Skip to main content
Log in

High salt intake as a multifaceted cardiovascular disease: new support from cellular and molecular evidence

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Scientists worldwide have disseminated the idea that increased dietary salt increases blood pressure. Currently, salt intake in the general population is ten times higher than that consumed in the past and at least two times higher than the current recommendation. Indeed, a salt-rich diet increases cardiovascular morbidity and mortality. For a long time, however, the deleterious effects associated with high salt consumption were only related to the effect of salt on blood pressure. Currently, several other effects have been reported. In some cases, the deleterious effects of high salt consumption are independently associated with other common risk factors. In this article, we gather data on the effects of increased salt intake on the cardiovascular system, from infancy to adulthood, to describe the route by which increased salt intake leads to cardiovascular diseases. We have reviewed the cellular and molecular mechanisms through which a high intake of salt acts on the cardiovascular system to lead to the progressive failure of a healthy heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jew S, AbuMweis SS, Jones PJ (2009) Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. J Med Food 12(5):925–934. doi:10.1089/jmf.2008.0268

    CAS  PubMed  Google Scholar 

  2. MacGregor G, De Wardener HE (1998) Salt, diet and health : Neptune’s poisoned chalice : the origins of high blood pressure. Cambridge University Press, Cambridge

    Google Scholar 

  3. Oliver WJ, Cohen EL, Neel JV (1975) Blood pressure, sodium intake, and sodium related hormones in the Yanomamo Indians, a “no-salt” culture. Circulation 52(1):146–151

    CAS  PubMed  Google Scholar 

  4. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, Greenlund K, Daniels S, Nichol G, Tomaselli GF, Arnett DK, Fonarow GC, Ho PM, Lauer MS, Masoudi FA, Robertson RM, Roger V, Schwamm LH, Sorlie P, Yancy CW, Rosamond WD, American Heart Association Strategic Planning Task F, Statistics C (2010) Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic impact goal through 2020 and beyond. Circulation 121(4):586–613. doi:10.1161/CIRCULATIONAHA.109.192703

    PubMed  Google Scholar 

  5. Dahl LK, Love RA (1957) Etiological role of sodium chloride intake in essential hypertension in humans. J Am Med Assoc 164(4):397–400

    CAS  PubMed  Google Scholar 

  6. Ambard L, Beaujard E (1904) Causes de l’hypertension arterialle. Arch Gén Med 1:16

    Google Scholar 

  7. Mohan S, Campbell NR (2009) Salt and high blood pressure. Clin Sci 117(1):1–11. doi:10.1042/CS20080207

    CAS  PubMed  Google Scholar 

  8. Strazzullo P, D’Elia L, Kandala NB, Cappuccio FP (2009) Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 339:b4567. doi:10.1136/bmj.b4567

    PubMed Central  PubMed  Google Scholar 

  9. O’Donnell MJ, Mente A, Smyth A, Yusuf S (2013) Salt intake and cardiovascular disease: why are the data inconsistent? Eur Heart J 34(14):1034–1040. doi:10.1093/eurheartj/ehs409

    PubMed  Google Scholar 

  10. Alderman MH, Cohen HW (2012) Dietary sodium intake and cardiovascular mortality: controversy resolved? Curr Hypertens Rep 14(3):193–201. doi:10.1007/s11906-012-0275-6

    CAS  PubMed  Google Scholar 

  11. Cutler JA, Sorlie PD, Wolz M, Thom T, Fields LE, Roccella EJ (2008) Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988–1994 and 1999–2004. Hypertension 52(5):818–827. doi:10.1161/HYPERTENSIONAHA.108.113357

    CAS  PubMed  Google Scholar 

  12. Egan BM, Zhao Y, Axon RN (2010) US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. J Am Med Assoc (JAMA) 303(20):2043–2050. doi:10.1001/jama.2010.650

    CAS  Google Scholar 

  13. Whelton PK (2014) Sodium, blood pressure, and cardiovascular disease: a compelling scientific case for improving the health of the public. Circulation 129(10):1085–1087. doi:10.1161/CIRCULATIONAHA.114.008138

    PubMed  Google Scholar 

  14. Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, Lim S, Danaei G, Ezzati M, Powles J, Global Burden of Diseases N, Chronic Diseases Expert G (2014) Global sodium consumption and death from cardiovascular causes. N Engl J Med 371(7):624–634. doi:10.1056/NEJMoa1304127

    PubMed  Google Scholar 

  15. Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, Morrison H, Li W, Wang X, Di C, Mony P, Devanath A, Rosengren A, Oguz A, Zatonska K, Yusufali AH, Lopez-Jaramillo P, Avezum A, Ismail N, Lanas F, Puoane T, Diaz R, Kelishadi R, Iqbal R, Yusuf R, Chifamba J, Khatib R, Teo K, Yusuf S, Investigators P (2014) Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med 371(7):601–611. doi:10.1056/NEJMoa1311989

    PubMed  Google Scholar 

  16. Polonia J, Martins L, Pinto F, Nazare J (2014) Prevalence, awareness, treatment and control of hypertension and salt intake in Portugal: changes over a decade. The PHYSA study. J Hypertens 32(6):1211–1221. doi:10.1097/HJH.0000000000000162

    CAS  PubMed  Google Scholar 

  17. The INTERSALT Co-operative Research Group (1988) Sodium, potassium, body mass, alcohol and blood pressure: the INTERSALT Study. J Hypertens Suppl 6(4):S584–S586

  18. Intersalt Cooperative Research Group (1988) Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ 297(6644):319–328

  19. Khaw KT, Bingham S, Welch A, Luben R, O’Brien E, Wareham N, Day N (2004) Blood pressure and urinary sodium in men and women: the Norfolk Cohort of the European Prospective Investigation into Cancer (EPIC-Norfolk). Am J Clin Nutr 80(5):1397–1403

    CAS  PubMed  Google Scholar 

  20. Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ (2013) Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346:f1326. doi:10.1136/bmj.f1326

    PubMed  Google Scholar 

  21. He FJ, Li J, Macgregor GA (2013) Effect of longer term modest salt reduction on blood pressure: cochrane systematic review and meta-analysis of randomised trials. BMJ 346:f1325. doi:10.1136/bmj.f1325

    PubMed  Google Scholar 

  22. Sebastian RS, Wilkinson Enns C, Steinfeldt LC, Goldman JD, Moshfegh AJ (2013) Monitoring sodium intake of the US population: impact and implications of a change in what we eat in America, National Health and Nutrition Examination Survey dietary data processing. J Acad Nutr Diet 113(7):942–949. doi:10.1016/j.jand.2013.02.009

    PubMed  Google Scholar 

  23. Rodrigues SL, Baldo MP, Machado RC, Forechi L, Molina Mdel C, Mill JG (2014) High potassium intake blunts the effect of elevated sodium intake on blood pressure levels. J Am Soc Hypertens (JASH) 8(4):232–238. doi:10.1016/j.jash.2014.01.001

    CAS  Google Scholar 

  24. De Wardener HE, MacGregor GA (2002) Sodium and blood pressure. Curr Opin Cardiol 17(4):360–367

    PubMed  Google Scholar 

  25. Izzo R, de Simone G, Devereux RB, Giudice R, De Marco M, Cimmino CS, Vasta A, De Luca N, Trimarco B (2011) Initial left-ventricular mass predicts probability of uncontrolled blood pressure in arterial hypertension. J Hypertens 29(4):803–808. doi:10.1097/HJH.0b013e328343ce32

    CAS  PubMed  Google Scholar 

  26. de Simone G, Devereux RB, Roman MJ, Schlussel Y, Alderman MH, Laragh JH (1991) Echocardiographic left ventricular mass and electrolyte intake predict arterial hypertension. Ann Intern Med 114(3):202–209

    PubMed  Google Scholar 

  27. Starmans-Kool MJ, Stanton AV, Xu YY, Mc GTSA, Parker KH, Hughes AD (2011) High dietary salt intake increases carotid blood pressure and wave reflection in normotensive healthy young men. J Appl Physiol 110(2):468–471. doi:10.1152/japplphysiol.00917.2010

    CAS  PubMed  Google Scholar 

  28. Schmieder RE, Langenfeld MR, Friedrich A, Schobel HP, Gatzka CD, Weihprecht H (1996) Angiotensin II related to sodium excretion modulates left ventricular structure in human essential hypertension. Circulation 94(6):1304–1309

    CAS  PubMed  Google Scholar 

  29. Rodriguez CJ, Bibbins-Domingo K, Jin Z, Daviglus ML, Goff DC Jr, Jacobs DR Jr (2011) Association of sodium and potassium intake with left ventricular mass: coronary artery risk development in young adults. Hypertension 58(3):410–416. doi:10.1161/HYPERTENSIONAHA.110.168054

    CAS  PubMed Central  PubMed  Google Scholar 

  30. de Simone G, De Marco M (2011) Sodium, left ventricular mass, and arterial hypertension: is it time to look for a new paradigm? Hypertension 58(3):349–351. doi:10.1161/HYPERTENSIONAHA.111.176271

    PubMed  Google Scholar 

  31. Rodrigues SL, Baldo MP, Sa Cunha R, Angelo LC, Pereira AC, Krieger JE, Mill JG (2010) Anthropometric measures of increased central and overall adiposity in association with echocardiographic left ventricular hypertrophy. Hypertens Res 33(1):83–87. doi:10.1038/hr.2009.188

    PubMed  Google Scholar 

  32. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2013) Executive summary: heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127(1):143–152. doi:10.1161/CIR.0b013e318282ab8f

    PubMed  Google Scholar 

  33. Umesawa M, Iso H, Date C, Yamamoto A, Toyoshima H, Watanabe Y, Kikuchi S, Koizumi A, Kondo T, Inaba Y, Tanabe N, Tamakoshi A, Group JS (2008) Relations between dietary sodium and potassium intakes and mortality from cardiovascular disease: the Japan Collaborative Cohort Study for Evaluation of Cancer Risks. Am J Clin Nutr 88(1):195–202

  34. Sasaki S, Zhang XH, Kesteloot H (1995) Dietary sodium, potassium, saturated fat, alcohol, and stroke mortality. Stroke J Cereb Circ 26(5):783–789

    CAS  Google Scholar 

  35. Safar ME, Temmar M, Kakou A, Lacolley P, Thornton SN (2009) Sodium intake and vascular stiffness in hypertension. Hypertension 54(2):203–209. doi:10.1161/HYPERTENSIONAHA.109.129585

    CAS  PubMed  Google Scholar 

  36. Tzemos N, Lim PO, Wong S, Struthers AD, MacDonald TM (2008) Adverse cardiovascular effects of acute salt loading in young normotensive individuals. Hypertension 51(6):1525–1530. doi:10.1161/HYPERTENSIONAHA.108.109868

    CAS  PubMed  Google Scholar 

  37. Frohlich ED (2007) The salt conundrum: a hypothesis. Hypertension 50(1):161–166. doi:10.1161/HYPERTENSIONAHA.107.088328

    CAS  PubMed  Google Scholar 

  38. Tomonari T, Fukuda M, Miura T, Mizuno M, Wakamatsu TY, Ichikawa T, Miyagi S, Shirasawa Y, Ito A, Yoshida A, Omori T, Kimura G (2011) Is salt intake an independent risk factor of stroke mortality? Demographic analysis by regions in Japan. J Am Soc Hypertens (JASH) 5(6):456–462. doi:10.1016/j.jash.2011.07.004

    Google Scholar 

  39. Gardener H, Rundek T, Wright CB, Elkind MS, Sacco RL (2012) Dietary sodium and risk of stroke in the Northern Manhattan study. Stroke J Cereb Circ 43(5):1200–1205. doi:10.1161/STROKEAHA.111.641043

    CAS  Google Scholar 

  40. He FJ, Pombo-Rodrigues S, Macgregor GA (2014) Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open 4(4):e004549. doi:10.1136/bmjopen-2013-004549

    PubMed Central  PubMed  Google Scholar 

  41. Seth A, Mossavar-Rahmani Y, Kamensky V, Silver B, Lakshminarayan K, Prentice R, Van Horn L, Wassertheil-Smoller S (2014) Potassium intake and risk of stroke in women with hypertension and nonhypertension in the Women’s Health Initiative. Stroke J Cereb Circ 45(10):2874–2880. doi:10.1161/STROKEAHA.114.006046

    CAS  Google Scholar 

  42. de Souza JT, Matsubara LS, Menani JV, Matsubara BB, Johnson AK, De Gobbi JI (2012) Higher salt preference in heart failure patients. Appetite 58(1):418–423. doi:10.1016/j.appet.2011.09.021

    PubMed  Google Scholar 

  43. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK (2002) Dietary sodium intake and incidence of congestive heart failure in overweight US men and women: first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Arch Intern Med 162(14):1619–1624

    PubMed  Google Scholar 

  44. Langenfeld MR, Schobel H, Veelken R, Weihprecht H, Schmieder RE (1998) Impact of dietary sodium intake on left ventricular diastolic filling in early essential hypertension. Eur Heart J 19(6):951–958

    CAS  PubMed  Google Scholar 

  45. Kagiyama S, Koga T, Kaseda S, Ishihara S, Kawazoe N, Sadoshima S, Matsumura K, Takata Y, Tsuchihashi T, Iida M (2009) Correlation between increased urinary sodium excretion and decreased left ventricular diastolic function in patients with type 2 diabetes mellitus. Clin Cardiol 32(10):569–574. doi:10.1002/clc.20664

    PubMed  Google Scholar 

  46. Hummel SL, DeFranco AC, Skorcz S, Montoye CK, Koelling TM (2009) Recommendation of low-salt diet and short-term outcomes in heart failure with preserved systolic function. Am J Med 122(11):1029–1036. doi:10.1016/j.amjmed.2009.04.025

    PubMed Central  PubMed  Google Scholar 

  47. Cobb LK, Anderson CA, Elliott P, Hu FB, Liu K, Neaton JD, Whelton PK, Woodward M, Appel LJ, American Heart Association Council on L, Metabolic H (2014) Methodological issues in cohort studies that relate sodium intake to cardiovascular disease outcomes: a science advisory from the american heart association. Circulation 129(10):1173–1186. doi:10.1161/CIR.0000000000000015

    CAS  PubMed  Google Scholar 

  48. O’Donnell M, Mente A, Yusuf S (2014) Evidence relating sodium intake to blood pressure and CVD. Curr Cardiol Rep 16(10):529. doi:10.1007/s11886-014-0529-9

    PubMed  Google Scholar 

  49. Pomeranz A, Dolfin T, Korzets Z, Eliakim A, Wolach B (2002) Increased sodium concentrations in drinking water increase blood pressure in neonates. J Hypertens 20(2):203–207

    CAS  PubMed  Google Scholar 

  50. Cribb VL, Warren JM, Emmett PM (2012) Contribution of inappropriate complementary foods to the salt intake of 8-month-old infants. Eur J Clin Nutr 66(1):104–110. doi:10.1038/ejcn.2011.137

    CAS  PubMed  Google Scholar 

  51. Mulder KA, Zibrik L, Innis SM (2011) High dietary sodium intake among young children in Vancouver, British Columbia. J Am Coll Nutr 30(1):73–78

    PubMed  Google Scholar 

  52. Cotter J, Cotter MJ, Oliveira P, Cunha P, Polonia J (2013) Salt intake in children 10–12 years old and its modification by active working practices in a school garden. J Hypertens 31(10):1966–1971. doi:10.1097/HJH.0b013e328363572f

    CAS  PubMed  Google Scholar 

  53. Cogswell ME, Yuan K, Gunn JP, Gillespie C, Sliwa S, Galuska DA, Barrett J, Hirschman J, Moshfegh AJ, Rhodes D, Ahuja J, Pehrsson P, Merritt R, Bowman BA (2014) Vital signs: sodium intake among U.S. school-aged children—2009–2010. Morb Mortal Wkly Rep (MMWR) 63(36):789–797

    Google Scholar 

  54. de Boer MP, Ijzerman RG, de Jongh RT, Eringa EC, Stehouwer CD, Smulders YM, Serne EH (2008) Birth weight relates to salt sensitivity of blood pressure in healthy adults. Hypertension 51(4):928–932. doi:10.1161/HYPERTENSIONAHA.107.101881

    PubMed  Google Scholar 

  55. Simonetti GD, Raio L, Surbek D, Nelle M, Frey FJ, Mohaupt MG (2008) Salt sensitivity of children with low birth weight. Hypertension 52(4):625–630. doi:10.1161/HYPERTENSIONAHA.108.114983

    CAS  PubMed  Google Scholar 

  56. Brion MJ, Ness AR, Davey Smith G, Emmett P, Rogers I, Whincup P, Lawlor DA (2008) Sodium intake in infancy and blood pressure at 7 years: findings from the Avon Longitudinal Study of Parents and Children. Eur J Clin Nutr 62(10):1162–1169. doi:10.1038/sj.ejcn.1602837

    CAS  PubMed  Google Scholar 

  57. Beauchamp GK, Engelman K (1991) High salt intake. Sensory and behavioral factors. Hypertension 17(1 Suppl):I176–I181

    CAS  PubMed  Google Scholar 

  58. Stein LJ, Cowart BJ, Beauchamp GK (2006) Salty taste acceptance by infants and young children is related to birth weight: longitudinal analysis of infants within the normal birth weight range. Eur J Clin Nutr 60(2):272–279. doi:10.1038/sj.ejcn.1602312

    CAS  PubMed  Google Scholar 

  59. Clarke SN, Bernstein IL (2001) NaCl preference increases during pregnancy and lactation: assessment using brief access tests. Pharmacol Biochem Behav 68(3):555–563

    CAS  PubMed  Google Scholar 

  60. Barron LA, Giardina JB, Granger JP, Khalil RA (2001) High-salt diet enhances vascular reactivity in pregnant rats with normal and reduced uterine perfusion pressure. Hypertension 38(3 Pt 2):730–735

    CAS  PubMed  Google Scholar 

  61. Auger K, Beausejour A, Brochu M, St-Louis J (2004) Increased Na+ intake during gestation in rats is associated with enhanced vascular reactivity and alterations of K+ and Ca2+ function. Am J Physiol Heart Circ Physiol 287(4):H1848–H1856. doi:10.1152/ajpheart.00055.2004

    CAS  PubMed  Google Scholar 

  62. Gray C, Al-Dujaili EA, Sparrow AJ, Gardiner SM, Craigon J, Welham SJ, Gardner DS (2013) Excess maternal salt intake produces sex-specific hypertension in offspring: putative roles for kidney and gastrointestinal sodium handling. PLoS One 8(8):e72682. doi:10.1371/journal.pone.0072682

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Ding Y, Lv J, Mao C, Zhang H, Wang A, Zhu L, Zhu H, Xu Z (2010) High-salt diet during pregnancy and angiotensin-related cardiac changes. J Hypertens 28(6):1290–1297. doi:10.1097/HJH.0b013e328337da8f

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Vijande M, Brime JI, Lopez-Sela P, Costales M, Arguelles J (1996) Increased salt preference in adult offspring raised by mother rats consuming excessive amounts of salt and water. Regul Pept 66(1–2):105–108

    CAS  PubMed  Google Scholar 

  65. Contreras RJ (1993) High NaCl intake of rat dams alters maternal behavior and elevates blood pressure of adult offspring. Am J Physiol 264(2 Pt 2):R296–R304

    CAS  PubMed  Google Scholar 

  66. Piecha G, Koleganova N, Ritz E, Muller A, Fedorova OV, Bagrov AY, Lutz D, Schirmacher P, Gross-Weissmann ML (2012) High salt intake causes adverse fetal programming—vascular effects beyond blood pressure. Nephrol Dial Transplant 27(9):3464–3476. doi:10.1093/ndt/gfs027

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Nilsson PM (2012) Impact of vascular aging on cardiovascular disease: the role of telomere biology. J Hypertens. doi:10.1097/HJH.0b013e328353e512

    Google Scholar 

  68. Gao F, Han ZQ, Zhou X, Shi R, Dong Y, Jiang TM, Li YM (2011) High salt intake accelerated cardiac remodeling in spontaneously hypertensive rats: time window of left ventricular functional transition and its relation to salt-loading doses. Clin Exp Hypertens 33(7):492–499. doi:10.3109/10641963.2010.551795

    CAS  PubMed  Google Scholar 

  69. Dmitrieva NI, Bulavin DV, Burg MB (2003) High NaCl causes Mre11 to leave the nucleus, disrupting DNA damage signaling and repair. Am J Physiol Renal Physiol 285(2):F266–F274. doi:10.1152/ajprenal.00060.2003

    CAS  PubMed  Google Scholar 

  70. Dmitrieva NI, Burg MB (2004) Living with DNA breaks is an everyday reality for cells adapted to high NaCl. Cell Cycle 3(5):561–563

    CAS  PubMed  Google Scholar 

  71. Dmitrieva NI, Burg MB (2007) High NaCl promotes cellular senescence. Cell Cycle 6(24):3108–3113

    CAS  PubMed  Google Scholar 

  72. Diwan A, Dorn GW 2nd (2007) Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology 22:56–64. doi:10.1152/physiol.00033.2006

    CAS  PubMed  Google Scholar 

  73. Mill JG, Stefanon I, dos Santos L, Baldo MP (2011) Remodeling in the ischemic heart: the stepwise progression for heart failure. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica 44(9):890–898

  74. Siu PM, Bae S, Bodyak N, Rigor DL, Kang PM (2007) Response of caspase-independent apoptotic factors to high salt diet-induced heart failure. J Mol Cell Cardiol 42(3):678–686. doi:10.1016/j.yjmcc.2007.01.001

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Choudhury S, Bae S, Kumar SR, Ke Q, Yalamarti B, Choi JH, Kirshenbaum LA, Kang PM (2010) Role of AIF in cardiac apoptosis in hypertrophic cardiomyocytes from Dahl salt-sensitive rats. Cardiovasc Res 85(1):28–37. doi:10.1093/cvr/cvp261

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Kataoka K, Tokutomi Y, Yamamoto E, Nakamura T, Fukuda M, Dong YF, Ichijo H, Ogawa H, Kim-Mitsuyama S (2011) Apoptosis signal-regulating kinase 1 deficiency eliminates cardiovascular injuries induced by high-salt diet. J Hypertens 29(1):76–84. doi:10.1097/HJH.0b013e32833fc8b0

    CAS  PubMed  Google Scholar 

  77. Nakamura T, Kataoka K, Fukuda M, Nako H, Tokutomi Y, Dong YF, Ichijo H, Ogawa H, Kim-Mitsuyama S (2009) Critical role of apoptosis signal-regulating kinase 1 in aldosterone/salt-induced cardiac inflammation and fibrosis. Hypertension 54(3):544–551. doi:10.1161/HYPERTENSIONAHA.109.135392

    CAS  PubMed  Google Scholar 

  78. Yi B, Titze J, Rykova M, Feuerecker M, Vassilieva G, Nichiporuk I, Schelling G, Morukov B, Chouker A (2014) Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res. doi:10.1016/j.trsl.2014.11.007

    PubMed  Google Scholar 

  79. Zhou X, Zhang L, Ji WJ, Yuan F, Guo ZZ, Pang B, Luo T, Liu X, Zhang WC, Jiang TM, Zhang Z, Li YM (2013) Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation. PLoS One 8(4):e60332. doi:10.1371/journal.pone.0060332

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Shen K, DeLano FA, Zweifach BW, Schmid-Schonbein GW (1995) Circulating leukocyte counts, activation, and degranulation in Dahl hypertensive rats. Circ Res 76(2):276–283

    CAS  PubMed  Google Scholar 

  81. Moriguchi Y, Yogo K, Aizawa K, Serizawa K, Tashiro Y, Yorozu K, Ishizuka N, Iwabuchi S, Kitamura H, Nishimura T (2011) Left ventricular hypertrophy is associated with inflammation in sodium loaded subtotal nephrectomized rats. Biomed Res 32(2):83–90

    CAS  PubMed  Google Scholar 

  82. Liu F, Mu J, Yuan Z, Wu G, Liu E, Zheng S, Lian Q, Ren K, Xu H (2012) High salt intake fails to enhance plasma adiponectin in normotensive salt-sensitive subjects. Nutrition 28(4):422–425. doi:10.1016/j.nut.2011.08.018

    PubMed  Google Scholar 

  83. Weber CS, Thayer JF, Rudat M, Sharma AM, Perschel FH, Buchholz K, Deter HC (2008) Salt-sensitive men show reduced heart rate variability, lower norepinephrine and enhanced cortisol during mental stress. J Hum Hypertens 22(6):423–431. doi:10.1038/jhh.2008.11

    CAS  PubMed  Google Scholar 

  84. Piccirillo G, Bucca C, Durante M, Santagada E, Munizzi MR, Cacciafesta M, Marigliano V (1996) Heart rate and blood pressure variabilities in salt-sensitive hypertension. Hypertension 28(6):944–952

    CAS  PubMed  Google Scholar 

  85. Buchholz K, Schachinger H, Wagner M, Sharma AM, Deter HC (2003) Reduced vagal activity in salt-sensitive subjects during mental challenge. Am J Hypertens 16(7):531–536

    PubMed  Google Scholar 

  86. Minami J, Kawano Y, Ishimitsu T, Takishita S (1997) Blunted parasympathetic modulation in salt-sensitive patients with essential hypertension: evaluation by power-spectral analysis of heart-rate variability. J Hypertens 15(7):727–735

    CAS  PubMed  Google Scholar 

  87. Huang BS, Wang H, Leenen FH (2001) Enhanced sympathoexcitatory and pressor responses to central Na+ in Dahl salt-sensitive vs. -resistant rats. Am J Physiol Heart Circu Physiol 281(5):H1881–H1889

  88. Buckley JP, Bickerton RK, Halliday RP, Kato H (1963) Central effects of peptides on the cardiovascular system. Ann N Y Acad Sci 104:299–311

    CAS  PubMed  Google Scholar 

  89. Huang BS, Amin MS, Leenen FH (2006) The central role of the brain in salt-sensitive hypertension. Curr Opin Cardiol 21(4):295–304. doi:10.1097/01.hco.0000231398.64362.94

    PubMed  Google Scholar 

  90. Wang JM, Veerasingham SJ, Tan J, Leenen FH (2003) Effects of high salt intake on brain AT1 receptor densities in Dahl rats. Am J Physiol Heart Circ Physiol 285(5):H1949–H1955. doi:10.1152/ajpheart.00744.2002

    CAS  PubMed  Google Scholar 

  91. Huang BS, Wang H, Leenen FH (2005) Chronic central infusion of aldosterone leads to sympathetic hyperreactivity and hypertension in Dahl S but not Dahl R rats. Am J Physiol Heart Circ Physiol 288(2):H517–H524. doi:10.1152/ajpheart.00651.2004

    CAS  PubMed  Google Scholar 

  92. Butt AN, Semra YK, Ho CS, Swaminathan R (1997) Effect of high salt intake on plasma and tissue concentration of endogenous ouabain-like substance in the rat. Life Sci 61(24):2367–2373

    CAS  PubMed  Google Scholar 

  93. Manunta P, Hamilton BP, Hamlyn JM (2006) Salt intake and depletion increase circulating levels of endogenous ouabain in normal men. Am J Physiol Regul Integr Comp Physiol 290(3):R553–R559. doi:10.1152/ajpregu.00648.2005

    CAS  PubMed  Google Scholar 

  94. Ahn J, Varagic J, Slama M, Susic D, Frohlich ED (2004) Cardiac structural and functional responses to salt loading in SHR. Am J Physiol Heart Circ Physiol 287(2):H767–H772. doi:10.1152/ajpheart.00047.2004

    CAS  PubMed  Google Scholar 

  95. Varagic J, Frohlich ED, Diez J, Susic D, Ahn J, Gonzalez A, Lopez B (2006) Myocardial fibrosis, impaired coronary hemodynamics, and biventricular dysfunction in salt-loaded SHR. Am J Physiol Heart Circ Physiol 290(4):H1503–H1509. doi:10.1152/ajpheart.00970.2005

    CAS  PubMed  Google Scholar 

  96. Simoes MR, Furieri LB, Forechi L, Baldo MP, Rodrigues SL, Salaices M, Vassallo DV, Mill JG (2013) High salt intake does not produce additional impairment in the coronary artery relaxation of spontaneously hypertensive aged rats. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 58:193–197. doi:10.1016/j.fct.2013.04.038

    CAS  Google Scholar 

  97. Fernandez D, Snedden W, Fernandez PG, Nath C, Vasdev S, Triggle CR, Lee C (1988) Cardiac hypertrophy in experimental hypertension: interaction of the sodium ion, blood pressure and lisinopril. Can J Cardiol 4(1):44–48

    CAS  PubMed  Google Scholar 

  98. Matavelli LC, Zhou X, Varagic J, Susic D, Frohlich ED (2007) Salt loading produces severe renal hemodynamic dysfunction independent of arterial pressure in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 292(2):H814–H819. doi:10.1152/ajpheart.00671.2006

    CAS  PubMed  Google Scholar 

  99. Le Corvoisier P, Adamy C, Sambin L, Crozatier B, Berdeaux A, Michel JB, Hittinger L, Su J (2010) The cardiac renin-angiotensin system is responsible for high-salt diet-induced left ventricular hypertrophy in mice. Eur J Heart Fail 12(11):1171–1178. doi:10.1093/eurjhf/hfq146

    PubMed Central  PubMed  Google Scholar 

  100. Takeda Y, Yoneda T, Demura M, Furukawa K, Miyamori I, Mabuchi H (2001) Effects of high sodium intake on cardiovascular aldosterone synthesis in stroke-prone spontaneously hypertensive rats. J Hypertens 19(3 Pt 2):635–639

    CAS  PubMed  Google Scholar 

  101. Zhao X, White R, Van Huysse J, Leenen FH (2000) Cardiac hypertrophy and cardiac renin-angiotensin system in Dahl rats on high salt intake. J Hypertens 18(9):1319–1326

    CAS  PubMed  Google Scholar 

  102. Ferreira DN, Katayama IA, Oliveira IB, Rosa KT, Furukawa LN, Coelho MS, Casarini DE, Heimann JC (2010) Salt-induced cardiac hypertrophy and interstitial fibrosis are due to a blood pressure-independent mechanism in Wistar rats. J Nutr 140(10):1742–1751. doi:10.3945/jn.109.117473

    CAS  PubMed  Google Scholar 

  103. Gao X, He X, Luo B, Peng L, Lin J, Zuo Z (2009) Angiotensin II increases collagen I expression via transforming growth factor-beta1 and extracellular signal-regulated kinase in cardiac fibroblasts. Eur J Pharmacol 606(1–3):115–120. doi:10.1016/j.ejphar.2008.12.049

    CAS  PubMed  Google Scholar 

  104. Endemann DH, Touyz RM, Iglarz M, Savoia C, Schiffrin EL (2004) Eplerenone prevents salt-induced vascular remodeling and cardiac fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension 43(6):1252–1257. doi:10.1161/01.HYP.0000128031.31572.a3

    CAS  PubMed  Google Scholar 

  105. Susic D, Zhou X, Frohlich ED, Lippton H, Knight M (2008) Cardiovascular effects of prorenin blockade in genetically spontaneously hypertensive rats on normal and high-salt diet. Am J Physiol Heart Circ Physiol 295(3):H1117–H1121. doi:10.1152/ajpheart.00055.2008

    CAS  PubMed  Google Scholar 

  106. Varagic J, Frohlich ED, Susic D, Ahn J, Matavelli L, Lopez B, Diez J (2008) AT1 receptor antagonism attenuates target organ effects of salt excess in SHRs without affecting pressure. Am J Physiol Heart Circ Physiol 294(2):H853–H858. doi:10.1152/ajpheart.00737.2007

    CAS  PubMed  Google Scholar 

  107. Stocker SD, Madden CJ, Sved AF (2010) Excess dietary salt intake alters the excitability of central sympathetic networks. Physiol Behav 100(5):519–524. doi:10.1016/j.physbeh.2010.04.024

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Carillo BA, Beutel A, Mirandola DA, Vidonho AF Jr, Furukawa LN, Casarini D, Campos RR, Dolnikoff MS, Heimann JC, Bergamaschi CT (2007) Differential sympathetic and angiotensinergic responses in rats submitted to low- or high-salt diet. Regul Pept 140(1–2):5–11. doi:10.1016/j.regpep.2006.11.007

    CAS  PubMed  Google Scholar 

  109. Ziegelhoffer-Mihalovicova B, Arnold N, Marx G, Tannapfel A, Zimmer HG, Rassler B (2006) Effects of salt loading and various therapies on cardiac hypertrophy and fibrosis in young spontaneously hypertensive rats. Life Sci 79(9):838–846. doi:10.1016/j.lfs.2006.02.041

    PubMed  Google Scholar 

  110. Varagic J, Ahmad S, Brosnihan KB, Habibi J, Tilmon RD, Sowers JR, Ferrario CM (2010) Salt-induced renal injury in spontaneously hypertensive rats: effects of nebivolol. Am J Nephrol 32(6):557–566. doi:10.1159/000321471

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Dickinson KM, Clifton PM, Keogh JB (2011) Endothelial function is impaired after a high-salt meal in healthy subjects. Am J Clin Nutr 93(3):500–505. doi:10.3945/ajcn.110.006155

    CAS  PubMed  Google Scholar 

  112. Todd AS, Macginley RJ, Schollum JB, Johnson RJ, Williams SM, Sutherland WH, Mann JI, Walker RJ (2010) Dietary salt loading impairs arterial vascular reactivity. Am J Clin Nutr 91(3):557–564. doi:10.3945/ajcn.2009.28645

    CAS  PubMed  Google Scholar 

  113. Dupont JJ, Greaney JL, Wenner MM, Lennon-Edwards SL, Sanders PW, Farquhar WB, Edwards DG (2012) High dietary sodium intake impairs endothelium-dependent dilation in healthy salt-resistant humans. J Hypertens. doi:10.1097/HJH.0b013e32835c6ca8

    Google Scholar 

  114. Park S, Park JB, Lakatta EG (2011) Association of central hemodynamics with estimated 24-h urinary sodium in patients with hypertension. J Hypertens 29(8):1502–1507. doi:10.1097/HJH.0b013e3283486311

    CAS  PubMed  Google Scholar 

  115. Polonia J, Maldonado J, Ramos R, Bertoquini S, Duro M, Almeida C, Ferreira J, Barbosa L, Silva JA, Martins L (2006) Estimation of salt intake by urinary sodium excretion in a Portuguese adult population and its relationship to arterial stiffness. Port J Cardiol Off J Port Soc Cardiol = Revista portuguesa de cardiologia: orgao oficial da Sociedade Portuguesa de Cardiologia 25(9):801–817

    Google Scholar 

  116. Ying WZ, Sanders PW (2002) Increased dietary salt activates rat aortic endothelium. Hypertension 39(2):239–244

    CAS  PubMed  Google Scholar 

  117. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342(18):1350–1358. doi:10.1056/NEJM200005043421807

    CAS  PubMed  Google Scholar 

  118. Cordaillat M, Reboul C, Gaillard V, Lartaud I, Jover B, Rugale C (2011) Plasma volume and arterial stiffness in the cardiac alterations associated with long-term high sodium feeding in rats. Am J Hypertens 24(4):451–457. doi:10.1038/ajh.2010.260

    CAS  PubMed  Google Scholar 

  119. d’Uscio LV, Quaschning T, Burnett JC Jr, Luscher TF (2001) Vasopeptidase inhibition prevents endothelial dysfunction of resistance arteries in salt-sensitive hypertension in comparison with single ACE inhibition. Hypertension 37(1):28–33

    PubMed  Google Scholar 

  120. Zhao R, Zhou M, Li J, Wang X, Su K, Hu J, Ye Y, Zhu J, Zhang G, Wang K, Du J, Wang L, Shen B (2014) Increased TRPP2 expression in vascular smooth muscle cells from high-salt intake hypertensive rats: the crucial role in vascular dysfunction. Mol Nutr Food Res. doi:10.1002/mnfr.201400465

    Google Scholar 

  121. Iwamoto T, Kita S, Zhang J, Blaustein MP, Arai Y, Yoshida S, Wakimoto K, Komuro I, Katsuragi T (2004) Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat Med 10(11):1193–1199. doi:10.1038/nm1118

    CAS  PubMed  Google Scholar 

  122. Zhang J, Ren C, Chen L, Navedo MF, Antos LK, Kinsey SP, Iwamoto T, Philipson KD, Kotlikoff MI, Santana LF, Wier WG, Matteson DR, Blaustein MP (2010) Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca2+ channel current and lowers blood pressure. Am J Physiol Heart Circ Physiol 298(5):H1472–H1483. doi:10.1152/ajpheart.00964.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  123. dos Santos L, Goncalves MV, Vassallo DV, Oliveira EM, Rossoni LV (2006) Effects of high sodium intake diet on the vascular reactivity to phenylephrine on rat isolated caudal and renal vascular beds: endothelial modulation. Life Sci 78(19):2272–2279. doi:10.1016/j.lfs.2005.09.028

    PubMed  Google Scholar 

  124. Crestani S, Gasparotto Junior A, Marques MC, Sullivan JC, Webb RC, da Silva-Santos JE (2014) Enhanced angiotensin-converting enzyme activity and systemic reactivity to angiotensin II in normotensive rats exposed to a high-sodium diet. Vasc Pharmacol 60(2):67–74. doi:10.1016/j.vph.2013.12.001

    CAS  Google Scholar 

  125. Gonzalez M, Lobos L, Castillo F, Galleguillos L, Lopez NC, Michea L (2005) High-salt diet inhibits expression of angiotensin type 2 receptor in resistance arteries. Hypertension 45(5):853–859. doi:10.1161/01.HYP.0000161990.98383.ad

    CAS  PubMed  Google Scholar 

  126. Li J, White J, Guo L, Zhao X, Wang J, Smart EJ, Li XA (2009) Salt inactivates endothelial nitric oxide synthase in endothelial cells. J Nutr 139(3):447–451. doi:10.3945/jn.108.097451

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Ma S, Wang Q, Zhang Y, Yang D, Li D, Tang B, Yang Y (2014) Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress. Am J Hypertens 27(3):345–354. doi:10.1093/ajh/hpt225

    CAS  PubMed  Google Scholar 

  128. Zhu J, Mori T, Huang T, Lombard JH (2004) Effect of high-salt diet on NO release and superoxide production in rat aorta. Am J Physiol Heart Circ Physiol 286(2):H575–H583. doi:10.1152/ajpheart.00331.2003

    CAS  PubMed  Google Scholar 

  129. Zhu J, Huang T, Lombard JH (2007) Effect of high-salt diet on vascular relaxation and oxidative stress in mesenteric resistance arteries. J Vasc Res 44(5):382–390. doi:10.1159/000102955

    CAS  PubMed  Google Scholar 

  130. Wang J, Roman RJ, Falck JR, de la Cruz L, Lombard JH (2005) Effects of high-salt diet on CYP450-4A omega-hydroxylase expression and active tone in mesenteric resistance arteries. Am J Physiol Heart Circ Physiol 288(4):H1557–H1565. doi:10.1152/ajpheart.00755.2004

    CAS  PubMed  Google Scholar 

  131. Kagota S, Tamashiro A, Yamaguchi Y, Nakamura K, Kunitomo M (2002) High salt intake impairs vascular nitric oxide/cyclic guanosine monophosphate system in spontaneously hypertensive rats. J Pharmacol Exp Therap 302(1):344–351

    CAS  Google Scholar 

  132. Matrougui K, Schiavi P, Guez D, Henrion D (1998) High sodium intake decreases pressure-induced (myogenic) tone and flow-induced dilation in resistance arteries from hypertensive rats. Hypertension 32(1):176–179

    CAS  PubMed  Google Scholar 

  133. Ishizuka T, Niwa A, Tabuchi M, Nagatani Y, Ooshima K, Higashino H (2007) Involvement of thromboxane A2 receptor in the cerebrovascular damage of salt-loaded, stroke-prone rats. J Hypertens 25(4):861–870. doi:10.1097/HJH.0b013e3280464dc8

    CAS  PubMed  Google Scholar 

  134. Ying CJ, Noguchi T, Aso H, Ikeda K, Yamori Y, Nara Y (2008) The role of cytochrome p-450 in salt-sensitive stroke in stroke-prone spontaneously hypertensive rats. Hypertens Res 31(9):1821–1827. doi:10.1291/hypres.31.1821

    CAS  PubMed  Google Scholar 

  135. Foulquier S, Dupuis F, Perrin-Sarrado C, Maguin Gate K, Merhi-Soussi F, Liminana P, Kwan YW, Capdeville-Atkinson C, Lartaud I, Atkinson J (2011) High salt intake abolishes AT(2)-mediated vasodilation of pial arterioles in rats. J Hypertens 29(7):1392–1399. doi:10.1097/HJH.0b013e328347050e

    CAS  PubMed  Google Scholar 

  136. Yamamoto E, Tamamaki N, Nakamura T, Kataoka K, Tokutomi Y, Dong YF, Fukuda M, Matsuba S, Ogawa H, Kim-Mitsuyama S (2008) Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation. Stroke J Cereb Circ 39(11):3049–3056. doi:10.1161/STROKEAHA.108.517284

    CAS  Google Scholar 

  137. Gu D, Kelly TN, Hixson JE, Chen J, Liu D, Chen JC, Rao DC, Mu J, Ma J, Jaquish CE, Rice TK, Gu C, Hamm LL, Whelton PK, He J (2010) Genetic variants in the renin-angiotensin-aldosterone system and salt sensitivity of blood pressure. J Hypertens 28(6):1210–1220

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Giner V, Poch E, Bragulat E, Oriola J, Gonzalez D, Coca A, De La Sierra A (2000) Renin-angiotensin system genetic polymorphisms and salt sensitivity in essential hypertension. Hypertension 35(1 Pt 2):512–517

    CAS  PubMed  Google Scholar 

  139. Poch E, Gonzalez D, Giner V, Bragulat E, Coca A, de La Sierra A (2001) Molecular basis of salt sensitivity in human hypertension. Evaluation of renin-angiotensin-aldosterone system gene polymorphisms. Hypertension 38(5):1204–1209

    CAS  PubMed  Google Scholar 

  140. Caprioli J, Mele C, Mossali C, Gallizioli L, Giacchetti G, Noris M, Remuzzi G, Benigni A (2008) Polymorphisms of EDNRB, ATG, and ACE genes in salt-sensitive hypertension. Can J Physiol Pharmacol 86(8):505–510. doi:10.1139/Y08-045

    CAS  PubMed  Google Scholar 

  141. Zhang L, Miyaki K, Araki J, Song Y, Kimura T, Omae K, Muramatsu M (2006) Interaction of angiotensin I-converting enzyme insertion-deletion polymorphism and daily salt intake influences hypertension in Japanese men. Hypertens Res 29(10):751–758. doi:10.1291/hypres.29.751

    CAS  PubMed  Google Scholar 

  142. Kuznetsova T, Staessen JA, Stolarz K, Ryabikov A, Tikhonoff V, Olszanecka A, Bianchi G, Brand E, Casiglia E, Dominiczak A, Fagard R, Malyutina S, Nikitin Y, Kawecka-Jaszcz K, European Project On Genes in Hypertension I (2004) Relationship between left ventricular mass and the ACE D/I polymorphism varies according to sodium intake. J Hypertens 22(2):287–295

  143. Kuznetsova T, Staessen JA, Thijs L, Kunath C, Olszanecka A, Ryabikov A, Tikhonoff V, Stolarz K, Bianchi G, Casiglia E, Fagard R, Brand-Herrmann SM, Kawecka-Jaszcz K, Malyutina S, Nikitin Y, Brand E, European Project on Genes in Hypertension I (2004) Left ventricular mass in relation to genetic variation in angiotensin II receptors, renin system genes, and sodium excretion. Circulation 110(17):2644–2650. doi:10.1161/01.CIR.0000145541.63406.BA

  144. Zhang L, Miyaki K, Wang W, Muramatsu M (2010) CYP3A5 polymorphism and sensitivity of blood pressure to dietary salt in Japanese men. J Hum Hypertens 24(5):345–350. doi:10.1038/jhh.2009.74

    CAS  PubMed  Google Scholar 

  145. Iwai N, Kajimoto K, Tomoike H, Takashima N (2007) Polymorphism of CYP11B2 determines salt sensitivity in Japanese. Hypertension 49(4):825–831. doi:10.1161/01.HYP.0000258796.52134.26

    CAS  PubMed  Google Scholar 

  146. Isaji M, Mune T, Takada N, Yamamoto Y, Suwa T, Morita H, Takeda J, White PC (2005) Correlation between left ventricular mass and urinary sodium excretion in specific genotypes of CYP11B2. J Hypertens 23(6):1149–1157

    CAS  PubMed  Google Scholar 

  147. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerova J, Richart T, Jin Y, Olszanecka A, Malyutina S, Casiglia E, Filipovsky J, Kawecka-Jaszcz K, Nikitin Y, Staessen JA, European Project on Genes in Hypertension I (2011) Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA 305(17):1777–1785. doi:10.1001/jama.2011.574

  148. He FJ, Appel LJ, Cappuccio FP, de Wardener HE, MacGregor GA (2011) Does reducing salt intake increase cardiovascular mortality? Kidney Int 80(7):696–698. doi:10.1038/ki.2011.246

    PubMed  Google Scholar 

  149. Alderman MH, Cohen HW (2012) Dietary sodium intake and cardiovascular mortality: controversy resolved? Am J Hypertens 25(7):727–734. doi:10.1038/ajh.2012.52

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq [470748/2013-3; 400484/2013-7]. Marcelo Baldo is the recipient of a BJT fellowship from CNPq [306028/2013-1].

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Perim Baldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldo, M.P., Rodrigues, S.L. & Mill, J.G. High salt intake as a multifaceted cardiovascular disease: new support from cellular and molecular evidence. Heart Fail Rev 20, 461–474 (2015). https://doi.org/10.1007/s10741-015-9478-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-015-9478-7

Keywords

Navigation