. Salt intake and stroke: a possible direct effect. J Hum Hypertens. 1992;6(1):23–5.

    CAS  PubMed  Google Scholar 

  68. Nagata C, Takatsuka N, Shimizu N, Shimizu H. Sodium intake and risk of death from stroke in Japanese men and women. Stroke. 2004;35(7):1543–7.

    PubMed  Google Scholar 

  69. Cosic A, Jukic I, Stupin A, Mihalj M, Mihaljevic Z, Novak S, et al. Attenuated flow- induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet. J Physiol. 2016;594(17):4917–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Faraco G, Brea D, Garcia-Bonilla L, Wang G, Racchumi G, Chang H, et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat Neurosci. 2018;21(2):240–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Allen LA, Schmidt JR, Thompson CT, Carlson BE, Beard DA, Lombard JH. High salt diet impairs cerebral blood flow regulation via salt-induced angiotensin II suppression. Microcirculation. 2018;e12518.

  72. Markus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain. 2001;124(Pt 3):457–67.

    CAS  PubMed  Google Scholar 

  73. Fisher JP, Young CN, Fadel PJ. Central sympathetic overactivity: maladies and mechanisms. Auton Neurosci. 2009;148(1–2):5–15.

    PubMed  PubMed Central  Google Scholar 

  74. Babcock MC, Brian MS, Watso JC, Edwards DG, Stocker SD, Wenner MM, et al. Alterations in dietary sodium intake affect cardiovagal baroreflex sensitivity. Am J Phys Regul Integr Comp Phys. 2018;315(4):R688–R95.

    CAS  PubMed  Google Scholar 

  75. Stocker SD, Lang SM, Simmonds SS, Wenner MM, Farquhar WB. Cerebrospinal fluid hypernatremia elevates sympathetic nerve activity and blood pressure via the rostral ventrolateral medulla. Hypertension. 2015;66(6):1184–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kawano Y, Yoshida K, Kawamura M, Yoshimi H, Ashida T, Abe H, et al. Sodium and noradrenaline in cerebrospinal fluid and blood in salt-sensitive and non-salt-sensitive essential hypertension. Clin Exp Pharmacol Physiol. 1992;19(4):235–41.

    CAS  PubMed  Google Scholar 

  77. •• Elijovich F, Weinberger MH, Anderson CA, Appel LJ, Bursztyn M, Cook NR, et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension. 2016;68(3):e7-e46 Salt sensitivity of blood pressure is a phenomenon whereby some members of the population exhibit blood pressure changes that parallel changes in salt intake. This recent scientific statement from the American Heart Association summarizes the prevalence and some of the mechanisms that contribute to salt sensitivity of blood pressure.

    PubMed  Google Scholar 

  78. Kinsman BJ, Simmonds SS, Browning KN, Stocker SD. Organum vasculosum of the lamina terminalis detects NaCl to elevate sympathetic nerve activity and blood pressure. Hypertension. 2017;69(1):163–70.

    CAS  PubMed  Google Scholar 

  79. Kinsman BJ, Browning KN, Stocker SD. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure. J Physiol. 2017;595(18):6187–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kinsman BJ, Nation HN, Stocker SD. Hypothalamic signaling in body fluid homeostasis and hypertension. Curr Hypertens Rep. 2017;19(6):50.

    PubMed  Google Scholar 

  81. Duvernoy HM, Risold PY. The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev. 2007;56(1):119–47.

    PubMed  Google Scholar 

  82. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–46.

    CAS  PubMed  Google Scholar 

  83. Badoer E. Hypothalamic paraventricular nucleus and cardiovascular regulation. Clin Exp Pharmacol Physiol. 2001;28(1–2):95–9.

    CAS  PubMed  Google Scholar 

  84. •• Nomura K, Hiyama TY, Sakuta H, Matsuda T, Lin CH, Kobayashi K, et al. [Na(+)] increases in body fluids sensed by central nax induce sympathetically mediated blood pressure elevations via H(+)-dependent activation of ASIC1a. Neuron. 2019;101(1):60–75.e6 This recent study provides insight into the neurogenic mechanisms responsible for salt-induced blood pressure elevations. Specifically, it was demonstrated that Nax channels are expressed in specific glial cells in the organum vasculosum lamina terminalis and act as sensors detecting increases in sodium in body fluids. The organum vasculosum lamina terminalis neurons projecting to the paraventricular nucleus are activated via acid-sensing ion channel 1a (ASIC1a) by hydrogen ions released from Nax-positive glial cells.

    CAS  PubMed  Google Scholar 

  85. Kim SW, Jeon JH, Choi YK, Lee WK, Hwang IR, Kim JG, et al. Association of urinary sodium/creatinine ratio with bone mineral density in postmenopausal women: KNHANES 2008–2011. Endocrine. 2015;49(3):791–9.

    CAS  PubMed  Google Scholar 

  86. Park Y, Kwon SJ, Ha YC. Association between urinary sodium excretion and bone health in male and female adults. Ann Nutr Metab. 2016;68(3):189–96.

    CAS  PubMed  Google Scholar 

  87. Cao WT, He J, Chen GD, Wang C, Qiu R, Chen YM. The association between urinary sodium to potassium ratio and bone density in middle-aged Chinese adults. Osteoporos Int. 2017;28(3):1077–86.

    CAS  PubMed  Google Scholar 

  88. Fatahi S, Namazi N, Larijani B, Azadbakht L. The association of dietary and urinary sodium with bone mineral density and risk of osteoporosis: a systematic review and meta- analysis. J Am Coll Nutr. 2018;37(6):522–32.

    PubMed  Google Scholar 

  89. Carbone L, Johnson KC, Huang Y, Pettinger M, Thomas F, Cauley J, et al. Sodium intake and osteoporosis. Findings from the Women’s Health Initiative. J Clin Endocrinol Metab. 2016;101(4):1414–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, et al. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014;371(7):624–34.

    PubMed  Google Scholar 

  91. Mancia G, Oparil S, Whelton PK, McKee M, Dominiczak A, Luft FC, et al. The technical report on sodium intake and cardiovascular disease in low- and middle-income countries by the joint working group of the World Heart Federation, the European Society of Hypertension and the European Public Health Association. Eur Heart J. 2017;38(10):712–9.

    PubMed  Google Scholar 

  92. Cook NR, Appel LJ, Whelton PK. Sodium intake and all-cause mortality over 20 years in the Trials of Hypertension Prevention. J Am Coll Cardiol. 2016;68(15):1609–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mills KT, Chen J, Yang W, Appel LJ, Kusek JW, Alper A, et al. Sodium excretion and the risk of cardiovascular disease in patients with chronic kidney disease. Jama. 2016;315(20):2200–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Thomas MC, Moran J, Forsblom C, Harjutsalo V, Thorn L, Ahola A, et al. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care. 2011;34(4):861–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ekinci EI, Clarke S, Thomas MC, Moran JL, Cheong K, MacIsaac RJ, et al. Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care. 2011;34(3):703–9.

    PubMed  PubMed Central  Google Scholar 

  96. Mente A, O'Donnell M, Rangarajan S, McQueen M, Dagenais G, Wielgosz A, et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community- level prospective epidemiological cohort study. Lancet. 2018;392(10146):496–506.

    PubMed  Google Scholar 

  97. O'Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med. 2014;371(7):612–23.

    PubMed  Google Scholar 

  98. Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2011;(11):Cd004022.

  99. Lerchl K, Rakova N, Dahlmann A, Rauh M, Goller U, Basner M, et al. Agreement between 24-hour salt ingestion and sodium excretion in a controlled environment. Hypertension. 2015;66(4):850–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Allen NB, Zhao L, Loria CM, Van Horn L, Wang CY, Pfeiffer CM, et al. The validity of predictive equations to estimate 24-hour sodium excretion: the MESA and CARDIA Urinary Sodium Study. Am J Epidemiol. 2017;186(2):149–59.

    PubMed  PubMed Central  Google Scholar 

  101. Cogswell ME, Wang CY, Chen TC, Pfeiffer CM, Elliott P, Gillespie CD, et al. Validity of predictive equations for 24-h urinary sodium excretion in adults aged 18-39 y. Am J Clin Nutr. 2013;98(6):1502–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tan M, He FJ, MacGregor GA. Salt and cardiovascular disease in PURE: a large sample size cannot make up for erroneous estimations. J Renin-Angiotensin-Aldosterone Syst. 2018;19(4):1470320318810015.

    PubMed  PubMed Central  Google Scholar 

  103. Cappuccio FP, Beer M, Strazzullo P. Population dietary salt reduction and the risk of cardiovascular disease. A scientific statement from the European Salt Action Network. Nutr Metab Cardiovasc Dis. 2018.

  104. Graudal N, Jurgens G, Baslund B, Alderman MH. Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: a meta-analysis. Am J Hypertens. 2014;27(9):1129–37.

    CAS  PubMed  Google Scholar 

  105. •• Jones DW, Luft FC, Whelton PK, Alderman MH, Hall JE, Peterson ED, et al. Can we end the salt wars with a randomized clinical trial in a controlled environment? Hypertension. 2018;72(1):10–1 This editorial served as a call for dietary sodium outcomes clinical trial given the controversy between low sodium intake and cardiovascular outcomes caused by findings from a number of epidemiological studies.

    CAS  PubMed  Google Scholar 

  106. The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention, phase II. Arch Intern Med. 1997;157(6):657–67.

    Google Scholar 

  107. Byrd K, Almanza B, Ghiselli RF, Behnke C, Eicher-Miller HA. Reported action to decrease Sodium intake is associated with dining out frequency and use of menu nutrition information among US adults. J Acad Nutr Diet. 2018;118(5):824–35.

    PubMed  Google Scholar 

  108. • Auchincloss AH, Leonberg BL, Glanz K, Bellitz S, Ricchezza A, Jervis A. Nutritional value of meals at full-service restaurant chains. J Nutr Educ Behav. 2014;46(1):75–81 This study determined the nutritional value of meals at full-service restaurant chains. Adult meals (defined as entrée + side dish + one-half appetizer) approximated ~ 3,500 mg sodium.

    PubMed  Google Scholar 

  109. • McCallum L, Lip S, Padmanabhan S. The hidden hand of chloride in hypertension. Pflugers Arch. 2015;467(3):595–603 There is consensus that high sodium chloride intake increases blood pressure. This review summarizes the evidence supporting an independent role for chloride on hypertension and cardiovascular health.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kurtz TW, Al-Bander HA, Morris RC Jr. "salt-sensitive" essential hypertension in men. Is the sodium ion alone important? N Engl J Med. 1987;317(17):1043–8.

    CAS  PubMed  Google Scholar 

  111. Shore AC, Markandu ND, MacGregor GA. A randomized crossover study to compare the blood pressure response to sodium loading with and without chloride in patients with essential hypertension. J Hypertens. 1988;6(8):613–7.

    CAS  PubMed  Google Scholar 

  112. Schorr U, Distler A, Sharma AM. Effect of sodium chloride- and sodium bicarbonate-rich mineral water on blood pressure and metabolic parameters in elderly normotensive individuals: a randomized double-blind crossover trial. J Hypertens. 1996;14(1):131–5.

    CAS  PubMed  Google Scholar 

  113. Luft FC, Zemel MB, Sowers JA, Fineberg NS, Weinberger MH. Sodium bicarbonate and sodium chloride: effects on blood pressure and electrolyte homeostasis in normal and hypertensive man. J Hypertens. 1990;8(7):663–70.

    CAS  PubMed  Google Scholar 

  114. Oh SW, Koo HS, Han KH, Han SY, Chin HJ. Associations of sodium intake with obesity, metabolic disorder, and albuminuria according to age. PLoS One. 2017;12.

    PubMed  PubMed Central  Google Scholar 

  115. Monteiro CA, Moubarac JC, Levy RB, Canella DS, Louzada M, Cannon G. Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutr. 2018;21(1):18–26.

    PubMed  Google Scholar 

  116. Costa CS, Rauber F, Leffa PS, Sangalli CN, Campagnolo PDB, Vitolo MR. Ultra- processed food consumption and its effects on anthropometric and glucose profile: a longitudinal study during childhood. Nutr Metab Cardiovasc Dis. 2019;29(2):177–84.

    CAS  PubMed  Google Scholar 

  117. Bolhuis DP, Costanzo A, Newman LP, Keast RS. Salt promotes passive overconsumption of dietary fat in humans. J Nutr. 2016;146(4):838–45.

    CAS  PubMed  Google Scholar 

  118. Zhang Y, Li F, Liu FQ, Chu C, Wang Y, Wang D, et al. Elevation of fasting ghrelin in healthy human subjects consuming a high-salt diet: a novel mechanism of obesity? Nutrients. 2016;8(6).

    PubMed Central  Google Scholar 

  119. Zhao L, Cogswell ME, Yang Q, Zhang Z, Onufrak S, Jackson SL, et al. Association of usual 24-h sodium excretion with measures of adiposity among adults in the United States: NHANES, 2014. Am J Clin Nutr. 2019;109(1):139–47.

    PubMed  Google Scholar 

  120. Juraschek SP, Miller ER 3rd, Weaver CM, Appel LJ. Effects of sodium reduction and the DASH diet in relation to baseline blood pressure. J Am Coll Cardiol. 2017;70(23):2841–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Fulgoni VL, Agarwal S, Spence L, Samuel P. Sodium intake in US ethnic subgroups and potential impact of a new sodium reduction technology: NHANES dietary modeling. Nutr J. 2014;13.

  122. Dubowitz T, Heron M, Bird CE, Lurie N, Finch BK, Basurto-Dávila R, et al. Neighborhood socioeconomic status and fruit and vegetable intake among whites, blacks, and Mexican- Americans in the United States. Am J Clin Nutr. 2008;87(6):1883–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Fahlman MM, McCaughtry N, Martin J, Shen B. Racial and socioeconomic disparities in nutrition behaviors: targeted interventions needed. J Nutr Educ Behav. 2010;42(1):10–6.

    PubMed  Google Scholar 

  124. Wang Y, Chen X. How much of racial/ethnic disparities in dietary intakes, exercise, and weight status can be explained by nutrition- and health-related psychosocial factors and socioeconomic status among US adults? J Am Diet Assoc. 2011;111(12):1904–11.

    PubMed  PubMed Central  Google Scholar 

  125. Storey M, Anderson P. Income and race/ethnicity influence dietary fiber intake and vegetable consumption. Nutr Res (New York, NY). 2014;34(10):844–50.

    CAS  Google Scholar 

  126. Nicklett EJ, Kadell AR. Fruit and vegetable intake among older adults: a scoping review. Maturitas. 2013;75(4):305–12.

    PubMed  PubMed Central  Google Scholar 

  127. Kirkpatrick SI, Dodd KW, Reedy J, Krebs-Smith SM. Income and race/ethnicity are associated with adherence to food-based dietary guidance among US adults and children. J Acad Nutr Diet. 2012;112(5):624–35.e6.

    PubMed  PubMed Central  Google Scholar 

  128. Jenkins DJ, Jones PJ, Frohlich J, Lamarche B, Ireland C, Nishi SK, et al. The effect of a dietary portfolio compared to a DASH-type diet on blood pressure. Nutr Metab Cardiovasc Dis. 2015;25(12):1132–9.

    CAS  PubMed  Google Scholar 

  129. Binia A, Jaeger J, Hu Y, Singh A, Zimmermann D. Daily potassium intake and sodium-to- potassium ratio in the reduction of blood pressure: a meta-analysis of randomized controlled trials. J Hypertens. 2015;33(8):1509–20.

    CAS  PubMed  Google Scholar 

  130. •• Murtaugh MA, Beasley JM, Appel LJ, Guenther PM, McFadden M, Greene T, et al. Relationship of sodium intake and blood pressure varies with energy intake: secondary analysis of the DASH (Dietary Approaches to Stop Hypertension)-Sodium Trial. Hypertension. 2018;71(5):858–65 Dietary sodium recommendations are expressed as absolute amounts (mg/day) rather than in sodium density (mg/kcal); however, this manuscript determined there is a relation between sodium density and blood pressure. Additionally, it is difficult for larger individuals to consume lower amounts of sodium and smaller individuals may not experience benefits with the current absolute sodium recommendations. Taken together, these data suggest more research is needed to confirm if recommendations should be normalized body weight or caloric intake.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Svetkey LP, Sacks FM, Obarzanek E, Vollmer WM, Appel LJ, Lin PH, et al. The DASH diet, sodium intake and blood pressure trial (DASH-sodium): rationale and design. DASH- Sodium Collaborative Research Group. J Am Diet Assoc. 1999;99(8 Suppl):S96–104.

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors have been supported by the following grants which have also contributed to some of the original work cited here: NIH P20 GM113125 (DGE); NIH R01 HL128388 (WBF); NIH R01 HL104106 (WBF and DGE); AHA 18POST34060020 (ATR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William B. Farquhar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Blood Pressure Monitoring and Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, A.T., Edwards, D.G. & Farquhar, W.B. The Influence of Dietary Salt Beyond Blood Pressure. Curr Hypertens Rep 21, 42 (2019). https://doi.org/10.1007/s11906-019-0948-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-019-0948-5

Keywords

Navigation